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Abstract

Data assimilation is used to update the state of a system. Four-dimensional variational

data assimilation (4DVar) updates an a priori estimate of a state by making use of obser-

vational data throughout a time window. 4DVar requires the use of model equations to

describe the evolution of the state up to each observation time. The strong constraint for-

mulation of 4DVar is commonly used within the meteorological community, which assumes

the model equations perfectly describe the true evolution of the model state. However,

models are representations of true dynamical systems and often contain errors, where the

statistics of these errors are often unknown. A current objective of operational weather cen-

tres is to better account for model errors within the data assimilation process, both for the

purpose of improving the accuracy of atmospheric and oceanic forecasts and for the purpose

of more accurately reanalysing historical weather events. This gives us the motivation for

the work in this thesis.

We develop diagnostics to verify the specification of an estimated model error covariance

matrix. Once verified the matrix can subsequently be used in the weak formulation of

4DVar. However, often little is known about the model error statistics and we identify

the need for model error to be accounted for within the data assimilation process without

the requirement for the explicit specification of the model error statistics. Therefore, we

next develop a combined model error and observation error covariance matrix, to replace

the observation error covariance matrix, within the strong constraint 4DVar framework.

We formulate a method to estimate the combined error statistics which does not require

the explicit specification of model error statistics. The aim of this 4DVar method is to

achieve a more accurate estimation of the initial model state when model error is present.

Lastly, we next develop a coupled 4DVar technique that simultaneously estimates coupling

parameters along with a coupled atmosphere-ocean model state. We show using an idealized

coupled model that this method can be successful in compensating for model errors and

hence improve the coupled model forecast accuracy.
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Chapter 1

Introduction

Data assimilation is used to best estimate the state of a dynamical system. Data

assimilation methods require observations and an a priori estimate of the state, often

known as the background state. Data assimilation is used within the meteorolog-

ical community, for example to estimate the conditions for initialising forecasts of

the atmosphere and ocean [99] [6]. However, the mathematical formulations of data

assimilation methods are non-specific to a particular scientific field and other applica-

tions include image processing and oil reservoir modelling [14] [100]. Data assimilation

methods account for the fact that both background states and observations contain

errors. The best estimate of the state, known in the data assimilation community as

the analysis, is obtained by weighting the background and observations according to

the confidence in the accuracy of the information provided.

A commonly used data assimilation method is four-dimensional variational data

assimilation (4DVar), where the four-dimensions consist of the three spatial dimen-

sions and time. This method aims to best estimate the state of a system at the start

of a specified time window, known as the assimilation window. The process compares

both an estimate of the initial state with the background state, and a model evolved
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estimated initial state with observations at specific times throughout the assimilation

window. The strong constraint formulation of 4DVar assumes that the model used in

the process perfectly describes the true dynamics of the system.

In this thesis we acknowledge that models are representations of true dynamical

systems and often contain error. In particular, we focus on the errors present in mod-

els describing the dynamics of the atmosphere and ocean, where the statistics of the

model errors present are often unknown. Strong constraint 4DVar is a method com-

monly used at operational meteorological centres, for example to initialise Numerical

Weather Prediction (NWP) forecasts [99] [98]. A current objective of operational

weather centres is how to better account for model error within the data assimilation

process, both for the purpose of improving the accuracy of atmospheric and oceanic

forecasts and for the purpose of more accurately reanalysing historical weather events.

This gives us the motivation for work in this thesis, which will begin with the review

of variational data assimilation methods developed to account for errors present in

models, the types of errors present in operational atmosphere and ocean models and

the current data assimilation processes used at operational centres. We will next

detail the aims of work in this thesis.

1.1 Aims

Work in this thesis focuses on how to deal with model error within the data assim-

ilation process. Model error statistics are often unknown and this prevents use of

generic data assimilation methods developed to account for model error, such as the

weak formulation of 4DVar. Specifically, work in this thesis aims to:

1. Develop a method to verify the specification of model error statistics. Subse-

quently investigate the potential use of such a method to refine estimated model
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error statistics.

2. Amend the strong constraint 4DVar method in such a way that the effect model

error has on the estimation of the initial conditions is mitigated. This devel-

oped data assimilation method should account for model errors without the

requirement for explicit specification of the model error statistics.

3. Develop a strong constraint 4DVar method with the specific objective of im-

proving the accuracy of a coupled atmosphere-ocean forecast.

1.2 Summary of new results

A summary of the new results in the thesis are as follows:

1. The derivation of diagnostic equations that account for errors of a random

nature present in a model. These equations can be used as quality checks

for the specification of model error statistics. The first set of diagnostic tools

derived are for use with the strong constraint formulation of 4DVar, whereas the

second set of diagnostic tools are for use with the weak constraint formulation

of 4DVar. We show how, under certain conditions, the strong constraint 4DVar

diagnostic tools have the potential to refine estimated model error statistics.

2. The development of a combined model error and observation error covariance

matrix. This matrix accounts for the error statistics in the comparison of ob-

servations with a model evolved state mapped to observation space, where the

model error is of a random nature at each time-step. When these combined

error statistics replace the observation error statistics in the strong constraint

formulation of 4DVar, a statistically more accurate estimate of the initial state

is obtained. Further to this, the development of a method to estimate the
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combined model error and observation error covariance matrix, which does not

require explicit specification of the model error statistics.

3. The formulation of a strong constraint 4DVar method, to improve an erroneous

coupled model forecast, by simultaneously estimating coupling parameters along

with the atmosphere and ocean model state initial conditions. Estimation of

a coupling parameter can compensate for both model bias and time invariant

atmosphere and ocean parameter errors present in an idealized coupled model

and hence improve the accuracy of the coupled forecast.

1.3 Thesis Outline

In Chapter 2, we introduce variational data assimilation (Var) methods used to best

estimate the state of a system. We firstly describe Var methods developed for use

with a perfect model and subsequently describe Var methods that remove the per-

fect model assumption. We recognise that the Var methods that account for errors

present in a model often require the specification of model error statistics. Next in

Chapter 2, we give an introduction to the use of diagnostic tools as quality checks for

the specification of the background and observation error statistics required in data

assimilation schemes [38]. These equations have not been formulated with model

evolution, hence when used with model evolution do not account for model errors

present [2]. Subsequently, we present one diagnostic equation that has been derived

with model evolution and accounts for the presence of random error in a model [33]

[2].

In Chapter 3, we describe the formation of coupled atmosphere-ocean models and

acknowledge that these models are best representations of the true coupled dynamics

and contain error [104] [54] [34]. We discuss the potential origins of the model errors
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and the subsequent effects they have on the model state evolution, which can be

of a random or systematic nature. Next in Chapter 3, we outline the current data

assimilation methods used at operational meteorological centres for both; the purpose

of estimating initial conditions to run forecasts and for reanalysis of past weather

events. We also discuss the operational use of diagnostic tools as quality checks for

the specification of background and observation error statistics and highlight that

caution is advised if these tools are used with a model of an erroneous nature [2].

In Chapter 4, we firstly discuss the current difficulties that operational NWP

centres have in specifying model error statistics. We then describe methods that

have been developed to estimate model error statistics [118] [24] [30] [116] and report

the problems that arose when using them. Coupled atmosphere-ocean models are

used at operational meteorological centres to produce seasonal to decadal forecasts.

In Chapter 4, we examine data assimilation methods that have been formulated to

compensate for bias in coupled atmosphere-ocean models and hence improve coupled

model forecasts [130] [131] [114] [83]. We highlight the potential for developing such

methods in a 4DVar context. Lastly in Chapter 4, we outline techniques designed

to account for representativity error present in the data assimilation process [56]

[79] and discuss the relationship between representativity error and model error. We

acknowledge that these techniques have the potential to be further developed to

account for model error.

In Chapter 5, we introduce two dynamical systems that will be used to demon-

strate methods developed in this thesis. The first of these is the linear advection

equation which can be used to represent the transportation of a passive tracer in the

atmosphere, for example water vapour carried along by a constant light breeze. The

second of the dynamical systems is an idealized coupled atmosphere-ocean model [87].

Both of these dynamical systems consist of governing differential equations, for which

we will use numerical schemes to provide approximate time-stepping solutions. In
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Chapter 5, to avoid repetition, we outline certain properties of the data assimilation

set up which will be used in numerical experiments throughout this thesis.

In Chapter 6, we develop the first of our results, which are two sets of diagnostic

equations that account for random error present in a model. These equations can

be used as quality checks, in observation space, for the specification of a model error

covariance matrix with both background and observation error covariance matrices.

The first set of diagnostic tools we derive consists of three equations and are for the

case where an erroneous model is used in strong constraint 4DVar. The second set

of diagnostic tools consists of four equations and are specifically for the case where

an erroneous model is used in the weak formulation of 4DVar. Work in Chapter

6 also involves investigation of when the diagnostic tools can be used to refine an

inaccurately estimated model error covariance matrix.

In Chapter 7, we develop a combined model error and observation error covariance

matrix. Observations contain error and we consider a model of an erroneous nature

with random error present at each time-step. This combined error matrix accounts

for the errors in the comparison of observations with a model evolved initial state

mapped to observation space. The replacement of the observation error covariance

matrix with the combined error covariance matrix ensures the strong constraint 4DVar

problem is formulated to be mathematically correct, in order to best estimate the

initial state with use of an erroneous model of this nature. The formula we derive for

the combined error statistics requires the specification of model error statistics, which

are often unknown. Therefore, work in Chapter 7 involves developing a method, with

use of diagnostic tools, to estimate the combined model error and observation error

matrix without the need for explicit specification of the model error statistics. We

subsequently demonstrate the successful application of our developed 4DVar method,

with estimated combined statistics, to produce an improved analysis.

In Chapter 8, we develop a data assimilation method to account for errors present
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in a coupled atmosphere-ocean model and hence improve the accuracy of the coupled

forecast. We extend the idea of coupled atmosphere-ocean model state estimation in

the 4DVar framework to also estimating the models coupling parameters, with the

aim that the coupling parameter estimation compensates for the errors in the model.

We demonstrate the success of this method, in compensating for both model bias

and static atmosphere and ocean parameter errors present in an idealized coupled

model, and hence in producing forecasts of a higher accuracy. We investigate the

requirements for the developed scheme to be successful in compensating for the errors

present in the coupled model and the conditions under which this method provides

significant improvements to coupled forecasts.

Finally in Chapter 9, we summarise the work conducted in this thesis and draw

conclusions. We present suggestions for further work that could be carried out fol-

lowing on from work conducted to date.
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Chapter 2

Data Assimilation

In this chapter we introduce variational data assimilation methods (Var), which aim

to best estimate the state of a system. Practical applications of Var include both

atmospheric and oceanic forecasting. We acknowledge in this thesis that models are

representations of true dynamical systems and often contain error. In Section 2.1 we

introduce general nonlinear perfect model equations and subsequently general non-

linear erroneous model equations. In Section 2.2 we describe Var methods formulated

for use firstly with a perfect model and secondly with an erroneous model. We shall

then give a brief introduction to diagnostic tools in Section 2.3 which can be use-

ful quality checks for the specification of statistics required in the data assimilation

process.

2.1 Model system equations

In this section we introduce the notation and terminology for discrete dynamical

models and model error that we will use throughout this thesis. The notation and

terminology we use is commonly used in the data assimilation community. However,
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the meaning of the term ‘error’ can be interpreted in various ways and therefore we

will firstly discuss our interpretation of a ‘perfect model’ and an ‘erroneous model’.

When considering dynamics of a ‘true’ system, such as the atmosphere and ocean,

a forecast model is always going to be an approximation of the truth. This is because

models can only represent a finite number of variables at a finite number of spacial

points and only be evolved over a finite number of temporal points. Therefore even

if the ‘true’ dynamics of a system are well represented at these finite points with a

forecast model, this does not represent the whole dynamical system. Therefore what

we consider a ‘perfect model’ to be is a ‘deterministic model’ that evolves a finite

number of model state variables at finite points in space, over a finite number of

time-steps. Further to this, if the variables input into the ‘perfect model’ match the

‘true’ state values, then the outputs from the ‘perfect model’ produce values that

match the ‘true’ state at future points in time. However, often this is not the case,

and when this is not the case we describe the forecast models as ‘erroneous models’.

We can consider that the error is ’stochastic’, where either the ‘erroneous’ model is

a ’stochastic model’ or the ‘truth’ is stochastic from the perspective of the forecast

model. In these cases the ‘error’ is of a random nature. We can also assume that

the ‘erroneous’ model differs from the ‘perfect model’ with systematic correlations in

time.

2.1.1 Perfect model

We consider the discrete nonlinear dynamical model equations of the form,

xi =M{i−1}→i(xi−1) i = 1, 2, ... (2.1)
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to be perfect, where the column vector xi ∈ Rm is known as the state vector and con-

tains each of the model variables at time ti. The model operatorM{i−1}→i : Rm −→ Rm

defines the true evolution of the state vector from the previous time ti−1 to time ti.

2.1.2 Erroneous model

With error present in the model operator, we consider model equations of the form,

xi =Me
{i−1}→i(xi−1) i = 1, 2, ... (2.2)

where the model operator Me
{i−1}→i : Rm −→ Rm is the best known description of

the evolution of the state vector from the previous time ti−1 to time ti. In this thesis

we assume that to acquire the true model state xti at time ti,

xti =Me
{i−1}→i(x

t
i−1) + ηi i = 1, 2, ... (2.3)

where ηi ∈ Rm is a column vector containing the effect of ‘model errors’ at time ti.

We are not in fact stating that all errors in a generic model are of an additive nature,

but instead stating that the errors in the model can be ‘corrected’ for by addition of

a vector ηi at each time-step.

2.1.3 Glossary of Model Error

This thesis will consider the two cases;
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• Random model error: A ‘stochastic model’ where ηi (2.3) contains entries

that are random Gaussian distributed uncorrelated in time with a zero mean

and covariance matrix Qi.

• Systematic model error: The vector ηi (2.3) is considered to be of a sys-

tematic nature that can have a non-zero mean and allow for correlations in

time.

– Types of systematic errors considered in this thesis are model bias and

static parameter errors.

2.2 Data assimilation methods

Data assimilation aims to improve the accuracy of a prior estimate of a state, known

as the background. The data assimilation process uses observational data and of-

ten a model, to provide a best estimate of the state, known as the analysis. There

are a range of data assimilation techniques. We will concentrate on variational data

assimilation methods (Var) within this thesis. The other main class of data assimi-

lation techniques are known as sequential methods. These are direct methods, that

use information either at one time only or information propagated forward in time,

that explicitly provide an updated estimate of a state [77]. These sequential methods

specifically include schemes such as Optimal Interpolation [50] and the Kalman Filter

method [62]. Var differs from these sequential methods; the estimation of the state

is sought iteratively through minimisation of a cost function [77]. Var specifically

includes three-dimensional variational data assimilation (3DVar) where information

is used at one time only, and four-dimensional variational data assimilation (4DVar)

which uses information propagated both forward and backwards in time. Var is used

widely within the scientific community, including at operational Numerical Weather
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Prediction (NWP) centres including the Met Office [99], ECMWF [98], the Japanese

Met Agency [61] and the Canadian Met Service [51]. This is because Var can provide

estimates of a huge number of state variables at a computationally feasible cost within

the time frames required for operational use [70].

We assume we have observations yi at time ti, which are related to the true model

state by,

yi = Hi(xi
t) + εobi, i = 0, 1, ... (2.4)

where the column vector yi ∈ Rpi contains pi observations at time ti. The observation

errors at time ti are represented in the column vector εobi ∈ Rpi and are assumed to

be of a random nature. The nonlinear observation operator Hi : Rm −→ Rpi maps

the state from model space to observation space. In this thesis we assume we have

the same number of observations in yi at each time ti and let pi = p ∀ times ti. The

background xb is related to the true state xt0 at time t0 such that,

xb = xt0 + εb (2.5)

where the column vector xb ∈ Rm contains a prior estimate to each of the model state

variables. The column vector εb ∈ Rm contains errors in the background model state

and is assumed to be of a random nature.. Each observation error vector εobi has a

corresponding observation error covariance matrix Ri ∈ Rp×p describing the correla-

tions and variances of the observation errors at time ti. Similarly the background error

vector εb has a corresponding error covariance matrix B ∈ Rm×m. We next specify

assumptions widely used in the data assimilation community, which are fundamental
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for use of variational techniques. Firstly, both the background errors and observation

errors are unbiased Gaussian distributed and have corresponding symmetric positive

definite error covariance matrices B and Ri respectively and secondly, errors in the

background are uncorrelated to errors present in observations.

2.2.1 3DVar

Three-dimensional variational data assimilation (3DVar) aims to best estimate the

state of a system at a particular time. The three-dimensions in 3DVar simply rep-

resent the three spacial dimensions and therefore no model evolution through time

is required. The approach is to improve a background state approximation with use

of observations present at that time to acquire the best estimate of the model state,

known as the analysis [122]. Current operational applications of such methods in-

clude ocean data assimilation at meteorological centres around the world [78] [132]

[49] [59]. This method can be applied at any point in time where there is both a

background state and observations available. For ease of comparison with other Var

techniques we will use the notation t0 for the particular point in time chosen. The

use of Bayes Theorem in conjunction with the assumed Gaussian distributed data

and uncorrelated errors enables an expression for the posterior probability density

function (PDF) of the state given the observations [80], with the maximum likelihood

at the analysis. This state with the maximum likelihood is equivalent to the state

with the minimum variance and can be determined by minimising the cost function,

J (x0)=
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
(y0 −H0(x0))

TR0
−1(y0 −H0(x0)), (2.6)

with respect to the state vector x0. The model state is compared both to the back-

ground and observations which are weighted according to the accuracy specified by

their respective error covariance matrices. A gradient descent algorithm is an iterative
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process often used to minimise (2.6) which requires the gradient of the cost function

with respect to the model state,

∇J (x0) = B−1(x0 − xb)−H0
TR0

−1(y0 −H0(x0)), (2.7)

where H0 ∈ Rp×m is the linearised observation operator. However, when a linear

observation operator is used in the cost function (2.6), the analysis can be explicitly

given by,

xa0 = xb + Kdob, (2.8)

where K = BH0
T (H0BH0

T +R0)
−1 which is commonly referred to as the gain matrix

[91] and dob = y0 −H0x
b which is known as the innovation vector [38].

3DVar is a useful tool to estimate conditions of a state vector at a particular time.

However, in practice this scheme may not be the most appropriate variational data

method to use in all cases, for example when there is a lack of observational data at

the analysis time. This 3DVar method can be extended to include a fourth dimension,

time, with the data assimilation technique known as four-dimensional variational data

assimilation (4DVar).

2.2.2 4DVar

4DVar uses observations at multiple times across a specified window, known as the

assimilation window. The objective of 4DVar is to best estimate the initial conditions

at the start of the assimilation window, known as the analysis [76] [40] [28]. The

process involves the comparison of the initial conditions model state vector with a

background state and the comparison of the initial conditions evolved through time
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using a model with the observations. 4DVar techniques are currently used at many

NWP centres to find initial conditions of the atmosphere [99] [98]. 4DVar provides

an affordable method to make use of vast amount of observational data to enhance

the accuracy of the analysis, as opposed to sequential techniques such as the Kalman

Filter (KF) which are of a higher computational expense [45]. The 4DVar technique

aims to minimise a four-dimensional cost function with respect to the initial state

vector x0,

J (x0)=
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))
TRi

−1(yi −Hi(xi)),(2.9)

subject to satisfying the nonlinear model equations (2.1). This formulation of the

minimisation problem assumes that the model (2.1) used in the assimilation is perfect.

We pictorially represent the 4DVAR process in Figure 2.1, which clearly shows the

aim to minimise the square of the difference between x0 and the background and also

between the model trajectory of x0 and the observations. Running the model from

the analysis past the last observation time can then be used as a model forecast.

Often an iterative gradient descent algorithm is used to search for the minimum

of the cost function (2.9). To do so, the minimisation algorithms require the input of

both the cost function and its gradient evaluated at the most recent approximation

to the model state initial conditions. The total value of the cost function (2.9) can be

calculated by running the forward nonlinear model (2.1) to acquire the model state

values at all observation times in the window. However, to acquire the gradient of

the cost function (2.9) with respect to the initial state x0, subject to the nonlinear

model equations (2.1) requires a further process. Firstly, we split the cost function

(2.9) into its background and observation parts respectively,
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Figure 2.1: Pictorial representation of the 4DVAR minimisation process. The aim is to minimise
both the difference (purple arrow) between the background state xb (blue cross) and the initial
state x0 and the differences (purple arrows) between the model trajectories of the initial state x0

and the observations yi (pink circles). The initial state x0 that provides the total minimal square
of the differences (purple arrows), subject to the weighting provided by the background error and
observation error covariance matrices B and Ri respectively, is the analysis xa (red cross). The
red line shown is the analysis trajectory which has been produced by running the model from the
analysis.

J = Jb + Job, (2.10)

where Jb = 1
2
(x0−xb)TB−1(x0−xb) and Job = 1

2

N∑
i=0

(yi−Hi(xi))
TRi

−1(yi−Hi(xi)).

The gradient of the background part of the cost function Jb is model independent

and therefore can be explicitly evaluated,

∇Jb = B−1(x0 − xb). (2.11)
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We now redefine the observational part of the cost function, which is subject to the

model equations. We use a Lagrangian functional [65] which enables the problem to

be unconstrained,

L(xi,λi) = Jobi + λi+1
T (xi+1 −Mi→{i+1}(xi)), (2.12)

where λi ∈ Rm is a column vector of Lagrange multipliers at time ti, in this application

known as the adjoint variables [65]. We take the derivative of the functional (2.12)

and require this to be zero [40],

∂L(xi,λi)

∂λi
= 0, (2.13)

∂L(xi,λi)

∂xi
= 0. (2.14)

which are the conditions for an extremum of (2.12), where the first of the equations

ensures the nonlinear model equations (2.1) are upheld and the latter gives us the set

of adjoint equations,

λi = MT
i→{i+1}λi+1 + Hi

TRi
−1(yi −Hi(xi)), (2.15)

where Mi→{i+1} =
∂(Mi→{i+1})

∂xi
is the linearised model operator and Hi = ∂Hi(xi)

∂xi
is the

linearised observation operator. The term MT
i→{i+1} is the transpose of the linearised

model Mi→{i+1}, commonly known in the data assimilation community as the adjoint

model operator [65]. The adjoint equations (2.15) are run backwards in time with
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the initial input λN+1 = 0 and resulting output λ0. The gradient of Job with respect

to x0 is given by [25],

∇Job = −λ0. (2.16)

Therefore, the total gradient of the cost function (2.9) with respect to the initial state

x0 is,

∇J = ∇Jb +∇Job, (2.17)

= B−1(x0 − xb)− λ0, (2.18)

where λ0 is calculated by running the adjoint equations (2.15) backwards in time.

The analysis can be explicitly calculated when the model equations (2.1) and

observation operators (2.4) are linear. Let us assume we have observations at N + 1

times throughout the assimilation window and rewrite the 4D cost function (2.9) with

linear operators in the form,

J(x0) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2
(ŷ − Ĥx0)

T R̂(ŷ − Ĥx0), (2.19)
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where,

ŷ =



y0

y1

...

...

...

yN


Ĥ =



H0

H1M0→1

...

...

...

HNM0→N


and

R̂ =



R0 0 · · · · · · 0

0 R1 0 · · · 0
... 0

. . .
...

...
...

... · · · . . . 0

0 · · · · · · 0 RN


.

The minimum of the cost function (2.19) is evaluated by differentiating with respect

to the initial model state x0 and setting equal to a vector of zeros,

∇J (x0) = B−1(x0 − xb)− ĤT R̂−1(ŷ − Ĥx0) = 0, (2.20)

leading to the analysis,

xa0 = xb + K̂d̂ob, (2.21)

with the gain matrix K̂ = BĤT (ĤBĤT+R̂)−1 and the innovation vector d̂ob = ŷ − Ĥxb.

Either by using the equation for the analysis (2.21) or by calculating the Hessian (sec-

ond derivative) of the cost function (2.19) and subsequently taking the inverse [119],

it can be shown the analysis error covariance matrix is given by [28],
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A = (B−1 + ĤT R̂−1Ĥ)−1 = (∇2J (x0))
−1. (2.22)

The analysis error covariance matrix provides statistical information on the accuracy

of the model state analysis. Equation (2.22) shows that the statistical accuracy of

the model state analysis (given by A) has improved from the statistical accuracy of

the background model state (given by B) and the significance of this improvement is

dependent on the accuracy of the observations (specified in R̂).

2.2.3 Incremental 4DVar

The incremental formulation of 4DVar replaces the minimisation of the strong con-

straint 4DVar cost function (2.9) subject to the nonlinear model equations (2.1) with

a process of multiple minimisations of the following cost function,

J (δx0
(k)) =

1

2
(δx0

(k) − (xb − x0
(k)))TB−1(δx0

(k) − (xb − x0
(k)))

+
1

2

N∑
i=0

((Hiδxi
(k) − dobi

(k))R−1(Hiδxi
(k) − dobi

(k)), (2.23)

where dobi
(k) = yi − H(xi

(k)), subject to the linearised model δxi = Miδxi−1. This

linearised model operator Mi which evolves the model state increments δxi−1 at time

ti−1 to time ti, uses a lower resolution spatial grid and further simplifications in

the parameterisations than the full nonlinear model [60]. Operational NWP centres,

such as the Met Office and ECWMF, use the incremental version of strong constraint

4DVar method to estimate the initial conditions of the atmospheric model state vector.

The incremental version of 4DVar requires less computational resource and time than
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the standard 4DVar method, due to the low resolution inner loop, and therefore is

feasible for use at NWP centres [28]. The incremental 4DVar technique involves

calculations in both an ‘outer loop’ and ‘inner loop’ as the flow chart describing

the process shows in Figure 2.2. In the outer loop; the nonlinear model is used to

evolve the current estimate of the initial model state up to the observation times

and then the nonlinear observation operator is used to evaluate the innovations. In

the inner loop; the linearised model is used to evolve the model state increment and

the linearised observation operator is applied to the model evolved increment. The

number of outer and inner loops conducted can be predefined, however often the

inner-loop minimisation will halt when a stopping criteria is reached, from which

the analysis of the model state xa0 is produced. An example of a stopping criterion

is that the gradient of the cost function at the current iteration has reduced by a

set tolerance in comparison to its value on the first iteration [72]. The incremental

method treats the minimisation problem as a sequence of quadratic problems, as can

be seen in the pictorial representation of incremental 4DVAR in Figure 2.3, where the

inner loops can be efficiently minimised using the gradient descent algorithms. The

minimisation of the incremental 4DVar cost functions will converge to the solution of

the original 4DVar problem, as long as the tangent linear approximations hold [28]

and each loop is solved to sufficient accuracy [71]. This condition enables us to use

the original 4DVar formulation as described in Section 2.2.2 in methods we develop

in this thesis.

The 4DVar methods described in this section have been formulated upon the basis

that the perfect model equations are known. The cost function is constrained by these

perfect model equations and the method is known as strong constraint 4DVar. Next,

we will review data assimilation methods that remove the perfect model assumption

and consider how the model error should be dealt with.
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Figure 2.2: Flow chart representation of the incremental 4DVAR minimisation. The initial
estimate is chosen to be the background model state. The nonlinear model trajectories are run
and the innovations calculated. The inner loop consists of the minimisation of the incremental cost
function subject to the linearised model, to estimate the incremental model state update. This
incremental model state update is then added to the estimate of the model state. This process is
repeated until the specified number of inner and outer loops have been run, with the analysis then
output from the process.

2.2.4 Weak constraint 4DVar

We will take the situation that the best known model describing the evolution of

the model state is erroneous and of the form (2.2). As it is known that these model

equations contain error, we can let them be satisfied approximately and become weak

constraints in the data assimilation problem [103] [117]. The general formulation of

weak constraint 4DVar assumes an unknown vector of additive model error at each

time ti denoted by ηi (2.3). Weak constraint 4DVar can be formulated upon the

assumption that each model error vector ηi at time ti is not correlated with any other
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Figure 2.3: Pictorial representation of the incremental 4DVAR minimisation technique. Each
inner loop procedure consists of minimising a quadratic problem in order to best estimate the model
state increment. This figure illustrates a fictional case where three outer loops have been used (red
curves) to best estimate the minimum of a nonlinear cost function (black curve).

model error vectors at any other times and is of a random nature at each time-step.

The distribution of the model errors ηi is assumed to be Gaussian around a zero mean

and has a corresponding error covariance matrix Qi at each time ti. The model errors

are considered to be uncorrelated with both the errors in the background and errors

in the observations. There are two formulations of weak constraint 4DVar [117]; the

objective of the first formulation is to estimate both the initial conditions of the model

state and the model error vectors at each time-step in the assimilation window, and

the objective of the second formulation is to estimate the model state at each time-

step throughout the assimilation window. The two formulations are mathematically

similar, however the sensitivities of the cost functions to small changes in the input

data differ [44]. We will describe the first of these formulations of weak constraint

4DVar, as this is the formulation most often considered [117]. The process again

involves the comparison of the initial conditions with a background state and the

comparison of the initial conditions evolved through time using a model with the

observations. However, when using this data assimilation technique, the model used

within the cost function allows for model error at each time step,
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xi =Me
{i−1}→i(xi−1) + ηi i = 1, 2, ... (2.24)

Figure 2.4: Pictorial representation of the weak constraint 4DVAR minimisation process. The aim
is to minimise both the difference (purple arrow) between the background state xb (blue cross) and
the initial state x0 and the differences (purple arrows) between the model trajectories of the initial
state x0 and the observations yi (pink circles). The estimation of the model errors ηi enables the
relaxed model equations to better fit the observations. The initial state x0 and model errors ηi that
provide the total minimal differences (purple arrows) and model errors (green lines), when subject
to the weighting provided by the background error, observation error and model error covariance
matrices B, Ri and Qi respectively, provide the analysis xa0 and η̂a

A pictorial representation of weak constraint 4DVar is shown in Figure 2.4. Let

us define the column vector containing the model errors at all time-steps in the
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assimilation window by,

η̂ ∈ RNm =



η1

η2

...

...

...

ηN


.

This method aims to minimise the weak constraint 4DVar cost function with respect

to both the initial state vector x0 and to the model errors η̂,

J (x0, η̂) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))
TRi

−1(yi −Hi(xi))

+
1

2

N∑
i=1

ηi
TQi

−1ηi, (2.25)

which is subject to the relaxed model equations (2.24). The output from this for-

mulation of weak constraint 4DVar is both the analysis of the model state initial

conditions xa0 and the analysis of the model errors at each time-step throughout the

assimilation window η̂a. Hence the minimisation of the cost function (2.25) requires

differentiation both with respect to x0 and η̂. An iterative gradient descent algorithm

is required to attain the analysis, where modified adjoint equations are used to eval-

uate the gradient of the cost function. A key point that should be highlighted is that

for use of this weak constraint 4DVar technique the model error covariance matrix Qi

is to be specified for each time ti in the assimilation window. Little is often known

about the model error statistics and therefore in some cases this method is impracti-

cal for operational use. There is also a significant increase in the number of variables

estimated in weak constraint 4DVar as opposed to strong constraint 4DVar, specifi-
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cally (N + 1)m instead of m. Therefore, even if the model error covariance matrix Qi

is known, this is a computationally expensive problem to solve. Operational weather

centres, such as ECMWF [118], have conducted investigations into whether the use

of weak constraint 4DVar could improve the quality of the atmospheric analysis and

forecast. These investigations involved assumptions such as a static Q and this is

further discussed in Chapter 4.

The model error considered in this section has been of a random nature at each

time-step. Next we describe a data assimilation technique that can account for model

error of a systematic nature, correlated in time.

2.2.5 Systematic error correction scheme

We now investigate a method that compensates for error of a systematic nature in a

model by including a correction term [36]. We denote this correction term ηi (2.3)

and introduce notation to describe the evolution of the error through time [54] [92],

ηi = Ti(ei),

ei+1 = Gi→{i+1}(xi, ei), (2.26)

where ei ∈ Rr is a column vector that contains systematic model error components,

the operator Ti : Rr −→ Rm distributes the model error components to the appro-

priate model equations. The evolution of the model error components from time ti

to time ti+1 is defined using the function Gi→{i+1} : Rm × Rr −→ Rr, which allows

for the model error to be state dependent. Examples of model errors that can be

represented using this method include; a constant model bias and model error that

fluctuates smoothly on a time-scale such as a daily cycle [54]. The model equations,
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xi =Me
{i−1}→i(xi−1) + ηi i = 1, 2, ... (2.27)

together with the model error equations (2.26) are known as the augmented state

system model. The aim of this data assimilation technique is to solve the augmented

problem, to best estimate both the initial conditions of the model state and the

model error components at the initial time. It is assumed a prior estimate of the

model error components eb is known along with a combined background model state

error and background model error components covariance matrix W ∈ R(m+r)×(m+r)

which allows for cross correlations between the errors in the background model state

and background model error components. The observation errors are assumed to be

uncorrelated to both the model state background and model error background.

The process again involves the comparison of the initial conditions with a back-

ground model state and the comparison of the model evolved initial conditions with

observations. However, when using this data assimilation technique, the model used

within the cost function allows for systematic model error at each time step and the

initial conditions of the model error components e0 are estimated along with x0. The

cost function for this augmented data assimilation approach is as follows,

J (x0, e0) =
1

2

 x0 − xb

e0 − eb

T

W−1

 x0 − xb

e0 − eb


+

1

2

N∑
i=0

(yi −Hi(xi))
TRi

−1(yi −Hi(xi)), (2.28)

which is to be minimised, subject to the augmented state system model (2.26) and

(2.27), to acquire the analysis of both xa0 and ea0. The minimisation of the cost
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function (2.28) requires differentiation with respect to both x0 and e0. An iterative

gradient descent algorithm is often used in the minimisation process, where modified

adjoint equations are required to evaluate the gradient of the cost function.

Often little is known about the errors present in a model. A key point that should

be highlighted is that for use of this scheme: the evolution of the model error and

the background model error components eb along with the corresponding model error

statistics need to be specified. We will describe current operational use of this scheme

in the next chapter.

2.3 Consistency diagnostics

Data assimilation methods require the specification of both background error and

observation error covariance matrices. These statistics are often extremely hard to

specify, due to lack of knowledge about the both the background errors and observa-

tion errors and due to the huge size the matrices can be [22]. The idea of studying

innovation statistics between forecasts and observations has been around for many

years [57]. These have been further developed into consistency checks for the specifi-

cation of both the background error and observation error covariance matrices, known

in the data assimilation community as the Desroziers diagnostics [38]. They can be

thought of as quality control checks for approximated background error and observa-

tion error statistics. These diagnostics consist of combinations of background model

states, observations and model state analysis, all in observation space. Hence, all

information used in these diagnostics is readily available after an assimilation run.

Next, we present diagnostics tools similar to those derived by Desroziers et al. [38].

The actual Desroziers diagnostics [38] do not include a model matrix, however we in-

clude model evolution within the diagnostic equations, which can be verified with the

Desroziers diagnostics [38] when all observations are at the start of the time window.
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The first of the diagnostic equations we present was previously stated by Andersson

[2].

2.3.1 Consistency diagnostics with a perfect model

We consider a vector of observations y1, of the form (2.4), available at time t1 with

a corresponding observation error covariance matrix R. The nonlinear observation

operatorH takes the model state from state space to observation space. We assume we

have a background model state xb, of the form (2.5), with a corresponding background

error covariance matrix B. The perfect nonlinear model operator M0→1 evolves the

initial state to the observation time as follows,

x1 =M0→1(x0). (2.29)

We simplify the model notation, as we are only considering the model evolution over

one time-step, by lettingM0→1 =M. We assume the tangent linear hypothesis holds,

for both the nonlinear observation operator H and nonlinear system equations M,

which states that; the first-order Taylor expansion of a nonlinear model is sufficient

to describe the behaviour of the model for small perturbations along the nonlinear

solution trajectories [17]. The linear observation operator H is the first order term

in the expansion of the Taylor series of H(x + δx) and the tangent linear model M is

the first order term in the expansion of the Taylor series of M(x + δx). This allows

the evaluation of the explicit incremental 4DVar analysis with one ‘outer-loop’,

xa0 = xb + Kdob, (2.30)
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where the gain matrix K = BMTHT (HMBMTHT + R)−1 and the nonlinear in-

novation vector dob = y1 − H(M(xb)) [43]. Note that incremental 4DVar with one

‘outer-loop’ is equivalent to the best linear unbiased estimate (BLUE) method and

therefore gives the same analysis solution (2.30). This explicit gain matrix K enables

us to show that the update to the background state is dependent on the specification

of both B and R. Let us now define the following differences in observation space,

dob = y1 −H(M(xb)) ≈ εob −HMεb, (2.31)

dab = H(M(xa0))−H(M(xb)) ≈ HMKdob, (2.32)

doa = y1 −H(M(xa0)) ≈ (I−HMK)dob, (2.33)

which assume the tangent linear hypothesis holds, for both the nonlinear observation

operator H and nonlinear system equations M. Note that equations (2.31)-(2.33)

each hold exactly when both the observation operator and model equations are of a

linear nature. With M = I these differences in observation space (2.31)-(2.33) are as

described in the Desroziers et al. paper [38]. Diagnostics are then derived by taking

statistical expectations in observation space. By taking the statistical expectation of

the product of the innovation vector dob (2.31) with itself we can show that,

E [dob(d
o
b)
T ] ≈ R + HMBMTHT . (2.34)

By taking the statistical expectation of the product of the difference vector dab (2.32)

with the innovation vector dob (2.31) we can show that,
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E [dab (d
o
b)
T ] ≈ HMBMTHT . (2.35)

By taking the statistical expectation of the product of the difference vector doa (2.33)

with the innovation vector dob (2.31) we can show that,

E [doa(d
o
b)
T ] ≈ R. (2.36)

Finally, by taking the statistical expectation of the product of the difference vector

dab (2.32) with the difference vector doa (2.33) we can show that,

E [dab (d
o
a)
T ] ≈ HMBMTHT (HMBMTHT + R)−1R (2.37)

= HMAMTHT , (2.38)

where A is the analysis error covariance matrix corresponding to the analysis of the

model state (2.30). These equations (2.34)-(2.38) are consistent with the Desroziers

et al. diagnostics [38] when all observations are at the start of the time window.

The first of the diagnostic equations involving model evolution (2.34) was previously

deduced by Andersson [2]. Note that in the presence of both a linear observation

operator and linear model matrix, the equations (2.34)-(2.37) will be exactly equal.

Practical use of the diagnostics involves calculation of both sides of the equations

independently and then comparing the results. The left-hand sides (LHS) of the

diagnostic equations involve the differences dob (2.31), dab (2.32) and doa (2.33) in

observation space. To compute the expectations in the LHS of (2.34)-(2.37), samples
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Difference vector Data required

dob Sample of background vectors at time t0
Sample of observation vectors at time t1

dab Sample of background vectors at time t0
Sample of analysis vectors at time t0

doa Sample of analysis vectors at time t0
Sample of observation vectors at time t1

Table 2.1: Obtaining sample vectors of differences in observation space

of the vectors dob (2.31), dab (2.32) and doa (2.33) are required. Table 2.1 details what

data is required to obtain samples of each of the differences in observation space.

For each sample innovation vector dob a background sample vector is selected and

evolved using the forecast model and then mapped to observation space using the

observation operator. This resulting vector is then subtracted from a sample vector

of observations. For each sample innovation vector dab both a background sample

vector and an analysis sample vector are selected and separately evolved using the

forecast model and then mapped to observation space using the observation operator.

This resulting evolved background vector is subtracted from the evolved analysis

vector. For each sample innovation vector doa an analysis sample vector is selected

and evolved using the forecast model and then mapped to observation space using

the observation operator. This resulting vector is then subtracted from a sample

vector of observations. Once a sufficient sample size has been collected for each of

the differences in observation space dob, dab and doa, a sample of each of the products

dob(d
o
b)
T , dab (d

o
b)
T , doa(d

o
b)
T and dab (d

o
a)
T is evaluated. Subsequently the mean of the

samples of products are taken to obtain the expectations as described by the LHS of

(2.34)-(2.37).

If the error covariance matrices have been specified correctly, then the diagnostic

equations will hold, approximately with nonlinear operators and exactly with linear

operators (for a significantly large sample size of difference vectors). These diagnostics
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(2.34)-(2.38) assume a perfect model is available for use in the data assimilation

process. We next consider the effect that the use of an erroneous model in data

assimilation has on the diagnostics.

2.3.2 Diagnostics with model error present

Let us consider the best known representation of a true dynamical system over one

time step to be a nonlinear erroneous model operator Me, with the unknown model

error vector at time t1 given by η1 ∼ N (0,Q). When using the nonlinear erroneous

model operator Me the innovation vector is given by,

dob
∗ = y1 −H(Me(xb)) ≈ εob −HMeεb + Hη1. (2.39)

Taking the statistical expectation of the innovations gives,

E [dob
∗(dob

∗)T ] ≈ R + HMeBMeTHT + HQHT , (2.40)

assuming the model error, the errors in the background and the errors in the ob-

servations are uncorrelated. Note that this equation (2.40) will hold exactly with

both a linear model matrix and linear observation operator. Equation (2.40) clearly

has an additional term when compared to the corresponding diagnostic calculated

with a perfect model (2.34) [33] [2]. Practical use of (2.40) involves the calculation

of the mean product of a sample of innovation vectors dob
∗ (2.39). In Section 2.3.1

we described how this would be performed in the absence of model error. However,

here each sample innovation vector dob
∗ would require a sample model error vector.

Possible methods to gain such data are discussed in Section 6.1.4 of this thesis.
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A similar result to (2.40) has also been derived by Todling [116] using an Extended

Kalman Filter (EKF) data assimilation technique, which we will discuss further in

Chapter 4. The term HQHT represents the covariance of the model errors in ob-

servation space. Interestingly this diagnostic (2.40) gives us a consistency check in

observation space not only for the background error and observation error covariance

matrices B and R respectively, but also for the model error covariance matrix Q.

This relates to the first of the thesis objectives set out in Section 1.1 and will be fur-

ther investigated in Chapter 6. Clearly care should be taken to use the appropriate

diagnostic equation; either (2.34) or (2.40) depending on whether the model to be

used in strong constraint 4DVar is perfect or erroneous. This will be discussed further

in the next chapter.

2.4 Summary

In this chapter we have introduced variational data assimilation (Var) methods, which

use background, observation and model information to provide the best estimate of

the state of a system. We have given a brief overview of Var methods that assume

model equations to be true representations of dynamical systems. This thesis will

focus on the fact that often models contain error and how this should be best dealt

with in the data assimilation process. Hence, we also described Var methods that

have been formulated to deal with additive error in a model. For use of all data

assimilation methods detailed in this thesis, background error and observation error

covariance matrices need to be specified. We have discussed how diagnostic tools can

be very useful to assess the consistency of these matrices in observation space and

shown for the first of the diagnostic equations that the presence of random error in

a model influences the diagnostic result. The next chapter will describe current use

of Var methods at operational NWP centres, when estimating initial conditions for
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atmosphere-ocean forecasts and when estimating the conditions for the purpose of

reanalysis. Operational models are often erroneous and we will highlight potential

areas of improvement in the current data assimilation processes and in the diagnostic

tools used.
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Chapter 3

Atmosphere and ocean data

assimilation

In Section 3.1 of this chapter we provide a description of atmosphere-ocean mod-

els. The models are best representations of the true atmosphere-ocean dynamics and

contain model error [104] [83] [106] [120]. In Section 3.1 we also discuss the poten-

tial origins of the model errors and the subsequent effects they have on the model

state evolution. Scientists at meteorological centres use data assimilation to initialise

atmosphere forecasts, ocean forecasts, coupled forecasts and for the purpose of re-

analysis, where the objective is to seek the best estimate of historical weather events.

In Section 3.1 we outline current data assimilation methods used operationally for

both forecasting and reanalysis. In Section 3.2 we then discuss the operational use

of consistency diagnostics as quality control checks for background error and obser-

vation error covariance matrices [38]. Finally, in Section 3.3 we highlight future aims

of operational weather centres, in particular the objectives which involve how to best

deal with model error within the data assimilation process.
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3.1 Coupled models, forecasts and reanalysis

Reliable forecasts of both the atmosphere and ocean are highly desirable for use by

scientists, governments, meteorological companies and other businesses, as well as to

the general public. The ability to be able to produce good quality forecasts help with

planning and risk assessment, for example to be able to predict the impact of the

seasonal weather on crops [89].

The importance of the interaction between the atmosphere and the ocean has been

recognised for many years [68]. It has been shown that coupling atmosphere and ocean

models enhances the seasonal to interannual forecasts for both the atmosphere and

the ocean [114]. The sun is the source of energy that contributes towards motion in

the atmosphere and the ocean [52]. Over half of this solar radiation is absorbed at

the surface of the earth, of which the ocean and seas cover 70.8% [111]. Therefore

ocean conditions, in particular sea surface temperature (SST), are very influential on

the atmospheric conditions, such as air temperature. Both the ocean and atmosphere

store and exchange energy in the form of heat, moisture, and momentum. Hence,

circulation in the atmosphere and ocean should be considered as a coupled system

due to the continuous interactions. The influences the atmosphere and ocean have on

one another vary from instantaneous, for example surface ocean currents affecting the

atmospheric wind speed, to longer, slower processes which include the upper layers

of the ocean storing heat in the summer that is later released into the atmosphere in

the winter months [52].

Within the meteorological community, the study and prediction of weather ex-

tremes such as El Niño and Southern Oscillation (ENSO), which is a coupled atmosphere-

ocean phenomena, are of great interest. El Niño is a term that defines periods of

anomalously warm tropical Pacific sea temperatures, which occur every 3-7 years
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[108]. The term Southern Oscillation defines atmospheric changes that are related

to El Niño which can be described as a see-saw of atmospheric pressure between

Indonesia and the South Pacific Ocean [108]. ENSO is known to affect patterns of

temperature and rainfall across the globe [13] and is a good example of the signif-

icant impact atmosphere-ocean interactions can have. Next we introduce coupled

atmosphere-ocean models and outline how these are derived.

3.1.1 Atmosphere, ocean and coupled models

At operational weather centres both atmosphere forecasting models and ocean fore-

casting models are derived from key governing equations [52] [96] [107]. These gov-

erning laws form a set of partial differential equations (PDEs) for the atmosphere and

ocean circulation, known in the meteorology community as the fundamental equations

of fluid dynamics [12]. Atmospheric variables present in the PDEs can include poten-

tial temperature, pressure, wind and density [121]. Examples of ocean variables that

can be present in the PDEs include potential temperature, salinity, sea surface height

(SSH) and the horizontal components of velocity [5]. It would be impossible to define

these variables at every point in the atmosphere and ocean, as this problem would be

of an infinite size. Therefore, the atmosphere-ocean domain is discretized. For exam-

ple, an atmospheric domain can be discretized spatially into a longitude−latitude grid

and vertically divided into intervals by pressures [121] [128]. An example of an ocean

domain discretization consists of a longitude−latitude grid which is stretched near the

poles and has varying vertical levels which are closer together near the surface [112].

Operational centres use numerical schemes to approximate the solutions of the PDE’s,

such as a semi-Lagrangian scheme [96], resulting in discretized nonlinear equations.

These discretized nonlinear equations require the specification of a model time-step

∆t. All operational numerical models of the atmosphere and ocean are based on
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the same set of governing equations, though may differ in the approximations and

assumptions made in the application of these equations.

To form operational coupled atmosphere-ocean models, the atmosphere and ocean

models are combined, with both the atmosphere and ocean variables forming a cou-

pled model state vector x as described in equation (2.2). For example, at the ECMWF

the atmosphere forecasting model used is the Integrated Forecast System (IFS) and

the ocean forecasting model is the Nucleus for European Modelling of the Ocean

(NEMO) [96] [5], which are combined to produce a coupled atmosphere-ocean model.

The exchange of heat, momentum and water at the atmosphere-ocean interface is an

important part of the coupled dynamics, allowing the atmospheric and ocean vari-

ables to influence one another. Bulk formula are used to represent these fluxes in the

coupled model equations [86], which require the specification of coupling parameters.

The coupled system equations are often known as coupled atmosphere-ocean general

circulation models, such as GloSea developed at the Met Office for global seasonal

forecasting [53].

3.1.2 Errors in coupled atmosphere-ocean models

Very little is known about the characteristics of the errors present in atmosphere

models, ocean models and hence coupled atmosphere-ocean models [89]. The possible

sources of model errors we discuss in this section are relevant to all three types of

dynamical models. Therefore, to avoid repetition, we will only discuss the potential

origins of the errors present in the context of coupled atmosphere-ocean models.

Coupled models require specification of atmospheric parameters, ocean parameters

and coupling parameters. These are often assumed to be constant in time and are

best estimates which contain inaccuracies [64]. For example, one parameter required

is the thermal roughness length, which is the height above ground where the mean
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wind speed is zero and is required in the calculation for the momentum flux [109].

This parameter varies depending on the physical surface in the area, for instance over

smooth water this value can be less than 10−4m while built up areas, such as cities,

can have a roughness length of up to 5m. Parameters such as this, need to be specified

for each spacial model grid point. Significant errors in model parameters can cause

the model run to produce different forecast predictions to those produced if the true

model parameters were used [64].

The coupled model vector comprises the atmosphere and ocean variables at all

points on the model grid. Operational coupled model vectors currently consist of

an atmospheric component of dimension O(108 − 109) and an ocean component of

dimension O(107) [85]. Lack of model resolution leads to coupled atmosphere-ocean

models using parameterisations of physical processes that are on scales too small to

be directly resolved by the model. These physical processes can be parameterised

inadequately or even be absent entirely from coupled atmosphere-ocean models, in-

troducing further error into the model. For example, shallow cloud features are not

parameterised [67], but are thought to have a significant role in the climate system

and are important in local weather predictions [9].

In order to solve the atmosphere and ocean PDEs, numerical schemes are used to

provide time-stepping models. It should be mentioned that these discretized mod-

els are approximate solutions to the PDEs and therefore inevitably contain error

[88]. Boundary conditions at the edge of the atmosphere-ocean spacial domain under

consideration are required for use in a coupled model and are often estimates and

therefore are also a source of model error [54]. For example, regional coupled models

require boundary conditions at the borders of the horizontal domain [63].

Of course, if the exact sources of model error could be identified and resolved, the

true dynamical coupled system could be modelled perfectly. However, this is not the

case. Although multiple possible origins of model error in coupled atmosphere-ocean
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models can be described, the specific identification of the error in the model equations

is highly complex. As stated in the second of the thesis aims in Section 1.1, work

in this thesis will focus on how to reduce the model error influence within the data

assimilation process and this work will be conducted in Chapter 7. Work in this

thesis will also focus on how to reduce the model error influence on a coupled model

forecast, as stated in the third of the thesis aims in Section 1.1, and this work will be

conducted in Chapter 8.

In this thesis we will assume that multiple sources of error lead to a vector of

additive model error ηi at each time ti, where the true state could be acquired if the

model error vector was known, as in equation (2.3). Broadly speaking, the model error

can have two effects on the model state variables. The first of which has a random

nature at each time-step and the second of which is of a systematic nature correlated

in time. Both additive random model error and additive systematic model error are

thought to be present in coupled atmosphere-ocean models. We will consider errors

of a random nature in work conducted in Chapter 6 and Chapter 7 and subsequently

consider errors of a systematic nature in work conducted in Chapter 8. An example

of the presence of systematic model error is that seasonal to decadal predictions tend

to drift away from observed states, due to imperfect model equations [130] which

suggests some form of model bias is present. Bias in a model may be constant in

time or vary, for instance with the seasons [84]. Next we will outline current data

assimilation methods used at centres such as the Met Office and ECMWF, to estimate

conditions for both the atmosphere and ocean, including use of a systematic correction

scheme to mitigate errors in part of the ocean model [84] [11].
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3.1.3 Atmosphere, ocean and coupled forecasts

Observations of the atmosphere and ocean are collected from both in-situ instru-

ments and satellites. In-situ observations are made at the location and therefore can

measure small scale features, but have poor global coverage. In-situ measuring instru-

ments include ground based instruments, balloons, aircraft, buoys and ships which

take observations such as temperature, pressure, wind speed and wind direction [65].

Global observation coverage significantly increased from 1960 when the first weather

satellite was launched [101]. Since the 1990’s satellite observations have been used to

greatly improve the NWP forecasts [16], however, many observations are not directly

of the atmospheric or oceanic model variables. For example, satellites are often used

to measure radiances, which can subsequently be related to model variables such as

temperature and moisture [1].

Observation errors are taken into consideration in the data assimilation process.

Within the data assimilation community we define yi to be the vector of observations

at time ti, with the corresponding error vector εobi, as defined in equation (2.4).

Observation errors can originate from multiple sources including instrument error,

pre-processing errors (such as cloud detection), errors in observation operators Hi

and representativity error (the model not correctly representing small scale features

that observations are measuring) [31]. There are a vast number of observations, for

example the number of atmospheric observations considered is of the order O(107). In

practice, observation errors are likely to include correlations [126] [127] [110], however

operational centres often only specify the diagonal elements of the observation error

covariance matrix Ri at each time ti [85]. This is because the correlations of the

observation errors are often unknown and even if they were known, the matrices Ri are

too large to specify all the entries. However, recent work with the Met Office 4DVar

assimilation scheme has introduced correlations into the observation error covariance
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matrices for certain atmospheric observations from the high resolution sounder IASI,

which in turn has shown improvements in forecast accuracy [127].

Both a background model state for the atmosphere and a background model state

for the ocean are required, with corresponding background error covariance matrices,

for subsequent use in the atmosphere data assimilation and ocean data assimilation

methods. The background model state xb of the form (2.5) is usually taken from

a previous forecast. The specification of background error covariance matrices B is

of much importance as they determine the relative weight that is given to the back-

ground state as opposed to the observations and also influence how the information

from the observations is spread to the model state variables [70]. The calculation of

background error covariance matrices is a complex task for both the atmosphere and

ocean background model states. One method used is to evaluate information about

the errors in the background by calculating the statistics of the differences between

24 hour and 48 hour forecasts [7]. Operational background matrices are often so large

that they are impossible to store explicitly. The use of control variable transforms at

operational meteorology centres, such as the Met Office, enables B to be implicitly

included in the data assimilation cost function [8]. The method involves letting the

background error covariance matrix B = LLT , where L is the change of variable

operator [3] [8]. A new variable is introduced χ ∼ N (0, I) such that,

Lχ = x0 − xb, (3.1)

allowing the background term of the cost function (2.10) to be rewritten,

Jb =
1

2
χTχ, (3.2)
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to implicitly include the background error covariance matrix [47].

Currently operational centres use data assimilation to estimate the initial condi-

tions of the atmosphere and ocean separately. We will firstly outline methods used

to estimate initial conditions of the atmosphere and then subsequently describe how

initial conditions are estimated for the ocean.

Operational NWP centres, such as the Met Office and ECWMF, use an incremen-

tal version of the strong constraint 4DVar method, as described in Section 2.2.3, to

estimate the initial conditions of the atmospheric model state vector. The incremen-

tal version of 4DVar requires less computational resource and time than the standard

4DVar method, due to the lower resolution used in the inner loop, and therefore is

feasible for use at NWP centres [28]. When operational NWP centres use incremental

4DVar to best estimate initial conditions of the atmospheric model state vector, the

assimilation window length needs to be specified. For example, the Met Office cur-

rently use an assimilation window length of 6 hours [99] and ECMWF currently use a

12 hour window [96]. Atmospheric models are updated with the most currently avail-

able SST, for example the Met Office Unified Model is updated with the latest SST

update from the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA)

system [41]. Available observations are selected for use in the specified time window

and incremental 4DVar applied to best estimate the initial conditions. The initial

conditions at distinct weather centres will vary for multiple reasons including differ-

ences in the following: model equations, model resolution, number of outer and inner

loops, available observations, specification of the observation operators and assimi-

lation window length. Incremental 4DVar is performed periodically to best estimate

initial conditions for the purpose of running NWP forecasts, for example at the Met

Office every 6 hours [99].

Operational NWP centres, such as the Met Office and ECMWF, best estimate

the initial conditions for ocean model state vectors using a different data assimilation
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technique, known as incremental 3D-FGAT (first guess at appropriate time) [18]

[124]. This 3D-FGAT method has similarities with both incremental 3DVar and

incremental 4DVar. Observations are used across a specified assimilation window as

in 4DVar. However, no model evolution is conducted in the 3D-FGAT inner loop,

this alleviates the 4DVar requirement for a full tangent linear and adjoint model [69]

and this makes the 3D-FGAT method similar to 3DVar [124]. Prior to use within

the data assimilation process, operational ocean models are prescribed best estimates

of surface momentum, heat and freshwater fluxes at the atmosphere-ocean interface.

These surface forcing fields can be prescribed from global NWP model estimates [10].

Data assimilation window lengths have to also be specified by operational centres.

These can be significantly longer for ocean data assimilation than atmosphere data

assimilation, due to the slower nature of ocean dynamics in comparison to the faster

chaotic nature of atmospheric dynamics. For example, ECMWF use an assimilation

window length of 10 days for ocean data assimilation [6], compared with a notably

shorter 12 hour assimilation window length for the atmosphere [96].

The topography of the ocean surface reacts to the wind just above the surface.

Therefore the wind affects the pressure gradient in the ocean. Wind stress is a model

input and if specified incorrectly can lead to an imbalance with the pressure gradient

estimated in the data assimilation process [11]. It has been shown that systematic

errors are present in the wind-stress inputs [58]. A systematic error correction method

is used in the ocean data assimilation process, as described in Section 2.2.5, known in

this application as the pressure correction method. This estimates temperature and

salinity bias fields which ‘correct’ the pressure gradient. The resulting pressure gradi-

ents oppose those originally imposed and restore balance between pressure gradients

and wind stress [11].

NWP centres, such as the Met Office and ECMWF, use coupled atmosphere-ocean

models for both seasonal and decadal forecasts and climate reanalysis [55] [75] [21]

45



[66]. The use of coupled models to also produce forecasts on shorter length time-scales,

for example NWP, has been a recent area of work at operational centres including

the Met Office, ECMWF, the Naval Research Laboratory and Meteo-France [21].

Currently initial conditions of the atmosphere and ocean are estimated separately,

using the respective data assimilation schemes, and subsequently used to initialise

coupled atmosphere-ocean forecasts [66]. Current research at operational centres is

exploring the use of coupled data assimilation techniques to simultaneously estimate

both the atmosphere model state and ocean model state [75] [55] [114] [21], further

details are given in Section 3.3. Next we discuss the operational use of reanalysis.

3.1.4 Reanalysis

Reanalysis uses modern data assimilation methods on past time periods, by recal-

culating the analysis. Reanalysis can be conducted over short or long time periods.

The purpose of reanalysis is to improve on the most current estimates of past weather

events. Examples include, atmospheric reanalysis at centres such as ECMWF (ERA-

Interim reanalysis) to produce data products spanning back decades to investigate

past weather events [35]. To produce the ERA-Interim reanalysis a 12 hourly 4DVar

cycle is used for the upper-air atmospheric state [35]. Whereas to produce the re-

analysis of the surface of the atmosphere an Optimal Interpolation scheme is used

[35].

The Ocean Reanalysis System 4 is implemented at ECMWF, providing reanalysis

of the ocean from 1958 onwards [5]. This system uses an incremental version of 3DVar-

FGAT [5]. The ocean reanalysis is used, along with the ocean initial conditions, to

produce coupled seasonal forecasts at at ECMWF [5].

A comparison of reanalysis conducted with different models can be useful to assess

the increase in analysis and forecast accuracy obtained though implementation of a
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new model. For example, the Met Office conducted a 2 year reanalysis with the

FOAM (Forecast Ocean Assimilation Model) using an updated NEMO model, and

compared the forecast accuracy with that from the previous FOAM system [15].

The data assimilation method used was a 3DVar incremental FGAT scheme. This

resulted in observing improvements to near surface ocean fields, but a degradation to

some sub-surface fields which highlighted areas for future improvements in the model

equations [15].

The second aim of this thesis, as detailed in Section 1.1, is to investigate how to

better estimate a model state by allowing for model error in the data assimilation

process, this work is conducted in Chapter 7. This work should be applicable to

improve the reanalysis of atmosphere and ocean conditions.

3.2 Use of Desroziers diagnostics

We will now discuss use of diagnostics tools; firstly the Desroziers diagnostics [38]

in which model evolution is unaccounted for, and secondly the use of the diagnostic

equation (2.34) that accounts for model evolution, but not model error. The diag-

nostics themselves should not be relied on to specify background error or observation

error covariance matrices, but can be useful as quality checks and to identify the areas

of mis-specification of the variances and correlation information [39] [37].

Observational information from IASI was assimilated at the Met Office with a di-

agonal observation error covariance matrix until January 2013 [127]. However, recent

work involving diagnostic tools allowed improvements to be made to the observation

error covariance matrix, which we will now outline. The right-hand side of the third

of the diagnostic equation E [doa(d
o
b)
T ] (2.36), both when not accounting for model

evolution [38] and when accounting for model evolution, is equal to the observation

error covariance matrix R. Work using the third of the Desroziers diagnostic equa-
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tions E [doa(d
o
b)
T ] [38], has enabled the recognition of inter-channel correlations in

the errors of certain IASI radiance observations assimilated in 4DVar at the Met Of-

fice [110]. The variances on the diagonal of the observation error covariance matrix,

for certain channels of the IASI observations, were over specified to account for the

omittance of the inter-channel error correlation information [127] [110]. Use of the

Desroziers et al. diagnostic equation E [doa(d
o
b)
T ] [38] enabled specification of inter-

channel error correlations for IASI data in the observation error covariance matrix, for

example specification of strong correlations between water-vapour sensitive channels

[127]. The use of this improved observation error covariance matrix in 4DVar at the

Met Office lead to an improvement in the forecast accuracy, due to more weight given

to these IASI observations [127].

The other three diagnostics, specified in equations (2.34),(2.35) and (2.37) with

the inclusion of model evolution, include the term HMBMTHT . The evaluation of

HMBMTHT is required in order to evaluate the right-hand side of the equations, to

then compare with the calculations of the expectations on the left-hand side. For an

operational sized NWP system, this transformation of the background error covari-

ance matrix is impossible to evaluate directly, primarily as operational background

error covariance matrices are huge and therefore cannot even be specified explic-

itly. Therefore, a randomization technique has been developed to approximate the

standard deviations in a background error covariance matrix, providing a low rank

estimate of B [48]. This randomization method has been extended to approximate

the diagonal of HBHT [3]. A further development of the randomization technique

allowed the elements of HMBMTHT to be approximated. We will now outline this

method. Firstly rewrite equation (3.1) in terms of the model increment,

Lχ = δx0, (3.3)
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where δx0 ∼ N (0,B). It follows that HMδx0 ∼ N (0,HMBMTHT ). A random

sample of n vectors is generated, each independently drawn from χi ∼ N (0, I) for

1 ≤ i ≤ n [3]. The term HMBMTHT can subsequently be estimated as follows [2],

HMBMTHT ≈ 1

n

n∑
i=1

HMLχi(HMLχi)T , (3.4)

using the fact that B = LLT [3] [8].

This method of approximating HMBMTHT enabled the first diagnostic equation

(2.34), that accounts for model evolution, to be used in operational experiments [2].

For example, experiments were conducted using the ECMWF atmospheric system,

operational in October 2003, with vast amounts of data, approximately 3, 500, 000

observations every 12 hour assimilation period. A six day period was selected in

February 2003 and the large number of observations were binned into hourly time

intervals by observation type and geographical area, for example wind data from air-

craft over North America. The randomisation method (3.4) with a sample size of

n = 100 was used to approximate HMBMTHT . The diagonal elements of the di-

agnostics (2.34) were calculated and the left and right-hand sides compared for the

binned data. Assuming a perfect model, the results suggested that the background

error variances were underspecified in B [2]. However, the atmospheric model used

in the experiments contained model error and this could be the explanation for the

resulting inconsistencies in the evaluation of the diagnostic (2.34) [2]. The expecta-

tions computed with the innovation data were larger than the direct computations

using the error covariance matrices. The expectations that were computed with the

innovation data also increased with time. It was suggested by Andersson [2] that this

could have been due to the growth of the model error Q over time. Let us refer to
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the corresponding diagnostic that accounts for error in the model (2.40), where there

is the presence of the additional term HQHT due to the model error, which could

possibly have made up for the inaccuracies in these experiments.

3.3 Future aims of operational weather centres

Weather centres, such as the Met Office and ECMWF, are currently researching

potential benefits of simultaneously estimating the initial conditions for both the

atmosphere and ocean using a coupled model in a coupled data assimilation process

[75] [55]. The main objectives of this work are to improve coupled forecasts and

increase the accuracy of coupled reanalysis [74] [66] [75] [55] [102]. Estimation of a

coupled analysis should improve the balance between the atmosphere and ocean initial

conditions and hence reduce initialisation shock at the start of the coupled forecast

[4]. Initialisation shock is a fast drift, even a jump, at the start of a forecast window.

This is primarily caused by the fact initial conditions are estimated separately for

the atmosphere and ocean using separate respective atmosphere and ocean models,

leading to imbalances in these initial conditions which can be far from the natural

state of the coupled model. Coupled data assimilation should also allow coupled

model errors that grow in the first few hours of the forecast to be better understood,

by comparing the original forecast with the later updated coupled analysis trajectory

[75].

Weakly coupled data assimilation is an incremental technique that uses a coupled

atmosphere-ocean model in the outer loops, but performs separate atmosphere and

ocean inner loops. This is the coupled data assimilation technique formulated at op-

erational centres, such as the Met Office and ECMWF, for current research due to

the relative ease of implementation, compared to a fully coupled technique [75]. The

computer code for the inner loops of the atmosphere and ocean increment updates
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require little alteration and no atmosphere-ocean cross covariance error information

is required. For example, the Met Office uses the atmospheric Met Office Unified

Model and the ocean NEMO model coupled every hour in the outer loop, however

the respective models remain uncoupled in the inner loops [75]. Results from simulta-

neously estimating the atmosphere and ocean initial conditions using weakly coupled

data assimilation as opposed to estimating the atmosphere and ocean initial condi-

tions separately have shown improvements to both coupled forecasts and reanalysis

[55] [102]. For example, experiments at the Met Office, using a 6 hour assimilation

window, have shown a reduction in forecast error for atmospheric temperature in the

northern hemisphere [75].

The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has

developed a coupled data assimilation method with results showing improvements in

the representation of major seasonal to interannual dynamical processes [114]. This

coupled system uses long assimilation windows of length 9 months, course spatial

grids and an approximated adjoint, with the key objective to better estimate climate

processes. This coupled 4DVar technique estimates ocean initial conditions and bulk

adjustment factors (latent heat, sensible heat and momentum fluxes) [114], but does

not explicitly estimate the atmospheric initial conditions. Therefore, this type of

coupled data assimilation system is not suited to best estimate atmospheric and

oceanic conditions for shorter time-scales, in particular it cannot be used for NWP

initialisation [55].

Future work at operational centres involves continued research using weakly cou-

pled data assimilation and investigating the potential operational implementation

of strongly coupled data assimilation [55]. Fully coupled data assimilation requires

specification of coupled covariances. The Australian Bureau of Meteorology has un-

dertaken preliminary research in this area using ensemble techniques [94]. Although

coupled forecasts and reanalysis can be improved through coupled data assimilation
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techniques, the errors in the coupled models, as described in Section 3.1.2, limit the

accuracy.

The weakly coupled data assimilation process at the Met Office uses the pressure

correction method [11], as described in Section 3.1.3, to correct the imbalance be-

tween wind stress and the pressure gradient. However, further use of this scheme is

restricted, largely due to unknown model error statistics and unknown model evolu-

tion required for specification in this method. A key objective of weather centres is

therefore to extend coupled data assimilation research to investigate how to best deal

with model error in coupled models during the coupled data assimilation process [55]

[75] which gives us motivation for work in this thesis.

The first of our objectives, as stated in Section 1.1, is to derive diagnostic equations

that account for model errors to verify and refine the specification of a model error

covariance matrix. This work is conducted in Chapter 6 of this thesis. The second

of the thesis objectives, as stated in Section 1.1, is to develop a strong constraint

4DVar method to mitigate the effect model error has on the estimation of the initial

conditions. This work is conducted in Chapter 7 of this thesis. The third aim of this

thesis, as stated in Section 1.1, is to develop a strong constraint 4DVar method to

improve the accuracy of a coupled atmosphere-ocean forecast. This work is conducted

in Chapter 8 of this thesis.

3.4 Summary

In this chapter we outlined the derivation of coupled atmosphere-ocean models and

described the multiple sources of model errors present. We then discussed the op-

erational use of data assimilation for the purpose of atmosphere-ocean forecasts and

reanalysis. We stated the use of a pressure correction method to mitigate the effect

of error in part of the ocean model. We described the use of consistency diagnostics
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as quality checks for the specification of both the background error and observation

error covariance matrices and highlighted that not accounting for model error can

lead to the diagnostics not equating. Lastly in this chapter, we have presented future

objectives of operational weather centres and outlined how our work in this thesis is

motivated by those objectives, in particular, how to account for model error in the

operational data assimilation process. In the next chapter we will review methods

that have been developed for this purpose.
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Chapter 4

Model error in data assimilation

In Chapter 2 we described Var methods for use firstly with a perfect model and

secondly with an erroneous model. In Chapter 2 we also introduced diagnostic tools

which can be useful as quality checks for the specification of the statistics required

in Var methods. We then described the operational application of data assimilation

methods and the operational use of diagnostic tools at NWP centres in Chapter 3.

We identified that a key objective of operational NWP centres is to better account

for model error within data assimilation operationally. Therefore, in this chapter

we outline work that has been conducted in this area including; highlighting the

problems that have arisen and identifying ideas that we can develop further. In

Section 4.1 we discuss the difficulties in specifying model error covariance matrices

for both atmosphere and ocean models at operational NWP centres. In Section 4.2 we

outline methods proposed to estimate a model error covariance matrix. In Section 4.3

we examine data assimilation methods that have been formulated to compensate for

bias present in coupled models with the objective to improve coupled model forecasts.

Finally, in Section 4.4 we discuss when the statistics of the errors in the comparison of

observations with the model state are not properly accounted for in data assimilation.
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4.1 Model error covariance matrices in weak

constraint variational data assimilation

Operational weather centres, such as ECMWF [118], have conducted investigations

into whether the use of weak constraint 4DVar could improve the quality of the atmo-

spheric analysis and forecast. The general formulation of weak constraint 4DVar, as

described in Section 2.2.4, assumes a vector of random model error ηi ∼ N (0,Qi) is

present at each time-step ti. One of the reasons that is currently preventing implemen-

tation at operational NWP centres is the difficulty in specifying the required model

error statistics in Qi. We will outline suggested methods to prescribe Qi with the

required model error statistics for operational systems and highlight the fundamental

issues with these methods of specification.

To specify all entries in an atmospheric model error covariance matrix Qi would

require prescribing O(1018) elements [118]. Very little is known about the characteris-

tics of error in forecast models and a better understanding of model error statistics is

desired [89] [117]. For these reasons, methods to approximate simplified model error

covariance matrices have been investigated. A common simplification is to assume the

model error covariance matrix Qi is constant over the assimilation window, denoted

by Q.

It has been suggested that Q should be proportional to the background error

covariance matrix B [118] due to the fact the background error, also known as short-

term forecast error, will include a component of model error. The relationship between

the background error covariance matrix and model error covariance matrix is explicitly

defined by one of the Kalman Filter data assimilation equations. Specifically the

background error covariance matrix is re-evaluated at each sequential time-step and

is composed of the propagation of the background error covariance matrix from the
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last analysis time plus the model error covariance matrix [45]. At operational NWP

centres information in the background error covariance matrix B is implicitly available

through the change of variable operator L [3] [8], as discussed in Section 3.1.3, so this

would be a possible choice for use at operational centres. Experiments performing

incremental weak constraint 4DVar using the ECMWF atmospheric IFS system were

conducted using Q =cB [118], where c is a scalar. This choice of Q was found

to restrict the ability of the weak constraint 4DVar method to estimate the model

error appropriately. The lack of independence between B and Q led to both the

model state analysis increment and the model error analysis increment being in the

same direction [118]. Therefore, a method of approximating Q that would give weak

constraint 4DVar more freedom to explore different directions, with the model error

analysis increment, was next sought.

The differences between the tendencies of an ensemble of forecasts was used to

approximate a static Q [118]. These forecasts were run from atmospheric analy-

ses produced from an ensemble of 4DVar assimilations. The spread of the ensemble

members can be thought to represent the probability distribution of the true model

state. The differences between the tendencies can be interpreted as the ensemble of

the model error [118]. ECMWF performed experiments using this method where the

ensemble of the model error vectors were then used to produce an estimate of Q. Note

that Q and B are not necessarily proportional in this case [118]. Simple numerical

experiments using weak constraint 4DVar were performed using the ECMWF IFS

system. The model error control variable was taken to be constant over the assimi-

lation window. The weak constraint 4DVar analysis was found to be more accurate

than the strong constraint 4DVar analysis. However when applying the model error

forcing correction to ten day forecasts there was a negative effect on the forecast per-

formance. The assimilation window length of 12 hours was used in these experiments,

which may be too long a period for a model error vector to be assumed constant. It
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was also noted that caution should be taken in areas prone to observation bias, for

example aircraft temperature taken when aircraft are ascending or descending, as

weak constraint 4DVar may estimate model error in these areas inaccurately if the

bias is not first removed from the observations [118].

Weak formulations of Var have not just been applied to atmospheric operational

models, we next describe the application of a weak constraint Var method to an

operational ocean model. Operational ocean models are likely to have substantial

model biases [73] [6]. Work has been conducted using the FOAM system at the Met

Office to mitigate the effect of both observation bias and model forecast bias [73]. The

methodology used was an amended 3D-FGAT technique, a weak formulation of 3D-

FGAT, used to simultaneously estimate observation bias and model bias along with

the ocean model state. In this method the model state is assumed to be biased and

requires a correction term. The bias in the model was assumed to be in the SSH (sea

surface height) field. Investigations centred on the Atlantic and Arctic oceans and

involved the assimilation of altimeter data, in situ temperature and salinity data and

SST (sea surface temperature) data. The amended cost function required specification

of the model error covariance matrix Q. In experiments conducted with the FOAM

system, the model error covariance matrix was specified as spatially uniform with the

amplitude of 9 × 10−3 cm2 day−2 and had a large correlation scale of 400km. The

results from running this amended 3D-FGAT scheme showed improvements to the

innovation statistics [73]. Together the estimation of observation bias and model bias

helped mitigate the effect of the total bias, but it is unknown whether the resulting

separation of the estimated observation bias and model bias was successful. Further

work at the Met Office includes estimating an improved model error covariance matrix

Q [73]. Further to this, future work also includes combining this developed scheme

with the pressure correction method, as described in Section 3.1.3.

Next we introduce a method that has been developed to estimate a model error
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covariance matrix. Note that this work has only involved investigations with an ideal-

ized model, not an operational model. A method to estimate a model error covariance

matrix where the error in the model is only due to incorrectly specified parameter val-

ues has been developed [24]. We will now outline this technique for the case where the

parameter errors are uncorrelated in time. Consider the model xi =M(xi−1,φi−1
m)

which takes the model state from time ti−1 to ti. The vector φi
m contains the er-

roneously specified model parameters at time ti. We denote εφi
= φi

m − φi
t to be

the error in the parameters at time ti, where the vector φi
t contains the true model

parameters. The error in the parameters εφi
at time ti has the corresponding error

covariance matrix Si. The model error covariance matrix Qi can be approximated as

follows [24],

Qi ≈Mφi−1
mSi−1(Mφi−1

m)T , (4.1)

where Mφi−1
m = ∂M

∂φi−1

∣∣∣
φi−1=φi−1

m
is evaluated with the true model state values at time

ti−1. However Mφi−1
m can be approximated using the background model state. If the

covariance matrix of the errors in the parameters Si−1 is known a priori, then the

model error covariance matrix Qi for each time ti can be approximated using (4.1).

Results using the Lorenz 63 model [81] with an amended weak constraint 4DVar cost

function showed improvements to the analysis trajectory, as opposed to using strong

constraint 4DVar [24]. However, we emphasise that this method was tested using a

toy model where the only source of model error were parameter errors. Operationally

there are multiple sources of model error, as described in Section 3.1.2. Although this

method was shown to improve the forecast of a toy model with erroneous parameter

values, it does not account for the multiple sources of model error that are present

in operational models. Work in this thesis will not concentrate purely on one origin
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of model error, but will focus on dealing with the effect multiple origins of model

error have on a system, i.e. the random or systematic additive model error vector as

described in Section 2.1.2.

Due to the difficulty in prescribing model error statistics, work in this thesis will

involve formulating methods to account for model error in variational data assimila-

tion that do not require the specification of model error statistics explicitly. When

deriving techniques to account for model error, both the nature of the model error,

random or systematic, and whether the primary objective is to improve the accuracy

of the analysis or subsequent forecast, will need to be considered. Specifically, in

Chapter 7 we will work on the second aim of the thesis, as described in Section 1.1,

to develop a 4DVar method to account for random model error present in a model

in order to improve the accuracy of the analysis. Later in this thesis, in Chapter 8

we will work on the third aim of this thesis, as described in Section 1.1, to develop a

method to mitigate the effect systematic error can have on a coupled forecast. Meth-

ods developed in both Chapter 7 and Chapter 8 will not require explicit specification

of a model error covariance matrix.

We do not want to dismiss the use of methods, such as weak constraint 4DVar,

which require the explicit specification of a model error covariance matrix. Therefore,

work in Chapter 6 of this thesis will involve developing methods to verify, and under

certain circumstances refine, the specification of a model error covariance matrix.

This objective is as stated in the first aim in Section 1.1. We next outline how

consistency diagnostics have been used to estimate model error covariance matrices

and the associated problems that arose.
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4.2 Consistency diagnostics to estimate model

error covariance matrices

The estimation of model error covariance matrices has been an area of research for

many years. We discuss the work of R. Daley [30], who in 1992 published a technique

based on Kalman filter data assimilation theory to estimate a model error covariance

matrix. The technique developed aimed to estimate the stationary component of a

model error covariance matrix Q by subtracting an estimate for the predictability

(background) error covariance matrix Pp from an estimate for the total forecast error

covariance matrix Pf . The Kalman Filter innovation vector is the difference between

observations yi at time ti and the forecast state mapped to observations space Hxi
f .

The estimate of the total forecast error covariance matrix Pf can be estimated in

observation space by taking the expectation of the product of Kalman Filter innova-

tion vectors and subsequently subtracting the observation error covariance matrix R.

The predictability error covariance matrix Pp is estimated by selecting an ensemble of

Kalman filter analysis values xi
a and subsequently perturbing these initial conditions

with an ensemble of random perturbations. The covariance matrix Pp is evaluated

using the statistics from the differences between the model evolved analysis values

and model evolved perturbed analysis values. Then the stationary components of the

model error covariance matrix Qs ≈ Pf − Pp. However, there are significant disad-

vantages of estimating a model error covariance matrix using this technique which

include; firstly, the method only estimates the stationary components of a model error

covariance matrix and secondly, the fact that the approximate total forecast error co-

variance matrix Pf is obtained in observation space. In addition to these issues, due

to the use of diagnostic residuals in this method, an accurate approximation to the

model error covariance matrix in observation space is dependent on accurate specifica-
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tion of both the predictability (background) error covariance matrix and observation

error covariance matrix.

A method proposed by R. Todling [116] involves using residual statistics from

sequential data assimilation methods to estimate a model error covariance matrix.

There are two sequential data assimilation techniques used in this method, firstly

the sequential Kalman filter and secondly the fixed lag-1 Kalman smoother. The

sequential Kalman filter uses observations only at the analysis time to estimate the

analysis, where as the fixed lag-1 Kalman smoother also uses observations at the

subsequent time-step to the analysis time in order to improve the analysis [27]. The

vector wi is the difference between the observation operator applied to the smoother

and filter analysis at time ti. The vector ri is the difference between the observations

and lag-1 forecast mapped to observation space. An approximation of the model

error covariance matrix in observation space is calculated by taking the expectation

< wiri
T >≈ HQHT . The use of these diagnostics in simple experiments with toy

models and simple observation operators proved to be successful in estimating a sta-

tionary model error covariance matrix. However, while R. Todling [115] conducted

further work in this area, problems with this method were identified when the back-

ground error and observation error covariance matrices were inaccurately specified,

which led to inaccurate estimation of model error covariance matrices. The esti-

mated statistics for errors in the background, observations and model were found to

be inseparable. As previously mentioned in Section 3.1, both the background error

and observation error covariance matrices are approximated for use in operational

atmosphere and ocean data assimilation procedures and therefore caution would be

required if a method such as this was to be used operationally to estimate a model

error covariance matrix. Another consideration that would have to be made, if this

approach were to be used operationally, is that the model error covariance matrix

estimated using this method is static, whereas in reality it is likely to evolve with
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time. Using this technique provides an estimate of the model error covariance matrix

in observation space only, which prevents use of these model error statistics in weak

constraint 4DVar, as described in Section 2.2.4. Also all of the information required

for use of this method is not readily available to NWP centres using variational data

assimilation, as this technique has been derived using sequential data assimilation

methods.

We have outlined techniques developed to obtain an estimate of a model error

covariance matrix using sequential data assimilation methods and have highlighted

areas of caution and reasons that these methods may not be suitable for use at

NWP centres. The techniques described have involved the use of sequential data

assimilation methods. In Chapter 6 we develop methods to verify the specification

of an estimated model error covariance matrix using variational data assimilation

techniques. Specifically, we will derive diagnostic tools in the 4DVar framework which

is often used at operational NWP centres.

In Section 4.1 we stated that a current limitation for operational use of weak

constraint variational data assimilation is the specification of model error covariance

matrices. One of the objectives in this thesis, see aim number 1 in Section 1.1, is

to develop a method to verify the specification of a model error covariance matrix

and subsequently investigate the potential use of such a method to refine estimated

model error statistics. In Chapter 6 we further develop the strong constraint 4DVar

consistency diagnostics to account for model error, similar to that of equation (2.40),

with the objective to verify the consistency of an estimated model error covariance

matrix, prior to operational implementation of the weak constraint 4DVar formula-

tion. Subsequently, if an estimated model error covariance matrix passed these quality

checks and weak constraint 4DVar was operationally implemented, there is the issue

of whether these model error statistics would still be valid at a later date. Therefore,

in Chapter 6 we also derive consistency diagnostics for weak constraint 4DVar.
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Next we discuss data assimilation methods developed to account for bias in coupled

atmosphere-ocean models without the requirement for the explicit specification of a

model error covariance matrix.

4.3 Compensating for bias in a coupled

atmosphere-ocean model

We outline data assimilation methods that have been formulated to compensate for

bias in coupled atmosphere-ocean models, with the objective to improve coupled fore-

casts. These methods do not require model error covariance matrices to be specified,

which is a key advantage to potential operational use due to the problems discussed

in Section 4.1 and Section 4.2.

It has been shown that the effect of bias present in a simple coupled atmosphere-

ocean decadal system has on the forecast can be reduced through estimation of model

parameters along with the model state using an ensemble Kalman Filter method [130]

[131]. The biased simple coupled model in these investigations was set to have erro-

neous atmospheric and oceanic parameter values. The values of all 16 atmospheric

and oceanic parameters were estimated within the data assimilation process. Estimat-

ing model parameters allows for flexibility in the model so that the data assimilation

process can better fit the model state to the observations. No prior knowledge about

the model bias had to be specified to the data assimilation scheme for the method to

be successful in reducing the effect the model bias had on the forecast.

Work by Lu et al. [82] using a simple coupled equatorial atmosphere-ocean model

involved the simultaneous estimation of 6 damping and coupling parameters along

with 3 ocean initial state variables. In total there were 10 model parameters. Erro-

neous parameter values, for all 10 model parameters, were used in the coupled model
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in the data assimilation process. The simultaneous estimation of the damping and

coupling parameters along with the ocean initial conditions was conducted with an

amended 4DVar method. We highlight that the resulting simultaneous analysis of

the ocean initial conditions and parameters was generally less accurate than when

either the ocean initial conditions or parameters were estimated separately. However,

what should be considered here is that when only the ocean initial conditions were

estimated the true model parameters were assumed to be known and when the pa-

rameters were estimated the true model state initial conditions were assumed to be

known. This knowledge of the respective true model parameters and true ocean ini-

tial conditions would not be applicable in an operational setting. Also, a key message

that resulted from this work was that the initial conditions and parameters should

be observable, meaning that the data supplied by the observations needs to be linked

to the initial conditions and parameters estimated [82].

Another study which is of interest is that estimating adjustment factors in bulk

formulae (for example latent heat, sensible heat or momentum fluxes) together with

oceanic model state variables using 4DVar has been shown to improve the forecasting

ability of an operational coupled atmosphere-ocean model, including partial compen-

sation for bias in the model [114]. Yet again, no prior information about the bias

in the model was specified to the data assimilation scheme for the benefits in the

forecast accuracy to be obtained.

Adjustments to the momentum flux (at the atmosphere-ocean interface) in the

ECMWF coupled model to correct for model bias, have shown improvements to ENSO

(El Niño Southern Oscillation) forecasts at seasonal time-scales [83]. In this case the

wind stress seen by the ocean was modified by the momentum flux correction. The

momentum flux correction term was calculated for unique use in the coupled forecast

as a separate process to estimating the model state initial conditions. This method

pushes the model solution towards the observed climatology and hence nearer the true
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model state trajectories. The flux correction calculation used is not straight-forward

which makes this method unfavourable for continual implementation operationally.

The third of our thesis aims, as stated in Section 1.1, is to develop a strong

constraint 4DVar method with the specific objective; to improve the accuracy of

a coupled atmosphere-ocean forecast. We can use the fact that atmosphere-ocean

models contain coupling parameters which help define the behaviour of the system at

the atmospheric-oceanic interface. The true values of these coupling parameters are

often unknown, with experts currently specifying best guesses to be used in coupled

models. The estimation of coupling parameters along with the coupled atmosphere-

ocean initial conditions has not yet been formulated in a 4DVar framework with the

objective to mitigate the effect of model bias from a coupled forecast. In Chapter 8 we

develop this amended 4DVar method and conduct investigations using this developed

scheme with an erroneous idealized coupled atmosphere-ocean model.

Next we outline data assimilation methods that have been formulated to account

for representativity error in the data assimilation process and discuss how these meth-

ods could be developed to instead account for model error.

4.4 Improper comparison of observations with

the model state

Representativity error stems from the fact that observations can resolve scales that a

model cannot [31]. In this section we describe data assimilation methods developed to

account for representativity error. Further to this, we discuss how methods to account

for representativity error in data assimilation have the potential to be developed to

account for model error.

Let us recall the aim of 4DVar; to best estimate an initial state of a system with
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use of a background state, observations and a model. The term in the cost function

Job as previously defined (2.10) compares observations to an initial state evolved

through time with use of a model. It is this term Job that we will be focusing on in

this section.

The study of how to account for the effect of representativity error in the data

assimilation process has been an area of interest for many years [32] [93] [56] [79].

The objective of work presented in this section is not to give a review of all the

different methodologies developed to deal with representativity error, but to outline

two methods specifically of interest due to the potential of adapting these ideas to

deal with model error.

We firstly outline work of D. Hodyss and N. Nichols [56] where representativity

error is defined to be the error that arises from the distinct nature of an atmospheric

forecast model attractor and the true atmospheric attractor. This work extends the

Kalman filter data assimilation technique [62], however the issues and results we

discuss are also applicable to variational data assimilation. The true atmospheric

attractor is assumed to be biased from the perspective of the forecast model. Here

the forecast model is considered to be a truncated version of the truth with fewer

degrees of freedom. Observations at time ti are of the form yi, as previously defined

(2.4), with the error in the observation εobi assumed in this case to be only instrument

error with corresponding error covariance matrix Ri. When the true physical system

is not represented by the forecast model, the error statistics in Ri that describe the

Gaussian distributed observation instrument errors around the true model state, do

not fully correspond to the comparison of the observations and forecast model evolved

state in the cost function term Job. In fact this work shows that in the presence of

representativity error, the appropriate covariance matrix for use in the cost function

term Job is a sum of both Ri and a covariance error term that involves representa-

tivity error statistics. Instead of replacing the covariance matrix Ri to account for
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this, D. Hodyss and N. Nichols [56] amend the observation operator Hi to map the

forecast model state to the observation, as opposed to the true model state to the

observation. This enables a like for like comparison of the observation and model

state and enables the covariance matrix Ri to be the appropriate matrix to be used

in the cost function term Job. There are two key outcomes of this technique, firstly

consistency diagnostics, as described in Section 2.3.1, will now hold with this amended

observation operator (assuming correctly specified B,Ri and the exclusion of model

error). Secondly, this method produces a best estimate of the model state on the

forecast attractor. It should be noted that this best estimate is not necessarily closer

to the true conditions than when the conditions are estimated without change to the

observation operator. So the use of this method would depend on the objective of the

data assimilation and would be more suited to forecasts than reanalysis applications.

Application of this method to operational NWP systems would require the specifica-

tion of the mapping between the true and and forecast model attractors, which is a

current area of research [56].

We next discuss work by Li et al. [79] which involves use of a multi-scale data

assimilation scheme to account for representativity error. This method amends the

incremental 3DVar cost function to account for the different resolutions of the ob-

servations and the model grid respectively. Theory is derived for the case where

high resolution observations are used with a low resolution model and corresponding

model state vector. The model state increment can be split into the sum of two

vectors δx = δxL + δxS, the first representing large scale features δxL and the sec-

ond representing small scale features δxS. This separation of the large and small

scale features is also applied to the background error εb = εbL + εbS. The back-

ground error covariance matrix B is divided into the error statistics for the large

scale background components BL and the error statistics for the small scale back-

ground components BS, assuming large scale and small scale background errors are
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uncorrelated. The incremental 3DVar cost function is minimised with respect to the

low resolution model state. The background term of the cost function Jb is specified

with the low resolution background model state and corresponding low resolution

background error covariance matrix BL. This multi-scale data assimilation method

accounts for missing smaller scale features, otherwise known as representativity er-

rors, by replacing R0 with R0 + H0BSH0
T . The statistics in R0 are formulated upon

the comparison of observations with the true model state vector, where the resolution

of both the observations and model state variables are the same. However, in this

case, the observational cost function term Job compares high resolution observations

and a low resolution model state. The addition of H0BSH0
T to the covariance ma-

trix R0, accounts for the uncertainty in the comparison due to representativity error.

Results using multi-scale data assimilation on a mesoscale convective system showed

significant improvements to the analysis [79].

We consider representativity error and model error to be separate types of error.

We assume representativity error originates from the observation operator and model

error originates from the model. However both representativity error and model error

can affect the comparison of observations with the model state mapped to observation

space. What we can identify from the work of both D. Hodyss and N. Nichols [56]

and Li et al. [79] is that when representativity error is present, there is an improper

comparison between the observations and the model state and the cost function should

be amended to account for this. It was identified both in the work of D. Hodyss and

N. Nichols [56] and Li et al. [79] that representativity error could be accounted for

by amending the observation error covariance matrix. This gives us the motivation

to develop these ideas and amend the observation error covariance matrix used in the

cost function for the presence of model error, as opposed to representativity error.

The methods we outlined which were developed to account for representativity error

have not included model evolution and only used data at one time. However, as we
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will be accounting for model error, we require model evolution, and therefore we will

develop a 4DVar scheme to make use of observations at multiple times.

We refer back to the second aim of this thesis, as defined in Section 1.1, to amend

the strong constraint 4DVar method in such a way that the effect model error has on

the estimation of the initial conditions is mitigated. Work in Chapter 7 will involve

accounting for the improper comparison of observations with the model state, due to

model error, where the model error is of a random nature as defined in equation (2.3).

We will investigate the effect of replacing the observation error covariance matrix

with a combined error covariance matrix that includes not only observation error

statistics, but also model error statistics. This derived combined error matrix changes

over time to allow for the accumulation of the model errors over the assimilation

window. The specification of model error statistics is of a complex nature, as discussed

in Section 4.1 and Section 4.2. Therefore in Chapter 7, we develop a method to

estimate the combined model error covariance matrix which does not require the

explicit specification of the model error statistics.

4.5 Summary

In Section 4.1 we outlined the difficulties in specifying model error statistics for op-

erational models. We recognise the need for a 4DVar method to account for model

error without the requirement for the specification of model error statistics. This

will be the focus of our work in Chapter 7. Current weak formulations of data as-

similation do require the specification of a model error covariance matrix and we do

not wish to dismiss the use of these methods. Therefore in Section 4.2 we outlined

methods proposed to estimate model error covariance matrices and detailed the prob-

lems resulting when using these techniques. We acknowledged that the development

of 4DVar diagnostic tools to verify, and if possible help refine, an estimated model
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error covariance matrix will be useful and this is the focus of our work in Chapter 6.

In Section 4.3 we examined data assimilation methods that have been formulated to

compensate for bias present in coupled models with the objective to improve coupled

model forecasts. This gave us the idea for the development of a 4DVar method to

simultaneously estimate coupling parameters along with the coupled model state in a

4DVar framework, to compensate for model bias, and this work is covered in Chapter

8 of this thesis. Lastly, in Section 4.4 we outlined methods formulated to account

for representativity error and discussed the potential development of such methods

to account for model error in 4DVar. This gave us the motivation for the formulation

of the 4DVar method developed in Chapter 7 to account for random error present in

a model. In the next chapter we introduce dynamical models which will be used to

test mathematical methods developed within this thesis.
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Chapter 5

Dynamical models

In this chapter we introduce two dynamical models which will be used to demonstrate

methods we develop in this thesis. In Section 5.1 we present the linear advection

equation, followed by an idealized coupled atmosphere-ocean model in Section 5.2.

Both of these dynamical systems consist of governing differential equations. We will

explain how numerical schemes provide approximate time-stepping solutions to these

dynamical systems. Finally, in Section 5.3 of this chapter we will outline certain

aspects of the data assimilation set up which will be used in numerical experiments

throughout this thesis.

5.1 Linear advection equation

The one dimensional linear advection equation is used to model the transportation of

a scalar quantity u(x, t) carried along by a flow with constant speed v in one direction,

∂u

∂t
+ v

∂u

∂x
= 0, (5.1)
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where x and t are independent variables representing space and the time respectively.

Although this model is far more simplistic than any operational model representing

the dynamics of the atmosphere or ocean, the model dynamics (5.1) can be interpreted

to represent an idealized description of a passive tracer transported in the atmosphere

in one direction by a constant flow, for example water vapour carried along by a

constant light breeze. Another reason for the selection of this model is the linear

nature. In this thesis we derive diagnostic tools that involve linear model matrices.

We wish to demonstrate the use of these tools with a linear model, prior to considering

models of a nonlinear nature. The partial differential equation (PDE) (5.1) does not

describe the shape of the passive tracer, only its movement in space and time. We use

the spacial domain x ∈ [0, 10). For this problem to have a unique solution, a function

f to describe the shape of the passive tracer at the initial time t0 = 0 is required as

follows,

u(x, 0) = f(x). (5.2)

We take the function f from [26] where,

f(x) =

 exp {−(x− x0)2} : 2.5 ≤ x ≤ 7.5

0 : otherwise

which is an exponential function centred around x0 = 5.

The PDE (5.1) can be solved analytically, subject to the initial conditions (5.2),

with the resulting solution,
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u(x, t) = f(x− vt). (5.3)

As time increases, with v > 0 the distribution of u is shifted vt in the positive x

direction, however with v < 0 the distribution of u is shifted vt in the negative x

direction. Note than when v = 0 there is no movement in the distribution of u

over time. For numerical experiments conducted in this thesis we specify v = 2.

Operational NWP centres make use of numerical schemes to provide approximate

solutions to atmosphere and ocean governing PDEs, resulting in spacially discretized

time-stepping models of the form (2.2). To be consistent with this methodology,

we apply numerical schemes to provide approximate time-stepping solutions to the

differential equations in the models we use.

5.1.1 Numerical approximation scheme

We firstly select the time domain t ∈ [0, 1]. We specify the boundary conditions to

be periodic so that the value of u at x = 10 is equal to the value of u at x = 0.

The Crank-Nicolson scheme [29] is an implicit method that computes a second order

approximation of the spacial derivative and a first order approximation of the time

derivative. We use this unconditionally stable method, with the spacial step ∆x = 0.1

and time-step ∆t = 0.1 resulting in a time-stepping approximation of the PDE (5.1).

The analytical solution is very well represented with use of this numerical scheme, as

can be seen in Figure 5.1 comparing the analytical solution and numerical solution

both near the start of the time window at t1 = 0.1 and at the end of the time

window when t10 = 1. Figure 5.1 clearly shows as time increases the distribution of

u is shifted 2t in the positive x direction. We next introduce an idealized coupled

atmosphere-ocean model.
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Figure 5.1: Comparison of analytical solution (red dots) and numerical solution (blue crosses)
to the linear advection equation at times t1 = 0.1 and t10 = 1, with the initial conditions shown at
time t0 = 0 (black dots). Solutions for u evaluated at every spacial grid step ∆x = 0.1 in the spacial
domain x ∈ (0, 10).
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5.2 Idealized coupled atmosphere-ocean model

The idealized coupled atmosphere-ocean model we use in this thesis was developed

by Molteni et al. [87] and is given by the equations,

dx

dt
= −σx+ σy + αv,

dy

dt
= −xz + rx− y + αw,

dz

dt
= xy − bz,

dw

dt
= −Ωv − k(w − w∗)− αy,

dv

dt
= Ω(w − w∗)− kv − αx, (5.4)

with parameter values σ = 10, r = 30, b = 8
3
, k = 0.1, Ω = π

10
, w∗ = 2 and

coupling parameter α = 1 as specified by M.A. Dubois and P. Yiou [42]. With the

coupling parameter α = 0 the atmosphere is represented by the Lorenz 63 equations

[81] with the state variables x, y and z and the ocean is represented by two linear

equations with the state variables w and v. However with the coupling parameter

α = 1 the atmosphere variables x and y are coupled with the ocean variables w

and v. The coupled model (5.4) describes the relationship between convection in

the atmosphere and the influences that the SST (sea surface temperature) has on

the convection in the atmosphere, as interpreted by M.A. Dubois and P. Yiou [42].

Figure 5.2 shows a pictorial representation of the dynamics described by this idealized

coupled system, with the convective motion in a layer of fluid interacting with the

SST. The atmospheric variables describe properties in a layer of fluid of uniform depth

in the atmosphere. The atmospheric state variable x is proportional to the intensity
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of convective motion. The temperature difference between ascending and descending

currents is proportional to the atmospheric state variable y. The atmospheric state

variable z is proportional to the distortion of the vertical temperature profile from

linearity. The model variables w and v represent equatorial SST anomalies’ influence

on the global system. The coupling parameter is represented by α and in this model

can be interpreted as heat flux at the atmosphere-ocean interface.

The reasons for choosing this model include firstly, the fact this model is of a

nonlinear nature and we wish to perform numerical experiments to demonstrate the

ability of methods developed in this thesis to successfully work on systems of a non-

linear nature. Secondly, work within this thesis aims to improve coupled atmosphere-

ocean forecasts. Although the model selected is of a much more simplistic nature

than those used operationally, key characteristic properties of the atmosphere, ocean

and interactions at the interface are present in this model. This will be discussed

further in the Section 5.2.2.

5.2.1 Numerical approximation scheme

The model state vector xi consists of all atmospheric and oceanic state variables at

time ti. We apply the Runge-Kutta second order scheme [113] to provide a time-

stepping approximate solution to the coupled ordinary differential equations (ODEs)

(5.4). We let the initial time t0 = 0 and use the fixed time step ∆t = 0.01. Figure 5.3

and Figure 5.4 show plots for the atmospheric variables x and z and ocean variables

w and v respectively. In both figures the resulting trajectories are the time-stepping

approximate solutions run for 2000 time-steps, therefore a total of 20 time units,

initialized using the conditions x0 = −3.4866, y0 = −5.7699, z0 = 18.3410, w0 =

−10.7175 and v0 = −7.1902. Figure 5.3 shows the model trajectory of z against

x, where as Figure 5.4 shows the model trajectories of w and v respectively against
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Figure 5.2: Pictorial representation of processes represented in the idealized coupled atmosphere
ocean model (5.4). The blue arrow represents descending currents, the red arrow represents ascending
currents, which together represent convective motion in a layer of fluid of uniform depth in the
atmosphere. The influences the SST anomalies of the ocean have on the atmosphere are represented
by the black arrow pointing upwards. The influences the atmospheric convective motion have on
the SST anomalies of the ocean are represented by the black arrow pointing downwards

time. The characteristics of the coupled model (5.4) are further analysed in the next

section.

5.2.2 Characteristics of the model

Next we describe key characteristic features that the idealized coupled atmosphere-

ocean model (5.4) shares with operational coupled atmosphere-ocean dynamical sys-

tems used at NWP centres, as described in Section 3.1.1. Although the coupled model

we use (5.4) is an idealized model, the distinct nature of atmosphere and ocean vari-

ables respectively are represented.

In reality ocean dynamics are on a slower time scale than atmospheric dynamics.

For example, due to the large heat capacity of the ocean, the ocean surface temper-
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Figure 5.3: Coupled atmosphere: Runge-Kutta second order scheme applied to the coupled model
equations (5.4), from the initial time t0 = 0 with the fixed time step ∆t = 0.01. The plot shows
the model trajectory of z against x from running the coupled model for 2000 time-steps, therefore
a total of 20 time units, from the initial conditions x0 = −3.4866, y0 = −5.7699, z0 = 18.3410,
w0 = −10.7175 and v0 = −7.1902.

Figure 5.4: Coupled ocean: Runge-Kutta second order scheme applied to the coupled model
equations (5.4), from the initial time t0 = 0 with the fixed time step ∆t = 0.01. The plots show the
model trajectories for the ocean variables w and v from running the coupled model for 2000 time-
steps, therefore a total of 20 time units, from the initial conditions x0 = −3.4866, y0 = −5.7699,
z0 = 18.3410, w0 = −10.7175 and v0 = −7.1902.
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ature changes by much smaller amounts and on a much slower time-scale than that

of the land surface [52]. Uncoupled, the atmospheric equations of the coupled model

(5.4) form the Lorenz 63 model, which has a transition time between the two sides

of the model attractor of one to two time units. Uncoupled, the ocean variables in

the coupled model (5.4) are on a much slower time-scale with an oscillation period of

20 units. Figure 5.5 and Figure 5.6 show plots for the atmospheric variables x and

z and ocean variables w and v respectively. In both figures the resulting trajecto-

ries are from the Runge-Kutta second order scheme applied, with the fixed time step

∆t = 0.01, to the coupled model (5.4) with α = 0, therefore uncoupling the atmo-

sphere and ocean models. Figure 5.5 shows the model trajectory of z against x from

running the model for 2000 time-steps, therefore a total of 20 time units. Figure 5.6

shows the model trajectories for the ocean variables w and v also from running the

model for 2000 time-steps, therefore a total of 20 time units. This creates a realistic

time-scale difference between the pace of atmospheric and oceanic model variables.

For example, currently ECMWF use a 12 hour assimilation window for the atmo-

sphere data assimilation process and a 10 day ocean data assimilation window, due

to the difference in time-scales of the respective atmosphere and ocean [96] [6].

Irregular oscillations are very common in atmospheric systems, this property is

reflected in the Lorenz 63 model, with the inclusion of both dissipative processes

and external forcing that prevent the system from reaching a state of rest. The use

of nonlinear equations in the Lorenz 63 ODEs leads to a non-periodic flow, which

is a recognised feature of the true atmospheric dynamics. The Lorenz 63 model is

renowned for its chaotic nature, where a small change in the initial conditions can

cause significant changes to the trajectories of the model variables. When plotting

the evolution of atmospheric variables z against x, an attractor is formed, resembling

butterfly wings, as can be seen in Figure 5.5. For more information refer to the

work of E. Lorenz [81]. This property is sustained when coupled to the linear ocean
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Figure 5.5: Uncoupled atmosphere: Runge-Kutta second order scheme applied to the Lorenz 63
model equations [81], from the initial time t0 = 0 with the fixed time step ∆t = 0.01. The plot shows
the model trajectory of z against x from running the model for 2000 time-steps, therefore a total
of 20 time units, from the initial conditions x0 = −3.4866, y0 = −5.7699 and z0 = 18.3410. The
atmosphere parameter values σ = 10, r = 30 and b = 8

3 as defined in the coupled model equations
(5.4).

Figure 5.6: Uncoupled ocean: Runge-Kutta second order scheme applied to the linear ocean
model equations (5.4) with α = 0, from the initial time t0 = 0 with the fixed time step ∆t = 0.01.
The plots show the model trajectories for the ocean variables w and v from running the model for
2000 time-steps, therefore a total of 20 time units, from the initial conditions w0 = −10.7175 and
v0 = −7.1902. The ocean parameter values k = 0.1, Ω = π

10 and w∗ = 2 as defined in the coupled
model equations (5.4).
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equations in (5.4), as can be seen in Figure 5.3. We can interpret switching between

the two sides of the attractor as the change in direction of the convective motion.

True ocean dynamics are known to be of a less chaotic nature than atmospheric

dynamics, with many large scale features of tropical circulation described by linear

systems [87]. Uncoupled, the ocean part of the idealized coupled model (5.4) has non

chaotic behaviour, periodically oscillating with decreasing amplitude, as can be seen

in Figure 5.6. However once coupled the ocean variables are of a slightly more chaotic

nature, as can be seen in Figure 5.4. This is representative of true ocean dynamics,

as not all ocean features are of a slow periodic nature.

5.2.3 Sensitivity of an idealized coupled model to a

coupling parameter

We next demonstrate that the specification of the coupling parameter α can have

a significant impact on the behaviour of both the atmospheric and oceanic model

state trajectories over time. We firstly initialise the idealized coupled model (5.4)

with α = 1 and run over 750 time-steps with the resulting model state trajectories

shown in Figure 5.7 (black lines). The same intial conditions have been used as in the

previous section. Next we take the same idealized coupled model (5.4) with the same

initial conditions and again run the model for 750 time-steps, but alter the value of the

coupling parameter to α = 0.97 in the first run (turquoise) and secondly α = 1.03 in

the subsequent run (dark green), with the resultant model state trajectories shown in

Figure 5.7. Here we observe that with only small perturbations, namely 3% increase

or decrease, to the value of the coupling parameter, the model’s sensitivity to the

coupling parameter causes significant departures from the model state trajectories

for all atmospheric and oceanic variables throughout the time window (in particular

subsequent to time-step 300).
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Figure 5.7: Model state trajectories produced using the idealized coupled model with: α = 1

(black), α = 0.97 (turquoise), α = 1.03 (dark green). Model trajectories shown for all atmospheric

variables x, y and z and all ocean variables w and v. All three model runs initialised with the same

initial conditions x0 = −3.4866, y0 = −5.7699, z0 = 18.3410, w0 = −10.7175 and v0 = −7.1902.
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Note that even the trajectory of the atmospheric variable z is dependent on the

coupling parameter specification, even though α is not present in the model equation

for this particular variable. This is due to the interactions z has with the other

atmospheric variables.

5.3 Data assimilation set up

We next define the structure of background error, observation error and model error

covariance matrices used in numerical experiments shown in this thesis. Subsequently,

we outline the minimisation algorithm selected and then explain how we will evaluate

the accuracy of results from experiments conducted in this thesis.

5.3.1 Structure of error covariance matrices

Let εi ∈ Rψ be a generic error vector at time ti. We define the structure of the

corresponding generic error covariance matrix Gi at time ti as follows,

Gi = σi
2C, (5.5)

where σi
2 is the variance of the elements in εi and C ∈ Rψ×ψ is a correlation matrix.

The assumptions made are that the error variances σi
2 are equal for every element

in the error vector εi. Since the correlation matrix C is symmetric positive definite,

then Gi will also have this characteristic, which is necessary as we require the error

covariance matrices B, Ri and Qi to be invertible. In work in this thesis we either set

C = I and hence include no error correlation information, or we set the correlations

in C with the SOAR (second-order auto-regressive) function. The reasons for setting
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C = I in our work includes the fact that operationally at NWP centres often only the

diagonal elements of observation error covariance matrices Ri are specified, although

recent work has involved specification of correlations for specific observations as de-

tailed in Section 3.1.3. Also, the use of C = I in our work allows for the results from

numerical experiments to be clearly interpreted without the correlation information

influencing the results.

Note that the structure of the covariance matrices as described by (5.5) are only

used in experiments with the linear advection equation. For experiments with use of

the coupled model we do not include correlation information, but do allow variances

to differ for each variable.

In this thesis the SOAR correlation function is only used in the construction

of error covariance matrices in experiments involving the linear advection equation.

Consider the case where we have a total of D grid points. We let the element in the

kth row and lth column of the correlation matrix be defined by,

C(k,l) = ρ(xk, xl). (5.6)

The SOAR function can be used to calculate the correlation between the two grid

points xk and xl (k, l = 1, ..., D) as follows,

ρ(xk, xl) =

(
1 +
|r|
L

)
exp

{
−|r|
L

}
, (5.7)

where L is the correlation length scale and r is the distance between the two grid

points [95]. When equation (5.7) is used on a periodic domain the distance of the

chord, as opposed to the straight line, is evaluated by r = 2asin
(
θ
2

)
, where a is
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the radius and θ is the angle between the two points. This is necessary to allow

correlations valid on the real line to also be valid on the circle and for a finite domain

[125] [129]. Use of the SOAR correlation function (5.7) forms a circulant covariance

matrix, with each row the same as the one above except shifted to the right by one

element. The correlation matrix C produced using a SOAR function is an idealised

correlation structure, often used at operational centres, such as the Met Office [59],

to specify background error correlations in the horizontal.

5.3.2 Data assimilation minimisation algorithm

Whether the variational data assimilation technique chosen is 3DVar, 4DVar, weak

constraint 4DVar or any further developed methods in the variational framework,

the objective is still to minimise a cost function J to obtain the respective analysis.

There are multiple choices of minimisation algorithms. In this thesis we select the

Polak-Ribiere conjugate gradient method [97]. This is a nonlinear conjugate gradient

method, which requires an initial estimate of the solution. On each iterative loop,

this algorithm evaluates both the cost function J and the gradient of J to set the

descent direction, towards the minimum of the cost function J , in order to update the

estimate. Such conjugate gradient algorithms are used at operational NWP centres

as described by M. Fisher [46] for application in atmospheric data assimilation and

are used also for the minimisation of cost functions in ocean data assimilation, for

example at the Met Office [123]. This Polak-Ribiere conjugate gradient method is an

iterative procedure requiring stopping criteria which we will detail for the case where

the control vector is x0. We define x0
0 to be the initial estimate and we define x0

k to

be the estimate of the initial conditions x0 on the kth iteration. The algorithm will

stop when one of two cases occur. Let us define ‖ · ‖ to be the L2 norm. The first of

the stopping criteria is when,
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‖∇J (x0
k)‖

‖∇J (x0
0)‖

< 10−3. (5.8)

The second case is that the minimisation algorithm will perform a maximum of 200

iterations i.e. k = 200.

5.3.3 Evaluation of results

We compute the accuracy of the model state trajectories by calculating the RMSE

(Root Mean Square Error) between the analysis model run and true model run as

follows,

RMSE =

√√√√√ n∑
i=m

(xai − xti)
2

n−m+ 1
, (5.9)

where m is the time-step at the beginning of the respective assimilation/forecast

window and n is the corresponding time-step at the end of the time window under

consideration.

5.4 Summary

In this chapter we described two dynamical models that will be used in numerical

experiments in this thesis, the linear advection equation and an idealized coupled

atmosphere-ocean model. We outlined the use of numerical schemes to provide ap-

proximate time-stepping solutions to the respective dynamical models. We identified

the characteristics these idealized models share with true atmosphere and ocean dy-

namics. Later in the chapter we stated that we will either include no correlation
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information in background error, observation error and model error covariance matri-

ces used in numerical experiments in this thesis or we will use the SOAR function to

produce correlations. We then stated the nonlinear conjugate gradient method which

is chosen to be the minimisation algorithm for estimation of the analysis in numerical

experiments. Lastly we detailed that RMSE (Root Mean Square Error) will be used

to evaluate the accuracy of results in this thesis. The next chapter, is the first of our

results chapters, where we develop diagnostic tools to verify the specification of an

estimated model error covariance matrix.
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Chapter 6

Verifying and refining model error

statistics

In Section 3.2 we discussed the use of Desroziers diagnostics [39] as quality checks for

the specification of both background error and observation error covariance matrices.

Further to this we detailed work undertaken with the ECMWF atmospheric system,

which highlighted that caution should be taken when using diagnostic tools with

operational models when model error is not accounted for [2]. In this chapter we derive

diagnostic equations that account for random model error. Model error statistics are

often unknown and hence model error covariance matrices are estimates of the correct

statistics. The diagnostic equations we develop can be used as quality checks to verify

the consistency of an estimated model error covariance matrix with both background

error and observation error covariance matrices in observation space. In Section 6.1

we derive the first set of diagnostics, which are for the case where an erroneous model

is used in strong constraint 4DVar. Subsequently we investigate the potential use

of these tools to refine an inaccurately estimated model error covariance matrix. In
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Section 6.2 we then derive a further set of diagnostic tools, which are for use with the

weak constraint formulation of 4DVar.

6.1 Strong constraint 4DVar diagnostics with

model error

We now formulate differences in observation space which will later be used to derive

diagnostic tools that account for model error. We assume a background model state

xb is available with the corresponding background error covariance matrix B. We

consider a vector of observations y, of the form (2.4), with a corresponding observation

error covariance matrix R. The nonlinear observation operator H takes the model

state from state space to observation space. The differences in observation space that

we will consider involve two points in time, specifically the time a background model

state vector is available and a future point in time when a vector of observations is

available. Let us consider an erroneous model of the form,

xi =Me
{i−1}→i(xi−1), (6.1)

where the erroneous model operator Me
{i−1}→i evolves the model state vector from

the background time ti−1 to the observation time ti. To obtain the true model state

at time ti we assume,

xti =Me
{i−1}→i(x

t
i−1) + ηi, (6.2)
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where the vector ηi contains random Gaussian distributed model error uncorrelated

in time with a zero mean and covariance matrix Qi.

The following theory holds across a generic time interval with a background model

state vector at time ti−1 and a vector of observations at time ti. To simplify notation

in this chapter we will denote these respective times by t0 and t1 and the erroneous

model operator byMe =Me
{i−1}→i. We also simplify the model error vector notation

by letting η = ηi, as described in (6.2) with the corresponding model error covariance

matrix Q = Qi.

We assume the tangent linear hypothesis [17] holds, for both the nonlinear ob-

servation operator H and nonlinear system equations Me, as described in Section

2.3.1. The linear observation operator H is the first order term in the expansion of

the Taylor series of H(x+δx) and the tangent linear model Me is the first order term

in the expansion of the Taylor series ofMe(x+ δx). This allows the evaluation of the

explicit incremental strong constraint 4DVar analysis using one ‘outer loop’ (2.30),

xa0 = xb + Kdob
∗, (6.3)

where the gain matrix K = BMeTHT (R + HMeBMeTHT )−1 and the innovation

vector,

dob
∗ = y1 −H(Me(xb)). (6.4)

Note that incremental 4DVar with one ‘outer-loop’ is equivalent to the best linear

unbiased estimate (BLUE) method and therefore gives the same analysis solution

(6.3). Note that in this case both the gain matrix K and innovation vector dob
∗
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contain the erroneous model matrix Me. Note that as the error in the model is of

a random nature the expected value of the analysis E [xa0] is unbiased and therefore

equal to the true model state vector.

In Section 2.3.1 we presented four diagnostic equations that assume a perfect

model (2.34)-(2.37). Further to this in Section 2.3.2, we presented the corresponding

equation for the first of these diagnostic equations (2.34) that now accounted for

random model error (2.40). We derive the further three corresponding diagnostic

tools in the next section, specially to (2.35)-(2.37), that will account for random error

present in a model. The computations will involve differences in observation space

that we will now define. All the work conducted in this chapter uses the 4DVar

framework. The evaluation of the analysis (6.3) and innovation vector (6.4) allows us

to define the following differences in observation space,

dob
∗ = y1 −H(Me(xb)) ≈ εob −HMeεb + Hη (6.5)

dab
∗ = H(Me(xa0))−H(Me(xb)) ≈ HMeKdob

∗ (6.6)

doa
∗ = y1 −H(Me(xa0)) ≈ (I−HMeK)dob

∗, (6.7)

which assume the tangent linear hypothesis holds, for both the nonlinear observation

operator H and nonlinear system equations Me. Note that equations (6.5)-(6.7) are

exactly equal when both the observation operator and model equations are of a linear

nature. We can now use these differences in observation space (6.5)-(6.7) to derive

diagnostic tools that account for random model error.

Firstly, we present the strong constraint 4DVar diagnostic equation that was pre-

viously derived [33] [2]. This uses the innovation vector dob
∗ as stated in (6.5). Taking

the statistical expectation of the product of innovations leads to,
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E [dob
∗(dob

∗)T ] ≈ R + HMeBMeTHT + HQHT , (6.8)

as stated in equation (2.40) in Section 2.3.2, which has the additional term HQHT

[33] [2] when compared to the diagnostic calculated with a perfect model (2.34). The

term HQHT is the model error covariance matrix in observation space and is present

due to the presence of model error in the comparison of the observation vector and

model evolved background vector in dob
∗. Specifically, the background vector has been

evolved with the erroneous model Me and hence the comparison of the observation

vector and background vector in dob
∗ contains a vector of model error as stated in

(6.5). The reason the vector of model error is in observation space in dob
∗ is because

the background vector is mapped to observation space in order to be compared to

the observation and hence the vector of model error is mapped to observation space.

The term HQHT in the diagnostic equation (6.8) is computed as the expectation of

the product of the model error vector in observation space.

This diagnostic (6.8) provides a consistency check in observation space not only for

the background error and observation error covariance matrices B and R respectively,

but also for the model error covariance matrix Q. We will now re-evaluate the other

three consistency diagnostics (2.35)-(2.37) for the case where an erroneous model of

the form (6.1) is used in strong constraint 4DVar, as opposed to a perfect model.

The first of the consistency diagnostics we derive uses the analysis as stated in

(6.3) and is conducted by taking the following statistical expectation,
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E [dab
∗(dob

∗)T ] ≈ HMeKE [dob
∗(dob

∗)T ], (6.9)

≈ HMeK(R + HMeBMeTHT + HQHT ),

= HMeBMeTHT

+ HMeBMeTHT (R + HMeBMeTHT )−1HQHT ,

= HMeBMeTHTΛ, (6.10)

where Λ = I + (R + HMeBMeTHT )−1HQHT , using the diagnostic equation (6.8).

We define this matrix Λ to be an inflation matrix. The coressponding diagnostic

calculated with a perfect model (2.35) is essentially post multiplied by this inflation

matrix Λ resulting in (6.10). The entries in the inflation matrix Λ depend on the the

entries in R, HMeBMeTHT and HQHT . Specifically the amplitude of the inflation

is dependent on the covariances of the errors in the observation vector and the covari-

ances of the errors in the background vector evolved by the model and subsequently

mapped to observation space, in comparison with the covariances of the errors in the

model (mapped to observation space). The larger the errors in the model are (once

mapped to observation space) in comparison with both the errors in the observation

vector and the errors in the background vector (evolved by the model and mapped

to observation space), the larger the inflation.

We next derive a further consistency diagnostic that accounts for random error

present in a model by taking the statistical expectation of the following product of

differences in observation space,
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E [doa
∗(dob

∗)T ] ≈ (I−HMeK)E [dob
∗(dob

∗)T ], (6.11)

= (I−HMeBMeTHT (R + HMeBMeTHT )−1)E [dob
∗(dob

∗)T ],

= (R + HMeBMeTHT −HMeBMeTHT )(R + HMeBMeTHT )−1

×E [dob
∗(dob

∗)T ],

= R(R + HMeBMeTHT )−1E [dob
∗(dob

∗)T ],

≈ R(R + HMeBMeTHT )−1(R + HMeBMeTHT + HQHT ),

= R + R(R + HMeBMeTHT )−1HQHT ,

= RΛ, (6.12)

using (6.8), with the inflation matrix Λ = I + (R + HMeBMeTHT )−1HQHT as pre-

viously defined in (6.10) . The corresponding diagnostic that assumes a perfect model

(2.36) can be post multiplied by the inflation matrix Λ to obtain the diagnostic

equation that accounts for model error (6.12). Similarly, as with the last diagnos-

tic equation that accounted for model error (6.10), the larger the covariances of the

model errors (in observation space) in comparison with the observation errors and

background errors (evolved with the model and mapped to observation space), the

larger the inflation. Note that the sum of this diagnostic E [doa
∗(dob

∗)T ] (6.11) and

the previous diagnostic E [dab
∗(dob

∗)T ] (6.9) add to make the first of the strong con-

straint diagnostic equations that accounts for model error E [dob
∗(dob

∗)T ] (6.8). This

is a property that is shared with the model diagnostics (2.34)-(2.36) that assume a

perfect model.

The final diagnostic that we derive in this section is deduced by taking the fol-

lowing expectation of the product of differences in observation space,
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E [dab
∗(doa

∗)T ] ≈ E [HMeKdob
∗(doa

∗)T ],

= HMeK
(
E [doa

∗(dob
∗)T ]

)T
,

≈ HMeKΛTR,

= HMeBMeTHT (HMeBMeTHT + R)−1R

+HMeBMeTHT (HMeBMeTHT + R)−1

×HQHT (HMeBMeTHT + R)−1R,

= HMeBMeTHT (HMeBMeTHT + R)−1R + Φ (6.13)

where Φ = HMeBMeTHT (HMeBMeTHT + R)−1HQHT (HMeBMeTHT + R)−1R,

using the earlier diagnostic result (6.12). This diagnostic (6.13) that accounts for

error present in a model can effectively be obtained by taking the corresponding

diagnostic that assumes a perfect model (2.37) and adding Φ. The term Φ is

the model error covariance matrix in observation space HQHT pre multiplied by

HMeBMeTHT (HMeBMeTHT + R)−1 and post multiplied by

(HMeBMeTHT + R)−1R. The larger the model errors mapped to observation space

are, the larger the amplitude of Φ. However the values in Φ are also dependent on

the pre and post multiplications. The pre multiplication arises from the effect model

error has on the comparison of the analysis with the model evolved background in dab
∗.

The larger the background error covariances (evolved using the erroneous model and

mapped to observation space) in comparison with the observation errors, the larger

the pre multiplication. The post multiplication arises from the effect model error has

on the comparison of the observations with the model evolved analysis in doa
∗. The

larger the observation error covariances in comparison with the background errors

(evolved using the erroneous model and mapped to observation space), the larger the
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post multiplication.

Having conducted comparisons of the diagnostics that account for the presence of

random model error (6.8), (6.10), (6.12) and (6.13) with those that assume a perfect

model (2.34)-(2.37), we have shown differences in all four of the diagnostic results.

The model error covariance matrix Q is present in each of the diagnostic equations

that account for random model error (6.8), (6.10), (6.12) and (6.13). The first of

the diagnostic equations that accounts for model error (6.8) includes the additional

term HQHT when compared to the corresponding diagnostic that assumes a perfect

model (2.34). However, the other three diagnostic equations (6.10), (6.12) and (6.13)

that account for random error in the model include changes from the diagnostics

that assume a perfect model (2.35)-(2.37) that involve both the background error

covariance matrix B and observation error covariance matrix R along with the model

error covariance matrix Q. This is because these diagnostic equations use differences

in observation space that involve the analysis (6.3), where the analysis has been

deduced with use of both the background error and observation error statistics.

There are two key points to make from the work conducted in this section. Firstly,

we highlight that caution should be taken if using any of the four diagnostic equations

(2.34)-(2.37), that assume a perfect model, to verify the consistency of background

error and observation error covariance matrices, if random model error is or could

be present. If model error is not accounted for and an erroneous model of the form

(6.1) is used with the diagnostic equations that assume a perfect model (2.34)-(2.37),

this could lead to verification of both over specified background error variances and

over specified observation error variances. For example, in Section 3.2 we discussed

experiments that were conducted using the ECMWF atmospheric system, where the

diagonal elements of the diagnostic (2.34) that assumes a perfect model were calcu-

lated and the left and right-hand sides compared. Assuming a perfect model, the

results suggested that the background error variances were underspecified in B [2].
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However, the atmospheric model used in the experiments contained model error and

this could be the explanation for the resulting inconsistencies in the evaluation of

the diagnostic (2.34) [2]. The presence of the additional term HQHT in (6.8) is due

to the model error, which could possibly have mitigated the inaccuracies in these

experiments.

The second key point to be made in this section is that the set of the four diag-

nostic equations that account for random error in a model (6.8), (6.10), (6.12) and

(6.13) are a set of diagnostic tools that can be used to verify the consistency of a

model error covariance matrix Q with both background error and observation error

covariance matrices in observation space. We should note that the diagnostic equa-

tions (6.8), (6.10), (6.12) and (6.13) rely on accurately specified background error

and observation error covariance matrices in order to do this, which is often not the

case in operational NWP centres as discussed in Section 3.1.3. In Section 6.1.3 we

investigate the effect inaccurately specified background error and observation error

statistics have on the diagnostic equations. However, for now we assume B and R can

be accurately specified. Next we perform numerical experiments to demonstrate the

use of the set of diagnostic tools that account for random model error (6.8), (6.10),

(6.12) and (6.13) as quality checks for the specification of a model error covariance

matrix.

6.1.1 Verifying an estimated model error covariance matrix

In this section we demonstrate how diagnostics can be used to verify the consistency

of an estimated model error covariance matrix with both background error and ob-

servation error covariance matrices. We take our erroneous model (6.1) to be the

time-stepping solution of the linear advection equation, as described in Section 5.1.1,

over the spatial domain x ∈ [0, 10) with the spatial step ∆x = 0.1 and time-step
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∆t = 0.1. The true initial conditions at time t0 are defined with use of the exponen-

tial function f , as in Section 5.1. We run this erroneous model over one time-step

from time t0 to time t1. The true model state at time t1 differs from the erroneous

model state by a vector of random error η ∼ N (0,Q), as defined by equation (6.2).

The structure of the model error covariance matrix Q is defined with use of the

SOAR function, as described in Section 5.3.1, with correlation length scale L = 0.1

and variance σq
2 = 0.01. We consider a background model state xb at time t0 with

corresponding background error covariance matrix B. We use the SOAR function,

with correlation length scale L = 0.4, to assign the correlations in the background

error covariance matrix B and set the variance σb
2 = 0.04. We assume we have direct

observations y at time t1 of all spatial points with the linear observation operator

H = I. The corresponding observation error covariance matrix is R = σob
2I where

σob
2 = 0.04. Note that the model error standard deviation is set to be smaller, specifi-

cally half, of both the background error and observation error standard deviations. In

general, the standard deviation of random model error is thought to be less than the

standard deviation of the error in the background. This is because the error in the

background represents short term forecast error over a time window, whereas random

model error is present at each individual time-step.

To evaluate the left-hand side of the consistency diagnostics (6.8), (6.10), (6.12)

and (6.13), a sample of background vectors, model error vectors, observation vectors

and 4DVar analysis vectors are required. We repeat the following steps 1, 000 times to

produce a sample size of 1, 000 background vectors, model error vectors, observation

vectors and 4DVar analysis vectors:

1. Produce a background vector xb by adding noise to the true initial state xt0

using the statistics specified in B.

2. Produce a random model error vector η using the statistics specified in the
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model error covariance matrix Q.

3. Produce a vector of observations y by firstly evaluating the true model state

vector xt1 with equation (6.2) and subsequently adding noise in proportion to

the error statistics specified in R.

4. Conduct strong constraint 4DVar to produce a corresponding analysis (6.3).

We use the sample data to calculate the expectations as described by the left-hand

side of the consistency diagnostics (6.8), (6.10), (6.12) and (6.13) that account for

random error.

We evaluate the left-hand side of the consistency diagnostics that assume a per-

fect model (2.34)-(2.37), but use the erroneous model matrix Me as defined above.

We subsequently evaluate and subtract the right-hand side of the respective diag-

nostic equations (2.34)-(2.37) again with the erroneous model matrix Me. Due to

the nature of the model we avoid use of an adjoint model in these RHS calculations

by computing the evolution of the background and its transpose. The differences

between these results are shown in Figure 6.1 - Figure 6.4 (left). Clearly, when not

accounting for error in the model, using the consistency diagnostics that assume a

perfect model (2.34)-(2.37), the expectations evaluated on the left-hand side do not

match the evaluations of the right-hand side, with large inaccuracies caused by the

error in the model. We re-emphasise the point that the diagnostic tools (2.34)-(2.37)

that assume a perfect model should not be used to verify the consistency of back-

ground error and observation covariance matrices when random error is present in

the model. In fact if the correct B and R were used in these diagnostic equations

(2.34)-(2.37) you would conclude that both B and R had been specified incorrectly.

As we are using the identity matrix for the observation operator, we in fact obtain

an estimate of the model error covariance matrix Q when evaluating the inaccuracies

in the first of the diagnostics, that assumes a perfect model, (2.34) as can be seen in
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Figure 6.1 (left). We have specifically calculated and plotted the following in Figure

6.1,

E [dob
∗(dob

∗)T ]−
(
R + HMeBMeTHT

)
≈ HQHT . (6.14)

When the observation operator is equal to the identity matrix, H = I, this gives us a

direct estimate of the model error covariance matrix Q. This estimation in Figure 6.1

(left) has captured the structure of the true model error covariance matrix Q and the

errors in this estimation are random due to sample error. If we were to demonstrate

this we would repeat the experiment multiple times and show the sample error is

inversely proportional to the sample size.

We next evaluate the right-hand side of the consistency diagnostics that account

for random model error (6.8), (6.10), (6.12) and (6.13) and subsequently use the

sample data to subtract the calculations from the left-hand side of these consistency

diagnostics (6.8), (6.10), (6.12) and (6.13), with the results shown in Figure 6.1 -

Figure 6.4 (right). It is clearly shown that, subject to sample error, the left-hand side

(LHS) expectations evaluated using the diagnostic equations are equal to the right-

hand side (RHS) calculations of the diagnostic equations. The LHS expectations have

captured the same structure as the calculations on the RHS, leaving the structure of

the sample error to be random. Therefore, we can state that the diagnostics correctly

imply the model error covariance matrix is consistent with both the background error

covariance matrix and observation error covariance matrix in observation space, which

was the expected outcome as we are using the correct model error covariance matrix.

Note that the larger the sample size, the smaller the sample error. Here we are using

a relatively small sample size of 1, 000 in comparison to the 10, 000 entries we are

estimating. We next investigate whether the first of the diagnostic tools (6.8) can be
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used to refine an estimated model error covariance matrix.

Figure 6.1: Differences in the evaluations of the left-hand side and right-hand side of;

(d1a) diagnostic 1 (2.34) that assumes a perfect model but calculated with an imperfect model,

(d1b) diagnostic 1 (6.8) that accounts for the error in the model.

Note the change of scale on the colour bar axis.
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Figure 6.2: Differences in the evaluations of the left-hand side and right-hand side of;

(d2a) diagnostic 2 (2.35) that assumes a perfect model but calculated with imperfect model,

(d2b) diagnostic 2 (6.10) that accounts for the error in the model.

Note the change of scale on the colour bar axis.

Figure 6.3: Differences in the evaluations of the left-hand side and right-hand side of;

(d3a) diagnostic 3 (2.36) that assumes a perfect model but calculated with an imperfect model,

(d3b) diagnostic 3 (6.12) that accounts for the error in the model.

Note the change of scale on the colour bar axis.
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Figure 6.4: Differences in the evaluations of the left-hand side and right-hand side of;

(d4a) diagnostic 4 (2.37) that assumes a perfect model but calculated with an imperfect model

(d4b) diagnostic 4 (6.13) that accounts for the error in the model.

Note the change of scale on the colour bar axis.

6.1.2 Refining an estimated model error covariance matrix

For an invertible observation operator H, specifically an observation operator with

full rank, an estimate for the model error covariance matrix Q can be calculated by

simple rearrangement of equation (6.14). However, often observation operators are

of a complex nature and the inverse may not be available or even exist, therefore

we next investigate how we can refine an estimated model error covariance matrix

without requiring the computation of the inverse observation operator.

We define Q̃ to be the estimate of the true model error covariance matrix Q. When

Q̃ is used within the computation of the right-hand side of (6.8) and subsequently

the result is subtracted from the left-hand side of (6.8) we obtain,
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E [dob
∗(dob

∗)T ]−
(
R + HMeBMeTHT + HQ̃HT

)
,

≈ R + HMeBMeTHT + HQHT −
(
R + HMeBMeTHT + HQ̃HT

)
,

= H
(
Q− Q̃

)
HT . (6.15)

When the estimate of the model error covariance matrix is equal to the true model

error covariance matrix, Q̃ = Q, the term H(Q− Q̃)HT (6.15) is the null matrix. In

this case we can conclude the model error covariance matrix is consistent with both

the background error and observation error covariance matrices in observation space.

We next investigate how to improve the estimation Q̃ when the resulting calculation

(6.15) is not a matrix of zeros.

Consider the case where the correlation structure of the model error covariance

matrix is accurately known, but the estimate of the variances and covariances differ

by the constant factor a, resulting in,

Q̃ = aQ, (6.16)

where a is a positive scalar a > 0. Evaluating the term (6.15) gives,

H
(
Q− Q̃

)
HT = (1− a)HQHT . (6.17)

Therefore, we can conclude if the diagonal entries (H(Q− Q̃)HT )i,i < 0 then a > 1,

so the model error variances are overestimated and if the diagonal entries

(H(Q − Q̃)HT )i,i > 0 then a < 1, so the model error variances are underestimated.
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This information can be used to amend the value of a to obtain an improved estimate

of the model error covariance matrix Q̃.

We demonstrate use of this result with the experimental set up as described in

Section 6.1.1, but we only observe every fifth spatial variable with a total of 20 obser-

vations. This leads to use of an uninvertible observation operator H. To recap; the

structure of the model error covariance matrix Q is defined with use of the SOAR

function with correlation length scale L = 0.1 and variance σq
2 = 0.01. We increase

the sample size to 10, 000 innovation vectors, where each innovation vector is produced

using an independently calculated background vector, model error vector and obser-

vation vector as described in Section 6.1.1. We firstly underestimate the model error

covariance matrix by setting a = 1
2

in equation (6.16). The central row (11th) of the

estimated model error covariance matrix in observation space HQ̃HT is shown in Fig-

ure 6.5. The resulting calculation, using the sample data, of the term H
(
Q− Q̃

)
HT

(6.15) with Q̃ = 1
2
Q is shown in Figure 6.6 (left). Note that this matrix is of size

20 × 20 elements as it is in observation space and we are only observing 20 spatial

points. This estimated matrix H
(
Q− Q̃

)
HT (6.15) contains positive values along

the diagonal which correctly implies that a < 1. The fact that the estimated model

error covariance matrix is of the form (6.16), the rows in H
(
Q− Q̃

)
HT should be

multiples of the rows in HQ̃HT , we next examine this property. The other plot shown

in Figure 6.6 (right) shows the estimated entries of the term H
(
Q− Q̃

)
HT (6.15)

along the central row (11th). This row is comparable to the plot of the central row

of HQ̃HT in Figure 6.5, where the main structure is maintained, but the presence of

sample error prevents the plots from being exact multiples of each other.
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Figure 6.5: The Figure shows the central row (11th) of the estimated model error covariance

matrix in observation space HQ̃HT , where Q̃ is underestimated with Q̃ = 1
2Q.

Figure 6.6: The resulting estimation of the term H
(
Q− Q̃

)
HT (6.15) using Q̃ = 1

2Q (left).

Note that this matrix is of size 20×20 elements as it is in observation space and we are only observing
20 spatial points. The plot on the right shows the central row (11th) of the estimated entries of the

term H
(
Q− Q̃

)
HT (6.15).

We secondly overestimate the model error covariance matrix with a = 3
2

in equa-

tion (6.16). The central row (11th) of the estimated model error covariance matrix

in observation space HQ̃HT is shown in Figure 6.7. The resulting calculation, with

the sample data, of the term H
(
Q− Q̃

)
HT (6.15) with Q̃ = 3

2
Q is shown in Figure
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6.8 (left), which contains negative values along the diagonal, this correctly implies

that a > 1. The fact that the estimated model error covariance matrix is of the

form (6.16), the rows in H
(
Q− Q̃

)
HT should be multiples of the rows in HQ̃HT ,

we next examine this property. The other plot shown in Figure 6.8 (right) shows

the estimated entries of the term H
(
Q− Q̃

)
HT (6.15) along the central row (11th).

This row is comparable to the plot of the central row of HQ̃HT in Figure 6.7, where

the main structure is maintained, but the presence of sample error prevents the plots

from being exact multiples of each other. Note in this case the multiple factor would

be negative due to the overestimation of Q̃.

Figure 6.7: The central row (11th) of the estimated model error covariance matrix in observation

space HQ̃HT , where Q̃ is overestimated with Q̃ = 3
2Q.
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Figure 6.8: The resulting estimation of the term H
(
Q− Q̃

)
HT (6.15) using Q̃ = 3

2Q (left).

Note that this matrix is of size 20×20 elements as it is in observation space and we are only observing
20 spatial points. The plot on the right shows the central row (11th) of the estimated entries of the

term H
(
Q− Q̃

)
HT (6.15).

We have shown that this method can be used to imply whether the variances

are under or over estimated, when Q̃ is of the form described in equation (6.16).

However, even with a simple linear model and with a relatively large sample size of

10, 000 compared to the 400 entries estimated in the term H
(
Q− Q̃

)
HT (6.15), the

calculations are affected by sample error and therefore this method should be used

with caution.

If the correlation structure of a model error covariance matrix is not known, which

is often likely to be the case, it is not possible to refine an estimated model error

covariance matrix with use of the diagnostic tools, except when the inverse of the

linearised observation operator is available. This motivates work in the next chapter

to account for model error in 4DVar without the requirement for an explicit model

error covariance matrix.
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6.1.3 Inaccurately specified background error, observation

error and model error statistics

So far we have considered that both the true background error covariance matrix

B and the true observation error covariance matrix R are known. However if only

estimates B̃ and R̃ respectively, that contain inaccurate error statistics are available,

we need to consider the impact this has on the diagnostic equations. Any diagnostic

equation that takes the expectation of differences in observation space involving the

analysis is no longer valid. This is because the gain matrix in the analysis, equation

(6.3), now contains the estimated matrices B̃ and R̃ as opposed to the true matrices

B and R. Therefore, when the background error and observation error statistics have

been incorrectly specified, the diagnostic equations we derived to account for random

error (6.10), (6.12) and (6.13) are no longer valid.

The methods we have developed to refine an estimated model error covariance

matrix have included the use of equations (6.14) and (6.15). These equations do

not involve the model state analysis. However, caution is required with inaccurately

specified background error and observation error covariance matrices, as equation

(6.14) changes as follows,

E [dob
∗(dob

∗)T ]−
(
R̃ + HMeB̃MeTHT

)
≈ R + HMeBMeTHT + HQHT −

(
R̃ + HMeB̃MeTHT

)
,

= R− R̃ + HMe(B− B̃)MeTHT + HQHT , (6.18)

and equation (6.15) becomes,
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E [dob
∗(dob

∗)T ]−
(
R̃ + HMeB̃MeTHT + HQ̃HT

)
,

≈ R + HMeBMeTHT + HQHT −
(
R̃ + HMeB̃MeTHT + HQ̃HT

)
,

= R− R̃ + HMe(B− B̃)MeTHT + H
(
Q− Q̃

)
HT . (6.19)

Therefore equation (6.19) is no longer providing the difference between the true and

estimated model error covariance matrices in observation space, due to the inaccura-

cies in the background error and observation error statistics. The method to refine

an estimated model error covariance matrix where the correlation structure is known

but the variances are incorrectly specified, as described in Section 6.1.2, is only useful

if both B and R are correctly known.

We next discuss potential methods to obtain a sample of innovation vectors dob
∗

for the operational use of the diagnostic equation E [dob
∗(dob

∗)T ] (6.8).

6.1.4 Potential methods to produce a sample of innovation

vectors operationally

Operational centres, such at the Met Office and ECMWF, use ensemble prediction

systems that represent random error in the model forecast using stochastic physics

[105] [20] [23]. When outlining origins of model error in Section 3.1.2, we discussed

that the lack of model resolution leads to atmosphere and ocean models using param-

eterisations of physical processes that are on scales too small to be directly resolved

by the model. These physical processes can be parameterised inadequately or even

be absent entirely. Stochastic physics endeavours to account for this by introducing

slightly different realizations of the effect of these subgrid-scale physical processes [23].

The effect this has on the ensemble forecast is to increase the spread of the ensemble
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forecast members to account for the presence of random error in the model [105].

With this knowledge we present two suggestions to obtain a sample of innovation

vectors dob
∗ operationally:

1. The first suggestion we make is to produce a sample of innovation vectors dob
∗

where perturbed background vectors are at time ti−1 and perturbed observation

vectors are at time ti. An ensemble prediction system that represents random

error in the model forecast, should be used to evolve the sample of background

vectors from time ti−1 to time ti. A pictorial representation of this method is

shown in Figure 6.9 for a sample size of 4. The model error covariance matrix

Q corresponds to the model error vector ηi at time ti only. This would be a

consistent way of calculating the innovation vectors with the theory developed

in this thesis if the stochastic physics used represented the total effect of all

the random error present in the model. There may not be a sufficient number

of observations available at a single time to calculate a sample of innovation

vectors dob
∗. Therefore, we also suggest the following method.

2. If the model error covariance matrix is assumed to be constant over a short

time period, for example, one hour. Then the sample of observations are not

required to be at one time only, but instead within the specified period of time.

A pictorial representation of this method is shown in Figure 6.10 for a sample

size of 4. The innovation vectors dob
∗ can then be collated within the specified

time period to produce a sample. Again, each background vector should be

at the time-step prior to the observation vector with the ensemble prediction

system used to evolve the background vector to the observation time. A sample

of background vectors at these multiple times are assumed available from a

previous ensemble forecast. In Section 3.2 we outlined the use of this method

with hourly bins to produce operational innovation sample data (in areas where
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frequent observations were available) by ECMWF [2]. Therefore, we know that

this is an applicable method.

However, there is the consideration that should be noted that there are multiple

other possible sources of random model error, as described in Section 3.1.2, that this

stochastic physics method used to run an ensemble of forecasts may not account for.

Investigation into how to best obtain a sample of innovation vectors dob
∗ operationally

for use of the diagnostic equation E [dob
∗(dob

∗)T ] (6.8) is an area for further work, as

discussed in Section 9.2, of this thesis.

Figure 6.9: Pictorial representation of the first suggestion we make is to produce a sample of
innovation vectors dob

∗. The four green lines represent different realizations of the model, therefore
accounting for model error. The purple lines represent the innovation vectors.

We propose that it should be feasible to calculate the diagonal elements of the

right-hand side of the the diagnostic tool E [dob
∗(dob

∗)T ] (6.8) operationally. This

would involve use of the randomization technique to estimate the diagonal elements

of HMeBMeTHT [2], as conducted previously in experiments at ECMWF using the
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Figure 6.10: Pictorial representation of the second suggestion we make is to produce a sample of
innovation vectors dob

∗. The four green lines represent different realizations of the model, therefore
accounting for model error. The innovation vectors are computed at multiple times in a selected
time period, for example one hour. The purple lines represent the innovation vectors.

atmospheric forecasting model, as described in Section 3.2. We have focused our

attention on the methods to obtain a sample of innovation vectors dob
∗ for the opera-

tional use of the diagnostic equation E [dob
∗(dob

∗)T ] (6.8) as the other three diagnostic

equations (6.10), (6.12) and (6.13) require samples of analysis vectors. Therefore, we

advise that future work should first concentrate on how to operationally compute the

diagnostic equation E [dob
∗(dob

∗)T ] (6.8), then this methodology can be extended and

used with the diagnostic equations that require samples of analysis vectors (6.10),

(6.12) and (6.13).

Once a model error covariance matrix has passed the diagnostic quality checks, it

can be used for multiple purposes. These include: firstly to perturb members in an

ensemble forecast, secondly to identify problem areas in the model and subsequently

try to improve the model equations, or thirdly the model error covariance matrix can

then be used in the weak constraint formulation of 4DVar. We next derive consistency

diagnostics for the latter case, when weak constraint 4DVar is performed.
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6.2 Weak constraint 4DVar diagnostics

We described a weak constraint formulation of 4DVar in Section 2.2.4 of this thesis,

which estimates both the initial model state and the model error vectors at each time-

step throughout an assimilation window. We now wish to derive diagnostic tools for

this weak constraint 4DVar formulation. We assume a background model state xb is

available with the corresponding background error covariance matrix B. We consider

a vector of observations y, of the form (2.4), with a corresponding observation error

covariance matrix R. The nonlinear observation operator H takes the model state

from state space to observation space. An erroneous model, of the form (6.1), is used

to take the model state from the background time t0 to observation time t1. The

random error in the model at time t1 is the vector η with the corresponding model

error covariance matrix Q. Using incremental weak constraint 4DVar [118] we can

obtain explicit simultaneous equations for the analysis of the model state increment

and the model error increment, applying the tangent linear hypothesis to both the

model equations and observation operator. The model state analysis for the one

time-step case after one ‘outer loop’ is as follows [118],

xa0 = xb + Kdob
η, (6.20)

where the gain matrix K = BMeTHT (HMeBMeTHT + R)−1 and the innovation

vector,

dob
η = y1 −H(Me(xb) + ηa), (6.21)
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involves the analysis of the model error ηa. The corresponding analysis of the model

error is given as follows [118],

ηa = Kηdob
w, (6.22)

where the gain matrix Kη = QHT (R + HQHT )−1 and the innovation vector,

dob
w = y1 −H(Me(xa0)) (6.23)

involves the analysis of the model state xa0 (6.20). In order to obtain an accurate

analysis of both the model state and model error, the values specified in the model

error covariance matrix Q are required to be accurate. We next develop diagnos-

tic tools for use as quality checks for the specification of an estimated model error

covariance matrix when using the weak constraint formulation of 4DVar.

We take the statistical expectation of the product of innovation vectors (6.21) as

follows,

E [dob
η(dob

η)T ] = E [(y1 −H(Me(xb) + ηa))(y1 −H(Me(xb)) + ηa)T ],

≈ E [(εob −HMeεb −Hεη)((εob −HMeεb −Hεη)
T ], (6.24)

where εη = ηa−η is the error in the analysis of the model error vector, with true model

error vector η. The derivation of (6.24) assumes the tangent linear hypothesis holds,

for both the nonlinear observation operator H and nonlinear system equations Me.

Note that the equation (6.24) is exactly equal when both the observation operator and
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model equations are of a linear nature. For the expectation (6.24) to be evaluated,

we require the statistics of εη. We firstly rearrange the equation for the model error

analysis (6.22) so that it is independent of the model state analysis (6.20),

ηa = Kηdob
w = Kη(y1 −H(Me(xa0))),

= Kη(y1 −H(Me(xb + Kdob
η))),

≈ Kη(y1 −H(Me(xb))−HMeKdob
η),

= Kη(y1 −H(Me(xb)))−KηHMeK(y1 −H(Me(xb) + ηa)),

≈ Kη(I−HMeK)(y1 −H(Me(xb))) + KηHMeKHηa, (6.25)

assuming the tangent linear hypothesis holds, for both the nonlinear observation

operator H and nonlinear system equations Me for small perturbations around the

background model state. With simple rearrangement of equation (6.25), we present

the analysis of the model error as follows,

ηa ≈ L(y1 −H(Me(xb))). (6.26)

where L = (I−KηHMeKH)−1Kη(I−HMeK). We next take the expectation of the

error in the model error analysis as follows,
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E [εη] = < ηa − η >=< ηa >

≈ < L(y1 −H(Me(xb))) >,

≈ L < εob −HMeεb + Hη >

= 0, (6.27)

assuming a zero mean for the errors in the background, errors in the observations

and random model error. Next we calculate the covariance of the errors in the model

error analysis,

D = E [εη(εη)
T ],

≈ E [(L(y1 −H(Me(xb)))− η)(L(y1 −H(Me(xb)))− η)T ],

≈ E [(L(εob −HMeεb + Hη)− η)(L(εob −HMeεb + Hη)− η)T ],

= E [(Lεob − LHMeεb + (LH− I)η)(Lεob − LHMeεb + (LH− I)η)T ],

= LRLT + LHMeBMeTHTLT + (LH− I)Q(LH− I)T ,

= L(R + HMeBMeTHT )LT + (LH− I)Q(LH− I)T , (6.28)

assuming the background error, observation error and model error are all uncorrelated

with each other. Having derived the error statistics of the term εη, we next continue

to derive the consistency diagnostic (6.24) as follows,
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E [dob
η(dob

η)T ] ≈ E [(εob −HMeεb −Hεη)((εob −HMeεb −Hεη)
T ],

= R + HMeBMeTHT + HDHT

− E [εob(Hεη)
T ] + E [HMeεb(Hεη)

T ]

− E [Hεη(εob)
T ] + E [Hεη(HMeεb)

T ],

= R + HMeBMeTHT + HDHT

− RLTHT −HMeBMeTHTLTHT

− HLR−HLHMeBMeTHT , (6.29)

using εη ≈ Lεob − LHMeεb + (LH − I)η and where the covariance matrix D is

as defined by equation (6.28). When the erroneous model operator Me is used in

strong constraint 4DVar, the corresponding diagnostic equation is defined by (6.8).

Comparing this strong constraint 4DVar diagnostic equation (6.8) with the weak

constraint 4DVar diagnostic equation we have just derived (6.29) we observe that

both diagnostic equations share the same first two terms, however the third term

in (6.8) is HQHT , compared to the third term in (6.29) of HDHT , where D is the

covariance of the errors in the model error analysis. This is because the model error

is not accounted for in the strong constraint 4DVar data assimilation process, but

the model error is estimated in the weak constraint formulation of 4DVar. The weak

constraint 4DVar diagnostic equation (6.29) also has an additional four terms, when

compared to the strong constraint 4DVar diagnostic equation (6.8), which are due

to the correlations the error in the model error analysis has with the error in the

background model state and error in the observation vector. This equation (6.29)

provides a consistency check for the model error covariance matrix with both the

background error and observation error covariance matrices in observation space.
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This diagnostic equation (6.29) involves the analysis of the model error and so also

implicitly depends on the analysis of the model state, unlike the corresponding strong

constraint 4DVar diagnostic equation (6.8).

We aim to derive the corresponding four diagnostic tools for weak constraint

4DVar, to those presented in the last section for strong constraint 4DVar (6.8), (6.10),

(6.12) and (6.13). Therefore, next we define the following differences in observation

space,

dab
η = H(Me(xa0))−H(Me(xb)) ≈ HMeKdob

η, (6.30)

doa
η = y1 −H(Me(xa0) + ηa) ≈ (I−HMeK)dob

η, (6.31)

where the analysis of the model state is as described by equation (6.20). The ap-

proximations in equations (6.30) and (6.31) assume the tangent linear hypothesis

holds, for both the nonlinear observation operator H and nonlinear system equations

Me for small perturbations around the background model state. We derive the sec-

ond of our weak constraint consistency diagnostics by taking the following statistical

expectation,
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E [dab
η(dob

η)T ] ≈ HMeKE [dob
η(dob

η)T ], (6.32)

≈ HMeBMeTHT (HMeBMeTHT + R)−1

×(R + HMeBMeTHT + HDHT

− RLTHT −HMeBMeTHTLTHT

− HLR−HLHMeBMeTHT ),

= HMeBMeTHT

+ HMeBMeTHT (HMeBMeTHT + R)−1HDHT

− HMeBMeTHT (HMeBMeTHT + R)−1

×(RLTHT + HMeBMeTHTLTHT

+HLR + HLHMeBMeTHT ), (6.33)

using (6.29). In Section 6.1 we derived the corresponding diagnostic equation (6.10)

for when the erroneous model operator Me is used within strong constraint 4DVar.

Comparing (6.33) with (6.10) we identify the presence of the covariance of the errors in

the model error analysis D in the place of the model error covariance matrix Q. This

is because in this formulation of weak constraint 4DVar the model error is estimated

with error covariance D, as opposed to when using strong constraint 4DVar where the

model error, with covariance matrix Q, is not estimated. Further to this are another

four terms present in the weak constraint 4DVar diagnostic (6.33), as opposed to the

strong constraint 4DVar diagnostic (6.10), due to the fact the model error analysis is

dependent on both the error statistics of the background and the error statistics of

the observations. We next derive the third of the weak constraint 4DVar diagnostics

as follows,
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E [doa
η(dob

η)T ] ≈ (I−HMeK)E [dob
η(dob

η)T ], (6.34)

≈ (I−HMeBMeTHT (HMeBMeTHT + R)−1)

×(R + HMeBMeTHT + HDHT

− RLTHT −HMeBMeTHTLTHT

− HLR−HLHMeBMeTHT ), (6.35)

using (6.29). Equation (6.34) enables us to note that the summation of this diagnostic

E [doa
η(dob

η)T ] and the second of the weak constraint diagnostics E [dab
η(dob

η)T ] (6.33)

add to make the first of the weak constraint diagnostics E [dob
η(dob

η)T ] (6.29). This

property is shared with the strong constraint 4DVar diagnostics as can be seen in

Section 6.1. We finally derive the fourth weak constraint 4DVar diagnostic by taking

the following statistical expectation of the differences in observation space,
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E [dab
η(doa

η)T ] ≈ HMeKE [(dob
η)(dob

η)T ](I−HMeK)T ,

≈ HMeBMeTHT (HMeBMeTHT + R)−1

×(R + HMeBMeTHT + HDHT

− RLTHT −HMeBMeTHTLTHT

− HLR−HLHMeBMeTHT )

×(I− (HMeBMeTHT + R)−1HMeBMeTHT ),

= HMeBMeTHT (HMeBMeTHT + R)−1

×(R + HMeBMeTHT + HDHT

− RLTHT −HMeBMeTHTLTHT

− HLR−HLHMeBMeTHT )

×(HMeBMeTHT + R)−1R, (6.36)

using (6.29). In Section 6.1 we derived the corresponding diagnostic equation (6.13)

for the case where the erroneous model operator Me is used in strong constraint

4DVar. Comparing (6.36) with (6.13) we identify the presence of D in the place of Q,

which is because the model error is estimated in this formulation of weak constraint

4DVar, but is not estimated in strong constraint 4DVar. Further to this there are

four extra terms present in the weak constraint 4DVar diagnostic (6.33), as opposed

to the strong constraint 4DVar diagnostic (6.13), that are present due to the fact

the error in the analysis of the model error is correlated with both the error in the

background model state and error in the observations.

Obviously, as with the strong constraint 4DVar diagnostics that account for model

error, the weak constraint 4DVar diagnostics (6.29), (6.33), (6.35) and (6.36) only hold
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when B, R and Q are specified accurately. We next detail when we would advise use

of the weak constraint 4DVar diagnostics and demonstrate use of these diagnostics as

quality checks for an estimated model error covariance matrix with a simple erroneous

model.

6.2.1 Verifying an estimated model error covariance matrix

As we used the same erroneous model (6.1) over a single time-step in the derivation of

both the strong and weak constraint diagnostic equations, the model error covariance

matrix Q present in the strong constraint 4DVar diagnostics (6.8), (6.10), (6.12) and

(6.13) is of course the same Q present in the weak constraint 4DVar diagnostics

(6.29), (6.33), (6.35) and (6.36). The strong constraint 4DVar diagnostics are also

easier to compute than the weak constraint 4DVar diagnostics. Therefore, we need

to explain when we would advise the weak constraint 4DVar diagnostics to be used.

When the data assimilation method in operation for a particular system is the weak

constraint formulation of 4DVar, the weak constraint 4DVar diagnostic equations

(6.29), (6.33), (6.35) and (6.36) not only provide quality checks for the consistency of

an estimated model error covariance matrix Q̃ with B and R (in observation space),

but also quality checks for the performance of the weak constraint 4DVar scheme. The

innovation vectors dob
η (6.21), dab

η (6.30) and doa
η (6.31) are used in the weak constraint

4DVar diagnostic equations (6.29), (6.33), (6.35) and (6.36) and are dependent on

both the analysis of the model state xa0 and the analysis of the model error ηa.

Therefore, the weak constraint 4DVar diagnostics provide quality checks on whether

the particular implementation of the weak constraint 4DVar method is successfully

minimising the cost function to obtain the optimal estimate of the model state analysis

and model error analysis. The diagnostics also provide quality checks on other things

like the appropriateness of the tangent linear hypothesis, and the ‘Gaussian-ness’ of
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the data. For example, the minimisation of the weak constraint 4DVar cost function

is performed using a minimisation algorithm which requires specification of a stopping

criteria to determine how many iterations the minimisation algorithm will perform.

If this stopping criteria does not allow enough iterations to be performed for the

minimum of the weak constraint cost function to be reached, the optimal analysis

of both the model state and model error will not be obtained. In this case, even

with accurately specified error covariance matrices B, R and Q, the weak constraint

4DVar diagnostics will not hold and this indicates that the weak constraint 4DVar

implementation is not optimal.

When the 4DVar formulation in operation is the weak formulation, the analysis

from this formulation cannot be used in the strong constraint 4DVar diagnostics.

Therefore, if the diagnostic required to be calculated involves the analysis, this is

another reason why the weak constraint 4DVar diagnostics are of use.

We now demonstrate the use of the weak constraint 4DVar diagnostics (6.29),

(6.33), (6.35) and (6.36) to provide quality checks for the specification of an estimated

model error covariance matrix Q̃. We use the experimental set up as defined at the

start of Section 6.1.1 where our erroneous model (6.1) is the time-stepping solution

of the linear advection equation over the spatial domain x ∈ [0, 10), with the spatial

step ∆x = 0.1 and time-step ∆t = 0.1, as described in Section 5.1.1. The true initial

conditions are defined, as in Section 5.1, with the exponential function f . We run the

model over one time-step from time t0 to time t1. The true model state at time t1

differs from the erroneous model state by random error η ∼ N (0,Q), as defined by

equation (6.2). The model error covariance matrix Q is defined with use of the SOAR

function, with correlation length scale L = 0.1 and variance σq
2 = 0.01. We also use

the SOAR function, with correlation length scale L = 0.4, to assign the correlations

in the background error covariance matrix B and set the variance σb
2 = 0.04. We

assume we have direct observations y (linear observation operator H = I) at time
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t1 of all spatial points, with diagonal observation error covariance matrix R = σob
2I

where σob
2 = 0.04.

To evaluate the left-hand side of the weak constraint 4DVar consistency diagnostics

(6.29), (6.33), (6.35) and (6.36), a sample of innovation vectors dob
η, dab

η and doa
η are

required. We repeat the following steps 1, 000 times to produce a sample size of 1, 000

background vectors, model error vectors, observation vectors and weak constraint

4DVar model state analysis and model error analysis vectors:

1. Produce a background vector xb by adding noise to the true initial state xt0

using the statistics specified in B.

2. Produce a random model error vector η using the statistics specified in the

model error covariance matrix Q.

3. Produce a vector of observations y by firstly evaluating the true model state

vector xt1 with equation (6.2) and subsequently adding noise in proportion to

the error statistics specified in R.

4. Conduct weak constraint 4DVar to produce a corresponding model state analysis

and model error analysis.

We evaluate the left-hand side (LHS) of the weak constraint 4DVar diagnostic equa-

tions (6.29), (6.33), (6.35) and (6.36) using this sample data and then subsequently

compute and subtract the right-hand side (RHS) of the diagnostic equations (6.29),

(6.33), (6.35) and (6.36) respectively. The RHS weak constraint 4DVar diagnostic

calculations are conducted with the correct error covariance matrices B, R and Q as

just defined. Therefore our estimated model error covariance matrix Q̃ is equal to

the true model error covariance matrix Q. The LHS expectations have captured the

same structure as the calculations on the RHS, leaving the structure of the differ-

ence between the LHS and RHS calculations to be randomly distributed (not shown).

125



Diagnostic equation RMSE

E [dob
η(dob

η)T ] 0.0023
E [dab

η(dob
η)T ] 0.0015

E [doa
η(dob

η)T ] 0.0015
E [dab

η(doa
η)T ] 0.0010

Table 6.1: The RMSE of the matrix elements between the left-hand side and right-
hand side of each of the four weak constraint 4DVar diagnostics.

Therefore, we can state that the weak constraint 4DVar diagnostics imply the model

error covariance matrix is consistent with both the background error covariance ma-

trix and observation error covariance matrix in observation space. We show the

resulting RMSE of the matrix elements between the LHS and RHS of each of the

four weak constraint 4DVar diagnostics in Table 6.1. These RMSEs are of two orders

of magnitude less than the specified error standard deviations in B, Ri and Qi and

are non-zero due to sample error. Note that the larger the sample size, the smaller

sample error. Here we are using a relatively small sample size of 1, 000 in comparison

to the 10, 000 entries we are estimating.

We have shown how the weak constraint 4DVar diagnostics can be used to verify

the consistency of an estimated model error covariance matrix Q̃ with both back-

ground error and observation error covariance matrices in observation space. Further

work, described in Section 9.2, includes investigation into whether the right-hand side

of the weak constraint 4DVar diagnostics equations (6.29), (6.33), (6.35), (6.36) can

be simplified and also includes investigation into whether the weak constraint 4DVar

diagnostics could be used to help refine an estimated model error covariance matrix.
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6.3 Summary

In this chapter we have developed diagnostic tools that can be used as quality checks

to verify the consistency of an estimated model error covariance matrix with both

background error and observation error covariance matrices in observation space. We

firstly derived strong constraint 4DVar diagnostic equations that account for random

error present in a model. We subsequently described how strong constraint 4DVar

diagnostic tools have the potential to be used to refine an estimated model error

covariance matrix if it is of a certain form. Finally, we developed diagnostic equations

specifically for the weak constraint formulation of 4DVar. We next investigate how

the strong constraint 4DVar cost function can be amended to account for error in a

model, with the aim of improving the accuracy of the model state analysis, without

the need to explicitly specify the model error statistics.
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Chapter 7

Improving analysis accuracy

In this chapter we consider the use of erroneous models in strong constraint 4DVar.

In Section 7.1 we derive an expression for a covariance matrix which includes both

observation error statistics and model error statistics and define this as the ‘combined

error’ covariance matrix. The expression for this combined error covariance matrix in-

cludes the specification of model error covariance matrices, which are often unknown.

We develop a method to estimate the combined error covariance matrix in Section

7.2, which does not require explicit specification of model error statistics. Subse-

quently in Section 7.3 we show when this combined error covariance matrix replaces

the observation error covariance matrix in the strong constraint 4DVar cost function,

a statistically better estimate of the initial state is obtained. Finally, in Sections 7.4

and 7.5 we demonstrate, with use of idealized numerical models, how use of estimated

combined error covariance matrices to replace observation error covariance matrices

in the strong constraint 4DVar cost function can improve the analysis accuracy.
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7.1 An alternative 4DVar approach

The theory derived in this chapter is formulated with models of a linear nature. We

use linear model matrices in this chapter to clearly present the methodology and to

clearly understand the implications on the results. This theory will be valid for the

inner loop of incremental 4DVar. Further to this, in Section 7.5 we show how methods

developed in this chapter with linear model matrices can be successfully applied with

erroneous models of a nonlinear nature.

The linear strong constraint 4DVar cost function (2.19) can be split into the

sum of the two components Jb and Job. The term Jb involves the comparison of

the initial model state with the background and hence does not include any model

evolution. Whereas the term Job involves the comparison of observations with the

model evolved state. In Section 4.4 we discussed methods developed to account for

the improper comparison between observations and the model state in Job due to

representativity error [56] [79]. Our work aims to account for the effect model error

has on the comparison between observations and the model evolved initial state in

Job and hence account for the effect model error has on the analysis.

Let us consider the situation where the perfect model dynamics are unknown and

linear erroneous model matrices Me
{i−1}→i are used to describe the model dynamics

from time ti−1 to time ti. The true model state is acquired as follows,

xti = Me
{i−1}→ix

t
i−1 + ηi i = 1, 2, ... (7.1)

where the additive model error vector ηi ∼ N (0,Qi). Note this is as previously

described with equation (2.24) in Section 2.2.4, but here we consider dynamics purely

of a linear nature. The linearity of the model allows us to define the operator Ĥ∗ as
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follows,

Ĥ∗ ∈ R(N+1)×m =



H0

H1M
e
0→1

...

...

...

HNMe
0→N


.

When erroneous model matrices of the form Me
{i−1}→i are used to be evolve the

model state, the operator Ĥ which contains the perfect model dynamics is replaced

with Ĥ∗ containing the erroneous model matrices in the 4DVar cost function (2.19).

Let us define ε̂ob = (εob0
T , εob1

T , · · · , εobNT )T which contains the observation error

vectors εobi at each of the N + 1 observation times ti. Let us also define the ‘Job
innovation’ as the difference between the vector of observations ŷ and the true initial

model state xt0 evolved with a model to the respective observation times ti and subse-

quently mapped to observation space. Therefore, with perfect linear model matrices

the ‘Job innovation’ is ŷ − Ĥxt0, whereas with erroneous linear model matrices the

‘Job innovation’ is ŷ− Ĥ∗xt0. The error to be accounted for in the comparison of the

observations with the model evolved initial state in the strong constraint 4DVar cost

function (2.19) is evaluated by computing the error in the ‘Job innovation’. When

a perfect model is used, the error in the ‘Job innovation’ is simply the error in the

observations,

ε̂ob = ŷ − Ĥxt0, (7.2)

where ε̂ob ∼ N (0, R̂). The operator Ĥ takes the initial model state to the respective

observation time using the perfect linear model matrices M{i−1}→i and subsequently
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maps to observation space, as previously defined in Section 2.2.2.

Let us recap the objective of strong constraint 4DVar, which is to best estimate

the true model state initial conditions xt0. With perfect model dynamics, for the

expectation of the minimum of the cost function (2.19) to be at the true initial state,

the specification of both the background error covariance matrix B and observation

error covariance matrix R̂ are required to accurately represent the errors in the back-

ground model state and the ‘Job innovation’ respectively. With an erroneous model,

the error in the ‘Job innovation’ is no longer ε̂ob (7.2) and we redefine as follows,

ε̂∗ob = ŷ − Ĥ∗xt0. (7.3)

We next seek to obtain the statistics of this error term ε̂∗ob.

7.1.1 Combined model error and observation error statistics

Let us subtract the equation defining the observation error ε̂ob (7.2) from the error

term ε̂∗ob (7.3) and rearrange,

ε̂∗ob = ε̂ob + (Ĥ− Ĥ∗)xt0. (7.4)

Simple rearrangement of equation (7.1) allows us to deduce an expression for the

difference between the true state at time ti and the true initial conditions evolved

with the erroneous model matrices to time ti ,
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xti −Me
0→ix

t
0 =

i∑
j=1

Me
j→iηj. (7.5)

Using equations (7.4) and (7.5) the error vector ε∗obi at each time ti can now be

evaluated as,

ε∗obi = εobi + Hi(xi
t −Me

0→ix
t
0),

= εobi + Hi

i∑
j=1

Me
j→iηj. (7.6)

Equation (7.6) explicitly states that the error in the difference between the observa-

tions and the model state initial conditions evolved with an erroneous model, is a

combination of observation error and model error.

We proceed by deriving the mean of this combined error term ε∗obi (7.6) by taking

the statistical expectation,

E [ε∗obi] = E [εobi + Hi

i∑
j=1

Me
j→iηj],

= E [εobi] + Hi

i∑
j=1

Me
j→iE [ηj] = 0, (7.7)

using the assumptions that both the observation errors and model errors are dis-

tributed with a zero mean. Next we evaluate the covariance of the combined error

terms at observation times ti and tk respectively by taking the following statistical

expectation,
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R∗(i,k) = E [ε∗obi(ε
∗
obk)

T ],

= E [(εobi + Hi

i∑
j=1

Me
j→iηj)(εobk + Hk

k∑
j=1

Me
j→kηj)

T ],

= E [εobi(εobk)
T ] + HiE [

i∑
j=1

Me
j→iηj(

k∑
j=1

Me
j→kηj)

T ]Hk
T , (7.8)

using equation (7.6) and assuming that the model errors are of a random nature and

are uncorrelated to the errors in the observations. Evaluating the expectations in

equation (7.8) leads to,

R∗(i,k) =



R0 for i=k=0,

Ri + Hi

[
min(i,k)∑
j=1

Me
j→iQjM

e
j→k

T

]
Hk

T for i=k 6= 0,

Hi

[
min(i,k)∑
j=1

Me
j→iQjM

e
j→k

T

]
Hk

T otherwise,

(7.9)

where the model error vectors ηi are assumed to be of a random nature. We note that

no model evolution is required in the comparison of observations and the model state

at time t0, hence the observation error covariance matrix R0 fully describes the error

statistics in this comparison at time t0. We now investigate the composition of the

combined error covariance terms (7.9) and discuss the structure of the full combined

error covariance matrix.

Let Q∗(i,k) be the terms in R∗(i,k) (7.9) that are present due to the errors in the

model,

133



Q∗(i,k) = Hi

min(i,k)∑
j=1

Me
j→iQjM

e
j→k

T

Hk
T . (7.10)

We can then present the full combined model error and observation error covariance

matrix R̂∗, containing the covariance sub matrices R∗(i,k) (7.9) as follows,

R̂∗ =



R0 0 · · · · · · 0

0 R1 + Q∗(1,1) Q∗(1,2) · · · Q∗(1,N)

... Q∗(2,1) R2 + Q∗(2,2)
...

...
...

... · · · . . .
...

0 Q∗(N,1) · · · · · · RN + Q∗(N,N)


. (7.11)

To recap, when a perfect model is used in the strong constraint 4DVar cost function

(2.19), the error to be accounted for in the ‘Job innovation’ is ε̂ob ∼ N (0, R̂). Whereas

when an erroneous model is used in the strong constraint 4DVar cost function (2.19),

the error to be accounted for in the ‘Job innovation’ is ε̂∗ob ∼ N (0, R̂∗), with R̂∗ given

by (7.11).

The effect the model error has on the covariance matrix for the error in the ‘Job
innovation’ is:

1. An additional term Q∗(i,i), as described by equation (7.10) with i = k, on

the block diagonal sub matrices R∗(i,i). From (7.10) we see that this is an

accumulation of the model error over the assimilation time window.

2. The formation of off diagonal block covariance sub matrices described by Q∗(i,k),

as described by equation (7.10) with i 6= k. This is the presence of time corre-

lations caused by the error in the model.
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We now explain the presence of the additional term Q∗(i,i) on the block diag-

onal sub matrices R∗(i,i) described by point 1. When an erroneous model is used

within strong constraint 4DVar, observations yi are compared to the model state

Me
i−1→iM

e
i−2→i−1 . . . Me

1→2M
e
0→1x0 (mapped to observation space). With each

further time-step in the assimilation window, a further evolution of the model state

initial conditions is required, which requires multiplication with yet another erroneous

model matrix. Each erroneous model matrix has a corresponding vector of model er-

ror and a model error covariance matrix. The uncertainty at each model time-step

is accumulated. This uncertainty in the comparison of the observations and model

state (in observation space) is represented by Q∗(i,i).

We now detail the presence of off diagonal block covariance sub matrices Q∗(i,k)

(7.10), where i 6= k, as stated in point 2. When observations yi and yk are available

at distinct times ti and tk in an assimilation window, these are compared to the initial

model state evolved to times ti and tk respectively. These comparisons at the distinct

times ti and tk, have correlations due to the errors in the model. Although the model

error vectors ηi as defined in (7.1) are independent at each time-step, they affect the

evolution of the model state at the subsequent times. For example, the values of x2

and x3 have both been affected by the error in the model η1 ∼ N (0,Q1) and η2

∼ N (0,Q2) at times t1 and t2. The summation in Q∗(i,k) is taken up to the minimum

of the two times ti and tk. The reason for this is that the values of model states at

times ti and tk are both dependent on the same model error vectors up to this time

(min(ti,tk)).

We propose that the use of R̂∗ (7.11), as opposed to R̂, in the cost function (2.19),

will statistically improve the analysis accuracy when random error is present in the

model. We next show how use of this derived combined error covariance matrix R̂∗

(7.11) in the strong constraint 4DVar cost function (2.19) allows the strong constraint

4DVar diagnostics (2.34)-(2.37) to hold, even in the presence of model error.
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7.1.2 Consistency with diagnostics

We propose the following theorem.

Theorem 7.1.1. When an erroneous linear model matrix Me, with corresponding

additive model error vector η1 ∼ N (0,Q), is used within the strong constraint 4DVar

cost function with observations y1 ∼ N (0,R) present at time t1, the use of R∗ =

R + HQHT to replace R, where H is a linear observation operator, ensures that the

strong constraint 4DVar diagnostics (2.34)-(2.37) are upheld.

Proof. We consider a background model state xb and corresponding background error

covariance matrix B of the form (2.5). We assume the background errors, observation

errors and model errors are all uncorrelated. This situation is as described in Section

2.3.1, however with an erroneous model matrix Me replacing the perfect model matrix

M. Using the formulae we derived earlier in this chapter (7.11) we define the combined

model error and observation error covariance matrix R∗ = R + HQHT . We replace

R in the strong constraint 4DVar cost function (2.19) with R∗ and minimise with

respect to the initial state to obtain the following analysis,

xa0
∗ = xb + K∗dob

∗, (7.12)

where the gain matrix K∗ = BMeTHT (HMeBMeTHT + R∗)−1 and the innovation

vector dob
∗ = y1 − HMexb. Let us define the following differences in observation

space,
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dab
∗ = HMexa0

∗ −HMexb,

doa
∗ = y1 −HMexa0

∗. (7.13)

The first of these compares the analysis with the background, both of which are

evolved to time t1 with the erroneous model and subsequently mapped to observation

space. The second of these compares the vector of observations at time t1 with the

analysis evolved to time t1 with the erroneous model and subsequently mapped to

observation space.

We now derive the first of the four diagnostics by taking the statistical expectation

of the product of innovation vectors,

E [dob
∗(dob

∗)T ] = E [(y1 −HMexb)(y1 −HMexb)T ],

= E [(y1 −HMext0 + HMext0 −HMexb)

(y1 −HMext0 + HMext0 −HMexb)T ],

= E [(ε∗ob1 −HMeεb)(ε
∗
ob1 −HMeεb)

T ],

= R∗ + HMeBMeTHT , (7.14)

using the definitions of the background error (2.5) and combined model error and

observation error (7.3). This result (7.14) can also be obtained by substituting R +

HQHT = R∗ into the diagnostic equation (6.8), as this diagnostic equation does not

involve use of the analysis. Next the second of the four diagnostics is derived by

taking the statistical expectation of the product of the differences dab
∗ and dob

∗,
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E [dab
∗(dob

∗)T ] = E [(HMexa0
∗ −HMexb)(dob

∗)T ],

= E [(HMe(xb + K∗dob
∗)−HMexb)(dob

∗)T ],

= HMeK∗E [(dob
∗)(dob

∗)T ],

= HMeK∗(R∗ + HMeBMeTHT ),

= HMeB(Me)THT (HMeB(Me)THT + R∗)−1

(R∗ + HMeBMeTHT ),

= HMeB(Me)THT , (7.15)

using the analysis (7.12) and the previous diagnostic result (7.14). The third of the

four diagnostics is derived by taking the statistical expectation of the product of the

differences doa
∗ and dob

∗,

E [doa
∗(dob

∗)T ] = E [(y1 −HMexa0)(d
o
b
∗)T ],

= E [(y1 −HMe(xb + K∗dob
∗))(dob

∗)T ],

= E [(y1 −HMext0 + HMext0 −HMexb −HMeK∗dob
∗)(dob

∗)T ],

= E [(ε∗ob1 −HMeεb −HMeK∗dob
∗)(dob

∗)T ],

= E [ε∗ob1(ε
∗
ob1 −HMeεb)

T −HMeεb(ε
∗
ob1 −HMeεb)

T

− HMeK∗dob
∗(dob

∗)T ],

= R∗ + HMeB(Me)THT

− HMeB(Me)THT (HMeB(Me)THT + R∗)−1

(R∗ + HMeBMeTHT ),

= R∗, (7.16)
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using the analysis (7.12) and the diagnostic result (7.14). Lastly, the fourth diagnostic

is derived by taking the statistical expectations of the product of the differences dab
∗

and doa
∗,

E [dab
∗(doa

∗)T ] = E [(HMexa0
∗ −HMexb)(doa

∗)T ],

= E [HMeK∗dob
∗(doa

∗)T ],

= HMeK∗E [dob
∗(doa

∗)T ],

= HMeK∗
(
E [doa

∗(dob
∗)T ]

)T
,

= HMeK∗(R∗)T ,

= HMeB(Me)THT (HMeB(Me)THT + R∗)−1R∗, (7.17)

using workings from the derivation of (7.15) and the diagnostic result (7.16). Note

that the three diagnostic equations we just derived (7.15)-(7.17) differ from the cor-

responding diagnostic equations (6.10), (6.12) and (6.13) derived in Chapter 6 that

account for the presence of random model error. This is because the diagnostic equa-

tions (6.10), (6.12) and (6.13) use the analysis produced from the unamended 4DVar

cost function, whereas (7.15)-(7.17) use the analysis produced with R∗ in the 4DVar

cost function.

We have now proved that, when error is present in the model, use of R∗ = R + HQHT ,

to replace R in the strong constraint 4DVar cost function, ensures all four of the strong

constraint 4DVar diagnostics (2.34)-(2.37) are upheld.

For use of R̂∗ (7.11) in the strong constraint 4DVar cost function, specification of

model error covariance matrices Qi are required, at each time ti in the assimilation

window up to the last observation time. We described the difficulties that operational

NWP centres have in specifying model error covariance matrices Qi for atmosphere

139



and ocean models in Section 4.1. Therefore, we now aim to derive a method of

evaluating the entries in the combined error covariance matrix R̂∗ without having to

explicitly specify the model error covariance matrices Qi themselves.

7.2 Estimation of the combined model error and

observation error covariance matrix

In this section we develop a method to estimate the combined model error and obser-

vation error matrix R̂∗. This method does not require explicit specification of model

error covariance matrices.

7.2.1 Diagnostic tools for estimation of the combined error

covariance matrix

Let us derive the first of the four diagnostics (7.14) for the case where observations

are available at multiple times through an assimilation window. This derivation will

use erroneous model matrices of the form Me
{i−1}→i, as described in (7.1), in the

strong constraint 4DVar cost function (2.19).

The definitions of observation error (2.4) and background error (2.5) along with a

simple rearrangement of equation (7.1) enables the innovation involving the erroneous

model, at each time ti, to be defined as follows,

(dob
∗)i = yi −HiM

e
0→ix

b = εobi −HiM
e
0→iεb + Hi

i∑
j=1

Me
j→iηj. (7.18)

We calculate the expectation of the following innovation product,
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E [(dob
∗)i(d

o
b
∗)k

T ] = < (yi −HiM
e
0→ix

b)(yk −HkM
e
0→kx

b)T >,

= < (εobi −HiM
e
0→iεb + Hi

i∑
j=1

Me
j→iηj)

(εobk −HkM
e
0→kεb + Hk

k∑
j=1

Me
j→kηj)

T >,

(7.19)

using (7.18). The definition of R∗(i,k) as defined in (7.8) allows us to deduce,

E [(dob
∗)i(d

o
b
∗)k

T ] = R∗(i,k) + HiM
e
0→iBMe

0→k
THk

T . (7.20)

Assembling the entries at all observation times into the vector d̂ob
∗ we have,

E [d̂ob
∗(d̂ob

∗)T ] = R̂∗ + Ĥ∗BĤ∗
T
, (7.21)

where R̂∗ is defined by equation (7.11). With simple rearrangement of equation

(7.21), we derive an expression for the estimation of the combined error matrix,

R̃∗ = E [d̂ob
∗(d̂ob

∗)T ]− Ĥ∗BĤ∗
T
. (7.22)

Let us consider operational NWP centres, modelling the conditions of the Earth’s at-

mosphere and ocean, where there is only one true state at each point in time. In order
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to use equation (7.22) to estimate the combined statistics for an operational NWP

system, a sample of background model states, model error vectors and observations

are required. In Section 6.1.4 we outlined potential methods for obtaining samples

of innovations operationally and stated that investigating the best method to do so

is an area of suggested further work, as discussed in Section 9.2 of this thesis. In

Section 3.2 we described how the randomization technique can be used to estimate

the matrix HMBMTHT . This method allows the diagonal elements of HMBMTHT

to be evaluated for operational use [2]. This same methodology can be extended and

applied to evaluate the diagonal elements of Ĥ∗BĤ∗
T

required in (7.22). Therefore

use of equation (7.22) is potentially operationally feasible in areas of high observa-

tional frequency, to estimate diagonal elements of the combined error matrix. Next

we demonstrate the use of equation (7.22) to estimate combined error statistics with

use of an erroneous numerical model.

7.2.2 Application of developed method to estimate

combined error statistics

We take our erroneous linear model to be the time-stepping solution of the linear

advection equation over the spatial domain x ∈ [0, 10), as described in Section 5.1.1,

with the spatial step ∆x = 0.1 and time-step ∆t = 0.1. The true model state at

each time ti, differs from the erroneous model state by random error ηi, as defined by

equation (7.1). We define the structure of the model error covariance matrix Qi to be

diagonal with variance σq
2 = 0.01 at each model time-step. We have a background

model state xb and corresponding background error covariance matrix B. We use the

SOAR function, as described in Section 5.3.1 with correlation length scale L = 0.4,

to assign the correlations in the background error covariance matrix B and set the

corresponding background error scalar variance σb
2 = 0.04. We assume we have

142



direct observations yi of all spatial points every two time-steps over an assimilation

window length of eight time-steps, with linear observation operator H = I. The

observation error covariance matrices are specified to be Ri = σob
2I (for i = 2, 4, 6, 8)

with variance σob
2 = 0.04.

We calculate and compare the combined model error and observation error statis-

tics at each observation time, firstly explicitly with equation (7.11) and secondly with

the sample approximation (7.22). Calculations of the block diagonal combined error

covariance matrices R∗(i,i) ∈ R100×100 are shown in Figure 7.1 (left), at observation

times ti (i = 2, 4, 6, 8). These matrices maintain a diagonal structure at all observa-

tion times. At each subsequent observation time the variances in the combined error

matrix increase, in this case σob
∗2 = 0.06 at t2, σob

∗2 = 0.08 at t4, σob
∗2 = 0.10 at

t6 and σob
∗2 = 0.12 at t8. This represents the increase in uncertainty of the model

trajectory throughout the assimilation window, due to the errors present in the model.

We next estimate the same block diagonal combined error matrices R̃∗(i,i) (i =

2, 4, 6, 8) with equation (7.22). We therefore need to set up a numerical environment

where the required sample innovation data is available. We take the true initial

conditions of the model state to be the exponential function f centred around x0 = 5

in the spatial domain, as defined in equation (5.2). We use equation (7.1) to produce

the true model trajectories, where the model operator Me
{i−1}→i is taken to be the

linear advection equation. We repeat the following steps 5, 000 times to produce a

sample size of 5, 000 background values, model error vectors and observations:

1. Produce a background vector xb by adding noise, consistent with the statistics

prescribed in B, to the true initial state xt0.

2. Produce a random model error vector ηi for each time t1, ..., t8 using the statis-

tics specified in the model error covariance matrices Qi.

3. Produce a vector of observations yi at each observation time ti (i=2, 4, 6, 8) by
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evaluating the true model state vector xti with equation (7.1) and adding noise

in proportion to the error statistics specified in Ri.

This process gives us a sample size of 5000 innovation vectors (dob
∗)i for the estimation

of R̃∗(i,i) ∈ R100×100 at each observation time ti (i = 2, 4, 6, 8) in equation (7.22). The

estimation is found to be very successful in representing the structure and values of

the combined error covariance matrix. For example, the difference between the central

row (51st) of R∗(i,i) and R̃∗(i,i) for each time ti (i = 2, 4, 6, 8) can clearly be seen in the

RHS of Figure 7.1. The overall RMSEs (Root Mean Square Error) between R∗(i,i)

and R̃∗(i,i) for each time ti (i = 2, 4, 6, 8) are shown in Table 7.1. These RMSEs are

of two orders of magnitude less than the specified error standard deviations in B, Ri

and Qi and are only non-zero due to sample error. Note that the larger the sample

size, the smaller the sample error. Here we are using a relatively small sample size of

5, 000 in comparison to the 10, 000 entries we are estimating.
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Figure 7.1: Combined model error and observation error covariance matrix R∗
(i,i) ∈ R100×100 at

each time ti (i=2, 4, 6, 8) calculated explicitly using equation (7.11) (left). The central row (51st)

of R∗
(i,i) for each time ti (i=2, 4, 6, 8) calculated explicitly using equation (7.11) is shown with a

black line (right). The central row (51st) of R̃∗
(i,i) for each time ti (i = 2, 4, 6, 8) estimated from the

sample (7.22) is shown with a red dotted (right).
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Time RMSE

t2 0.0014
t4 0.0017
t6 0.0020
t8 0.0023

Table 7.1: The RMSE of the matrix elements between R∗(i,i) and R̃∗(i,i) for each time

ti (i = 2, 4, 6, 8).

We now summarise this section. We have developed a method to estimate R̂∗

(7.11) using diagnostic tools, which we denote R̃∗ (7.22). In our numerical experi-

ments we have used a ‘toy’ model with corresponding ‘toy’ observational data and

model error vectors produced using the statistics stated in Ri and Qi respectively.

Once we have produced the sample of innovations required for the calculation of

R̃∗ (7.22), the matrices Ri and Qi were no longer used. We should mention that

for operational use of this method, this estimation assumes accurate specification of

the background error covariance matrix B. However, neither the observation error

covariance matrices Ri or model error covariance matrices Qi are required in this esti-

mation. Instead a sample of innovation vectors is required (refer back to Section 6.1.4

where potential methods to obtain this data operationally is discussed). We predict

that use of combined model error and observation error statistics, in the place of the

observation error covariance matrix in the strong constraint 4DVar cost function, will

produce a more statistically accurate analysis. The next section will investigate this

hypothesis.

7.3 Improvements to analysis accuracy

In this section we show the improvements to analysis accuracy that can be obtained

through use of the combined error statistics.
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7.3.1 Analysis error covariance matrix

The analysis when the erroneous model xi = Me
{i−1}→ixi−1 is used within the strong

constraint 4DVar cost function (2.19) and the error in the model is not accounted for

is as follows,

xa0 = xb + K̂d̂ob, (7.23)

with the gain matrix K̂ = BĤ∗
T

(Ĥ∗BĤ∗
T

+ R̂)−1 and the innovation vector d̂ob =

ŷ − Ĥ∗xb. The corresponding error in the analysis is evaluated,

εa = xa0 − xt0 = xb + K̂d̂ob − xt0 = εb + K̂d̂ob. (7.24)

We take the statistical expectations of εa to calculate the mean of the error in the

analysis,

< εa > = < εb + K̂d̂ob >=< εb > +K̂ < d̂ob >= 0, (7.25)

using the assumptions that the background error, observation errors and model errors

all have a zero mean. We next evaluate the analysis error covariance matrix,
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A = < εa(εa)
T >,

= < (εb + K̂d̂ob)(εb + K̂d̂ob)
T >,

= B + E[εb(d̂
o
b)
T ]K̂T + K̂E[d̂obεb

T ] + K̂E[d̂ob(d̂
o
b)
T ]K̂T ,

= B−BĤ∗
T
K̂T − K̂Ĥ∗B + K̂(R̂∗ + Ĥ∗BĤ∗

T
)K̂T ,

= B−BĤ∗
T

(R̂ + Ĥ∗BĤ∗
T

)−1Ĥ∗B

+ BĤ∗
T

(R̂ + Ĥ∗BĤ∗
T

)−1Q̂∗(R̂ + Ĥ∗BĤ∗
T

)−1Ĥ∗B

= B− K̂Ĥ∗B + K̂Q̂∗K̂T ,

= (I− K̂Ĥ∗)B + K̂Q̂∗K̂T , (7.26)

where Q̂∗ = R̂∗ − R̂, using the earlier result (7.21) and the assumption that the

background errors, observation errors and model errors are uncorrelated.

The analysis when the erroneous model xi = Me
{i−1}→ixi−1 is used within the

strong constraint 4DVar cost function (2.19) and the error in the model is accounted

for, by using R̂∗ as opposed to R̂ in the strong constraint 4DVar cost function, is as

follows,

xa0
∗ = xb + K̂∗d̂ob

∗, (7.27)

with the gain matrix K̂∗ = BĤ∗
T

(Ĥ∗BĤ∗
T

+ R̂∗)−1 and the innovation vector d̂ob
∗ =

ŷ − Ĥ∗xb. The corresponding error in the analysis is evaluated,

εa
∗ = xa0

∗ − xt0 = xb + K̂∗d̂ob
∗ − xt0 = εb + K̂∗d̂ob

∗. (7.28)
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We take the statistical expectation of εa
∗ to calculate the mean of the error in the

analysis,

< εa
∗ > = < εb + K̂∗d̂ob

∗ >=< εb > +K̂∗ < d̂ob
∗ >= 0, (7.29)

using the assumption that the background errors, observation errors and model errors

all have a zero mean. We next evaluate the analysis error covariance matrix,

A∗ = < εa
∗(εa

∗)T >,

= < (εb + K̂∗d̂ob
∗)(εb + K̂∗d̂ob

∗)T >,

= B+ < εb(d̂
o
b
∗)T > K̂∗T + K̂∗ < d̂ob

∗εb
T > +K̂∗ < d̂ob

∗(d̂ob
∗)T > K̂∗T ,

= B−BĤ∗T K̂∗T − K̂∗Ĥ∗B + K̂∗(R̂∗ + Ĥ∗BĤ∗
T

)K̂∗T ,

= B−BĤ∗T (Ĥ∗BĤ∗T + R̂∗)−1Ĥ∗B

= B− K̂∗Ĥ∗B,

= (I− K̂∗Ĥ∗)B, (7.30)

using (7.21) and the assumption that the background errors, observation errors and

model errors are uncorrelated.

The Best Linear Unbiased Estimate (BLUE) analysis is the solution to the non-

erroneous linear 4DVar data assimilation problem with the minimum variance [65].

When no model error is present the Best Linear Unbiased Estimate (BLUE) of the true

initial state x0 is known to have the analysis error covariance matrix A = (I−K̂Ĥ)B

with the optimal gain matrix K̂ = BĤT (ĤBĤT + R̂)−1 [65] [77]. When model error

is present, we account for model error in the comparison of the observations with the
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model evolved state using R̂∗ as opposed to R̂. This replacement leads to the analysis

error covariance matrix A∗ (7.30) having the same form as the analysis error covari-

ance matrix of the BLUE estimate. This implies that the analysis solution (7.27) is

the optimal minimum variance estimate of the linear strong constraint 4DVar prob-

lem, when the model has error of a random nature at each time-step, and therefore

implies that the analysis xa0
∗ (7.27) is more statistically accurate than the analysis

xa0 (7.23). Let us next compare the structure of A∗ (7.30) with A (7.26).

An important point to be noted is that when model error is not accounted for,

the analysis error covariance matrix A (7.26) is unbounded. As the model error

increases, the diagonal of the matrix term K̂Q̂∗K̂T present in (7.26) increases and

therefore the error variances of the analysis variables increase. The model errors could

increase significantly leading to a less accurate analysis xa0 (7.23) than the background

state xb. Whereas the analysis error covariance matrix A∗ (7.30) is bounded by the

background error covariance matrix B. As the model error increases, the analysis

error covariance matrix A∗ tends to the background error covariance matrix B. Note

that although A∗ can tend to the background error covariance matrix B, it cannot

be equal A∗ 6= B for non-zero B and R̂∗.

7.3.2 Erroneous scalar model

We consider an erroneous linear scalar model over one time-step of the form xi =

βei xi−1, with the erroneous model constant βei ∈ R describing the evolution of the

model state from time ti−1 to time ti. To obtain the true model state at time ti,

xti = βix
t
i−1 = βei x

t
i−1 + ηi, (7.31)
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where βi ∈ R is the true model constant and ηi is the random error normally dis-

tributed around a zero mean with variance σqi
2. We propose the following theorem.

Theorem 7.3.1. Consider a direct observation yi of the model state (where the ob-

servation operator hi = 1) with error normally distributed around a zero mean with

variance σobi
2. When an erroneous linear scalar model of the form xi = βei xi−1, with

corresponding additive model error ηi with zero mean and variance σqi
2, is used within

the strong constraint 4DVar cost function, the use of σobi
∗2 = σobi

2 + σqi
2 to replace

σobi
2 results in an analysis with a smaller error variance.

Proof. We assume that we have a background estimate xb of the model state at time

ti−1 with error normally distributed around a zero mean with variance σb
2. We are

only considering two times; the background time ti−1 and the observation time ti,

therefore to simplify notation we set i = 1. The analysis when the erroneous linear

scalar model x1 = βex0 is used within the strong constraint 4DVar cost function

(2.19) and the error in the model is not accounted for is as follows,

xa0 = xb + k dob, (7.32)

where the gain constant k = σb
2βe

σb2βe2+σob2
and the innovation vector dob = y1 − βexb.

Using equation (7.11), we evaluate the combined error variance σob
∗2 = σob

2 +σq
2.

The analysis when the erroneous linear scalar model x1 = βex0 is used within the

strong constraint 4DVar cost function (2.19) and the error in the model is accounted

for by replacing σob
∗2 with σob

2 is as follows,

xa0
∗ = xb + k∗dob

∗, (7.33)
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where the gain constant k∗ = σb
2βe

σb2βe2+σob∗2
and the innovation vector dob

∗ = y1− βexb.

We denote σa
2 to be the analysis error variance of xa0 (7.32) where,

σa
2 = σb

2 − βe2σb
4

βe2σb2 + σob2
+

βe2σb
4σq

2

(βe2σb2 + σob2)2
, (7.34)

using (7.26) and we denote σa
∗2 to be the analysis error variance of xa0

∗ (7.33) where,

σa
∗2 = σb

2 − βe2σb
4

βe2σb2 + σob2 + σq2
, (7.35)

using (7.30). To enable us to assess which analysis xa0 or xa0
∗ is more statistically

accurate we subtract σa
∗2 (7.35) from σa

2 (7.34),

σa
2 − σa∗2 =

βe2σq
4σb

4

(βe2σb2 + σob2)2(βe
2σb2 + σob2 + σq2)

, (7.36)

≥ 0. (7.37)

We have proven that the analysis xa0
∗ is either statistically more accurate than xa0

or at worst of the same statistical accuracy. However, the only case where xa0
∗ has

the same error variance as xa0 is when σq
2 = 0 or σb

2 = 0 or when the erroneous

model constant βe = 0. Let us make the reasonable assumption that we have a non-

zero model constant βe 6= 0. In the strong constraint 4DVar formulation, we assume

the background error variance is non-zero σb
2 6= 0. The model we are considering

x1 = βex0 is of an erroneous nature and therefore σq
2 6= 0. Hence we can conclude

the proof and state,
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σa
2 − σa∗2 > 0, (7.38)

therefore the analysis xa0
∗ is statistically more accurate than xa0.

We next investigate when the difference in analysis accuracy of xa0
∗ compared to

xa0 is most significant. Let us first denote r = σb
2

σob2
. Then we can re-write equation

(7.36) as follows,

σa
2 − σa∗2 =

σq
4r2βe2

(βe2σb2 + σob2 + σq2)(βe
2r + 1)2

. (7.39)

Equation (7.39) enables us to state that improvement in analysis accuracy of xa0
∗ from

xa0 is most significant when there is; large model error variance, large background

error variance and small observation error variance. The size of the difference (7.39)

is also dependent on the erroneous model constant βe, which we will investigate the

significance of later in this section. The reliance of the increase in accuracy σa
2−σa∗2

on both the model error variance σq
2 and the size of the ratio r is demonstrated in

Figure 7.2. The plot in Figure 7.2 uses a range of model error and background error

variances, with erroneous model constant βe = 1 and the observation error variance

set σob
2 = 0.5. Figure 7.2 clearly shows as the ratio r increases, the difference σa

2−σa∗2

increases and when the model error variance σq
2 increases, the difference σa

2 − σa∗2

increases.

Next let us relate these results to use of a generic erroneous model in the strong

constraint 4DVar cost function (2.19). When there is either an increase in background

error variance or decrease in observation error variance, more weight is given to the

Job term comparing the observation and model evolved state in observation space.
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When model error is not accounted for in this term, the analysis is less accurate.

The larger the model error, the more significant the statistical difference between the

accuracy of the resulting analysis xa0
∗and xa0.

Figure 7.2: Difference in analysis error variance σa
2−σa∗2 (7.39) for the case where the erroneous

model is x1 = βex0 with βe = 1 and σob
2 = 0.5.

Let us refer back to the simple scalar example to further investigate properties

of the difference in the analysis error variances σa
2 − σa∗2 (7.39). We next evaluate

the rate of change of the analysis error covariances σa
2 and σa

∗2 with respect to the

model error variance. The analysis error variances differentiated with respect to the

model error variance σq
2 are as follows,

∂σa
2

∂σq2
= k2, (7.40)

∂σa
∗2

∂σq2
= k∗2, (7.41)
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using the equations (7.26) and (7.30), where k = σb
2βe

σb2βe2+σob2
and k∗ = σb

2βe

σb2βe2+σob∗2
.

Therefore the rate of change of σa
2 with respect to model error variance is not a

function of σq
2 and so it increases linearly as σq

2 increases, whereas the rate of change

of σa
∗2 with respect to the model error variance is a function of σq

2.

We next illustrate the relationship between model error variance and the analysis

error variance. We firstly set βe = 1, σb
2 = 0.5, and σob

2 = 0.5, which leads to

k = 0.5. Figure 7.3 shows the analysis error variance both for when the model error

is not accounted for and when the model error is accounted for with the combined

error statistics. Specifically, Figure 7.3 shows the relationship between these analysis

error variances and the size of the model error variance. Figure 7.3 clearly shows that

when the model error variance σq
2 increases the analysis error variance σa

2 increases

at a constant rate and is unbounded. Whereas the analysis error variance increases

σa
∗2 also increases as σq

2 increases, but at a slower rate and is bounded above by the

background error variance σb
2. This property is shown clearly in Figure 7.3. For all

sizes of model error present, the analysis xa0
∗ (7.33) has improved accuracy statistics

when compared with the background xb. However, whether the analysis xa0 (7.32)

is an improvement from the background xb is dependent on the size of the model

error. With significantly large model error, specifically σq
2 > (βe2σb

2 + σob
2), the

analysis xa0 (7.32) is of less accuracy than the background xb. This results from this

experiment will be known as the ‘control run’ for further experiments in this section.
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Figure 7.3: Analysis error variance σa
2 (black solid line) and σa

∗2 (black dotted line) for the
case where the erroneous model is x1 = βex0 with erroneous scalar constant βe = 1. Both the
background error variance σb

2 = 0.5 (blue line) and observation error variance σob
2 = 0.5, which

leads to k = 0.5.

We know it is not just the size of the model error that the analysis accuracy

depends on, but also the ratio between the accuracy of the background and obser-

vations. We show the results from the control run in Figure 7.4 (black lines), with

0 ≤ σq
2 ≤ 1, where r = 1. We then increase the ratio so that r = 2, by increasing the

background error variance from the control so that σb
2 = 1, with the results shown

in blue in Figure 7.4. We then decrease the ratio so that r = 1
2
, by increasing the

observation error variance from the control so that σob
2 = 1, with the results shown

in red in Figure 7.4. It is clearly shown in Figure 7.4 that the larger r is the greater

the difference is between the analysis error variances σa
2 and σa

∗2.

What should also be observed is that when no model error is present, the same

accuracy is obtained for both the ‘blue’ and ‘red’ conditions. However, when model
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error is present, the analysis accuracy is more sensitive to an increase to the back-

ground error than an increase to the observation error. The rate of change of the

analysis error variance with respect to an increase in model error variance is larger

when r = 2 (blue lines) than when r = 1
2

(red lines) as shown in Figure 7.4. Let us

relate these results to the strong constraint 4DVar cost function (2.19). When there

is an increase to the background error variance, more weight is given to the Job term

comparing the observation and model evolved state in observation space, this term

contains the erroneous model. However when there is an increase to the observation

error variance, less weight is given to the Job term comparing the observation and

model evolved state in observation space, which contains the erroneous model. There-

fore, an increase to the background error variance has a more significant detrimental

effect on the analysis accuracy, than an increase to the observation error variance

(both when the model error is accounted for and when the model error is not).

We highlight that when random error is present in a model and not accounted

for in the 4DVar process, that if the model error is sufficiently large, it is possible

that a more accurate analysis can be obtained even with less accurate observations.

When model error is present and not accounted for in 4DVar, the observation error

covariance matrix R̂ in the Job term of the cost function accounts only for observation

error in the comparison of the model evolved state and observations. Therefore, if

the observations are very accurate, the variances in R̂ are specified to be very small

and therefore the estimation of the initial conditions is adjusted so that the model

evolved initial state is in the close vicinity of the observations. However, the fact

the model evolving the initial conditions is erroneous is not accounted for, means the

analysis may be far from the true initial conditions. We demonstrate this property,

with the erroneous scalar model, in Figure 7.4 where the black solid line (σob
2 = 0.5)

crosses both the red dotted and red solid lines (σob
2 = 1) at σq

2 = 0.5 and σq
2 = 0.6

respectively. When the black solid line (not accounting for model error) crosses the
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respective red lines, the analysis error variance is higher even though the observations

are more accurate.

Figure 7.4: Analysis error variance σa
2 (solid lines) and σa

∗2 (dotted lines) for the case where the
erroneous model is x1 = βex0 with erroneous scalar constant βe = 1. Black lines: σb

2 = σob
2 = 0.5,

r = 1. Red lines: σb
2 = 0.5, σob

2 = 1, r = 1
2 . Blue lines: σb

2 = 1, σob
2 = 0.5, r = 2.

Let us refer back to the equation (7.39) where we stated that the difference between

the analysis error variances σa
2−σa∗2 is also dependent on the value of the erroneous

model constant βe. We firstly investigate the effect of increasing and decreasing this

model constant βe has on the analysis accuracy of xa0 (7.32) and xa0
∗ (7.33). We

show the analysis accuracy results from the control run (black lines) with βe = 1 in

Figure 7.5, with 0 ≤ σq
2 ≤ 1. Equations (7.34) and (7.35) have been used to plot

these lines. These can be compared with the corresponding results when increasing

the erroneous model constant to βe = 2 (red lines) and decreasing the model constant

to βe = 1
2

(blue lines). Again when model error is present, the accuracy of xa0
∗ (7.33)

is improved when compared to the accuracy of xa0 (7.32). However, the analysis error
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variance differs depending on the size of the model constant βe. The larger the model

constant βe, the smaller the analysis error variance.

Figure 7.5: Analysis error variance σa
2 (solid lines) and σa

∗2 (dotted lines) for the case where
the erroneous model is x1 = βex0. Both the background error variance σb

2 = 0.5 and observation
error variance σob

2 = 0.5. Black lines: βe = 1. Red lines: βe = 2. Blue lines: βe = 1
2 .

We are also interested in the effect the specification of the model constant has on

the difference between the variances σa
2 − σa∗2. We plot difference σa

2 − σa∗2 term

(7.36) with respect to changing values of the model constant βe, shown in Figure 7.6,

where the model error variance is fixed at σq
2 = 0.1 and the background error and

observation error variances are fixed at σb
2 = σob

2 = 0.5. We are aware that models

often contain fixed constants, but wish to evaluate the effect the size of the model

constant has on the analysis accuracy with this set up. The maximum difference in

the analysis error variances σa
2 − σa∗2, shown in Figure 7.6, occurs when βe = 0.73

(2.s.f). We expect the difference between σa
2−σa∗2 to decrease as the model constant
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βe increases, as can be seen in Figure 7.6 when βe > 0.73 (2.s.f). This is because as

the model constant increases, the ratio of the model error with the model constant

decreases. So the effect the model error has on the evolution of the model variable

becomes less significant.

Both σa
2 and σa

∗2 decrease as the model constant βe increases. This is due to the

experimental set up we are using. Specifically as βe gets larger and larger, then the

initial condition will become smaller and smaller as the model error variance is held

constant. In practice we would expect the model error variance to increase as the

erroneous model error constant increases. However, what is interesting is the increase

in the difference σa
2−σa∗2 from βe = 0 until the maximum at βe = 0.73 (2.s.f). When

the size of the erroneous model constant βe is insignificant in comparison with the size

of the model error, little improvement can be made to the background model state,

when accounting for model error, as little information is gained from the comparison

of the model state and observations. This means the analysis error variance σa
∗2

will be of a similar size to σb
2. When the size of the erroneous model constant βe

is insignificant in comparison with the size of the model error, obviously when not

accounting for model error very little improvement can be made to the background (if

any), so the analysis will have a error variance σa
2 of a similar size to σb

2 as well. The

specification of the model constant βe which creates the maximum difference σa
2−σa∗2

(7.36) will increase as the background becomes more accurate and either or both the

observations and model both become less accurate. In general model coefficients are

of course pre-specified in atmosphere and ocean operational models, but is interesting

to note that with different model coeffients, there will different improvements to the

analysis accuracy when replacing R̂ with R̂∗ in the strong constraint 4DVar cost

function.
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Figure 7.6: Difference in the analysis error variances σa
2 − σa∗2 for varying values of the model

constant βe. The model error variance is fixed at σq
2 = 0.1 and both σb

2 = σob
2 = 0.5.

We restate our hypothesis that the analysis xa0
∗ (7.27) is statistically more accu-

rate than the analysis xa0 (7.23), by using R̂∗ as opposed to R̂ in the strong constraint

4DVar cost function. We next demonstrate the application of our developed method,

to account for random error in a model and hence improve the analysis accuracy,

firstly with use of the linear advection equation and secondly with an idealized cou-

pled atmosphere-ocean model.

7.4 Numerical experiments: Linear advection

equation

We now demonstrate that the replacement of the observation error covariance matrix

R̂, with combined error statistics in R̂∗, leads to an analysis of greater statistical

accuracy when random error is present in the linear advection equation. We use the
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numerical set up as described previously in Section 7.2.2. We take our erroneous

linear model to be the time-stepping solution of the linear advection equation over

the spatial domain x ∈ [0, 10), as described in Section 5.1.1, with the spatial step

∆x = 0.1 and time-step ∆t = 0.1. The true model state at each time ti, differs from

the erroneous model state by the vector of random error ηi, as defined by equation

(7.1). We use an assimilation window length of eight time-steps. We assume we

have direct observations of all spatial points in the vector yi, with H = I, every two

time-steps (i=2, 4, 6, 8).

We take the true initial conditions, as described in Section 5.1.1, and run the

erroneous model over 8 time-steps by adding random error ηi at each time-step pro-

duced as noise using the variances in Qi = 0.01I (spatially uncorrelated). We repeat

this process to obtain a sample of 100 model trajectories, shown in Figure 7.7 at

the final time t8. The linear advection equation run with no random error present is

also shown in Figure 7.7 (black dotted line) at time t8. The general behaviour of the

passive tracer is maintained. However, this level of random error in the model leads

to significant variations in the shape of the passive tracer.
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Figure 7.7: The linear advection equation run from from t0 to t8 with a vector of random error
ηi (Qi = 0.01) added at each time-step (red lines). Results shown at time t8 for a sample of 100
independent model runs. The linear advection equation run from from t0 to t8 with no random error
present (black dotted line).

We now define two data assimilation methods that will be performed and com-

pared.

• Method 1: the evaluation of the analysis xa0 using the 4DVar cost function (2.19)

with no changes,

• Method 2: the evaluation of the analysis xa0
∗ by replacing R̂ in the 4DVar cost

function (2.19) with the combined error covariance matrix R̂∗ (7.11).

The elements of R̂∗ are calculated using equation (7.11). The RMSE (Root Mean

Square Error) for a sample of analysis outputs from Method 1 and Method 2 are
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Conditions Covariance Variance
matrix

A Qi 0.01
A B 0.04
A Ri 0.04
B Qi 0.01
B B 0.04
B Ri 0.0016
C Qi 0.04
C B 0.04
C Ri 0.04

Table 7.2: List of data assimilation conditions for error covariance matrices used in
strong constraint 4DVar with the linear advection equation with random error. Both
Qi and Ri are diagonal matrices, whereas B is constructed using the SOAR function
with correlation length scale L = 0.4.

calculated and compared. We conduct the following steps 100 times to produce a

sample size of 100 analysis values xa0 and 100 analysis values xa0
∗ for Method 1 and

Method 2 respectively:

1. Produce a background vector xb by adding noise, consistent with the statistics

prescribed in B, to the true initial state xt0.

2. Produce a random model error vector ηi for each time t1, ..., t8 using the statis-

tics specified in the model error covariance matrix Qi (i=1,...,8).

3. Produce a vector of observations yi at each observation time ti, (i =2, 4, 6, 8)

by evaluating the true model state vector xti with equation (7.1) and adding

noise in proportion to the error statistics specified in Ri (i=2,4,6,8).

4. Compute both the analysis xa0 and the analysis xa0
∗ using 4DVar as described

by Method 1 and Method 2 respectively.

The resulting analysis RMSEs, using conditions A as specified in Table 7.2, are shown

in the left two bars in Figure 7.8. When accounting for the model error, in Method 2
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with R̂∗, a more accurate analysis is obtained. The calculated combined error covari-

ance matrix R̂∗ at each observation time is diagonal with the increasing variances. In

this case σob
∗2 = 0.06 at t2, σob

∗2 = 0.08 at t4, σob
∗2 = 0.10 at t6 and σob

∗2 = 0.12 at

t8. This represents the increase in uncertainty of the model trajectory throughout the

assimilation window, due to the errors present in the model. The data assimilation

scheme therefore puts less weight on the comparison of the observations with the

model evolved state as time increases and hence allows a more accurate estimation

of the initial conditions. We illustrate the analysis outputs (Method 1 and Method

2) from one data assimilation cycle (from the sample) in Figure 7.9.

Figure 7.8: Results comparing the analysis RMSE (at time t0 only) from a sample of 100 data
assimilation runs, for both Method 1 (not accounting for the model error) and Method 2 (accounting

for model error with the combined error covariance matrix R̂∗ (7.11)).
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Figure 7.9: Results comparing the analysis from both Method 1 (not accounting for the model

error) and Method 2 (accounting for the model error with the combined error covariance matrix R̂∗

(7.11)).

Work in Section 7.3 showed that, for a scalar model, there is a more significant

increase in analysis accuracy (of xa0
∗ compared with xa0) when the observations increase

in accuracy (in comparison with the background accuracy) and when the size of the

model error increases. These conclusions are not limited to models of a scalar nature

and we demonstrate that these properties also hold when using the linear advection

equation with random error in 4DVar. Firstly, we reduce the standard deviations of

the observation errors by a factor of five so that Ri = 0.0016I (i =2, 4, 6, 8), as shown

by conditions B in Table 7.2. The corresponding combined error covariance matrix

at each observation time is diagonal with the variances in the combined error matrix

increasing with time. In this case σob
∗2 = 0.0216 at t2, σob

∗2 = 0.0416 at t4, σob
∗2 =

0.0616 at t6 and σob
∗2 = 0.0816 at t8. We ran a sample of 100 4DVar experiments, as

described above, using both Method 1 and Method 2. The resulting analysis RMSE

for Method 1 and analysis RMSE for Method 2 are shown in the central two bars in

Figure 7.8. These results demonstrate that an increase in observation accuracy leads

to a more significant increase in analysis accuracy, when accounting for the model
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error as opposed to not. It is perhaps interesting to remark that when the model

error is not accounted for (Method 1), this increase in observation accuracy causes

a degradation in the analysis xa0, as can be seen when comparing Method 1 results

from experiment A with Method 1 results from experiment B. This is because, with a

decrease in observation variance, the trajectory of the erroneous model is confined to

be closer to the observations, even at the end of the assimilation window. When there

is significant error present in the model, the erroneous model trajectory should not be

in the close vicinity of the observations towards the end of the assimilation window

and if it is this can cause degradation to the estimation of the initial conditions.

However, when accounting for the model error in the analysis xa0
∗ in Method 2, an

improvement is made to the analysis when the observations are of increased accuracy.

This is because the model error is accounted for appropriately in the combined error

matrix, meaning that the erroneous model trajectory is allowed to depart further

from the observations in order to best estimate the analysis.

Next we increase the standard deviation of the model error variance by a factor

of two so that Qi = 0.04I (i = 1, ...., 8), as stated by conditions C in Table 7.2. The

corresponding combined error covariance matrix at each observation time is diagonal

with the variances in the combined error matrix increasing over time. In this case

σob
∗2 = 0.12 at t2, σob

∗2 = 0.20 at t4, σob
∗2 = 0.28 at t6 and σob

∗2 = 0.36 at t8. The

resulting analysis RMSEs are shown in Figure 7.8 (right two bars), where the analysis

xa0
∗ from Method 2 is again more accurate than when not accounting for the model

error in the Method 1 analysis xa0. When not accounting for this significant increase in

model error, there is a significant decrease in analysis accuracy (Method 1). However,

when accounting for this significant increase in model error, using the combined error

covariance matrix, this has minimal effect on the accuracy of the analysis xa0
∗, as can

be seen by comparing the analysis RMSE from experiment A with the analysis RMSE

from experiment C. We have demonstrated that the work in Section 7.3 for a scalar

167



model; showing the significant increase in analysis accuracy when the observations

increase in accuracy (in comparison with the background accuracy) and when the

size of the model error increases, also holds when using a non scalar erroneous linear

model.

The application of our developed method, replacing R̂ with R̂∗ (7.11), has been

demonstrated to be successful in obtaining an analysis of greater accuracy, when the

model used in 4DVar is an erroneous linear model. We next extend our investigation

by applying the developed method with an erroneous model of a nonlinear nature.

7.5 Numerical experiments: Idealized coupled

atmosphere-ocean model

We now demonstrate that use of combined model error and observation error statis-

tics can account for random error in a model of a nonlinear nature and hence im-

prove the analysis accuracy. We use the discretized solution to the idealized coupled

atmosphere-ocean model, as described in Section 5.2, as our nonlinear erroneous

model of the form,

xi =Me
{i−1}→i(xi−1) i = 1, 2, .., 50 (7.42)

where xi = (xi yi zi wi vi)
T is the model state vector consisting of both the atmosphere

state variables xi, yi, zi and ocean variables wi, vi at time ti. The true modelM{i−1}→i

is as follows,
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xti = M{i−1}→i(x
t
i−1) i = 1, 2, ..., 50

= Me
{i−1}→i(x

t
i−1) + ηi (7.43)

where the vector of model error ηi ∼ N (0,Qi).

For experiments in this section we use an assimilation window length of 50 time-

steps, where the model time-step length is ∆t = 0.01. We define the true initial

conditions; xt0 = −3.4866, yt0 = −5.7699, zt0 = 18.341, wt0 = −10.7175 and vt0 =

−7.1902, which are on the coupled model attractor. We initially specify the model

error covariance matrix Qi at each time ti (i = 1, 2, ..., 50) to be diagonal, with

variances along the diagonal set to 0.02, 0.02, 0.2, 0.01, 0.01. With this level of

model error variance, the general behaviour of the coupled model is maintained, but

there are significant variations in the model trajectories of both the atmospheric and

oceanic model state variables throughout the time window. This property can be seen

in Figure 7.10, where 100 possible ‘true’ model trajectories (red) have been evaluated

using equation (7.43) run from the same initial conditions. Each vector of model

error ηi has been independently produced as noise using the statistics specified in Qi.

The model trajectories of the coupled model Me
{i−1}→i with no model error vectors

added (7.42) are also shown in Figure 7.10 (black lines).
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Figure 7.10: Idealized coupled model (7.43) run 100 times, from the same initial conditions, with
random error present at each time-step (red lines). The model error covariance matrix Qi at each
time ti (i = 1, 2, ..., 50) is diagonal, with variances along the diagonal set to 0.02, 0.02, 0.2, 0.01,
0.01. Idealized coupled model (7.42) run from the same initial conditions, where no vectors of model
error have been added (black dotted lines).
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The forms of the erroneous model (7.42) and true model (7.43) are the same

as those used in the derivation of the combined model error and observation error

covariance matrix R̂∗ in Section 7.1, with the exception that here nonlinear model

equations are used, as opposed to linear model matrices. One of the key objectives

in this section is to show that the theory developed with linear models, earlier in the

chapter, is also successfully applicable using models of a nonlinear nature.

We initially specify a diagonal background error covariance matrix B with stan-

dard deviations approximately 10% of the true initial conditions (specifically variances

0.1, 0.3, 3.4, 1.1 and 0.52 along the diagonal). We have direct observations of each

model state variable present every 10 time-steps with observation operator Hi = I.

The observation error covariance matrix Ri is diagonal at each observation time ti

in the assimilation window, initially set with standard deviations approximately 2%

of the maximum absolute value of each respective variable. Specifically Ri contains

the values 0.09, 0.09, 0.81, 0.04, 0.04 along the diagonal. Later in this section we

investigate the sensitivity of the results to the specification of B, Ri and Qi.

We have discussed the capabilities of NWP centres, such as ECWMF, for esti-

mating the diagonal entries of the background model error covariance matrix evolved

using the model matrix and subsequently mapped to observation space in Section

3.2 using the randomisation method. If our developed method to compute R̃∗ (7.22)

was to be implemented operationally using similar randomisation techniques, then

only the diagonal elements would be specified in the combined error covariance ma-

trix. Therefore, we wish to show in our numerical experiments, with the idealized

erroneous model (7.42), that even when only the diagonal elements of the combined

error covariance matrix are calculated and used within the data assimilation process,

improvements to the analysis accuracy can be obtained. Specifically, this ignores the

presence of time, spatial and multivariate cross correlations in both the observation

error and model error.
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7.5.1 Combined model error and observation error statistics

The 4DVar cost function (2.9) is formulated upon the basis that there is no error

present in the model. Our experiments involve using the erroneous model (7.42) in

this 4DVar cost function (2.9). We define three methods in Table 7.3, that vary

depending on the error covariance matrix used in the Job term of the 4DVar cost

function (2.9). These are next summarised as follows.

• Method 1: aims to minimise the 4DVar cost function (2.9) with no changes and

therefore does not account for model error.

• Method 2: replaces R̂ in the 4DVar cost function (2.9) with the diagonal entries

of the combined error covariance matrix R̂∗ (7.11).

• Method 3: replaces R̂ in the 4DVar cost function (2.9) with the diagonal entries

of the estimated matrix R̃∗ (7.22) from sample innovation data.

Figure 7.11 compares the diagonal entries (variances) of the three matrices R̂,

R̂∗ and R̃∗ at the observation times ti (i = 10, 20, 30, 40, 50). The observation error

covariance matrix Ri is static throughout the window, whereas the variances in the

combined error covariance matrix R̂∗ computed directly with the formulae (7.11) in

Method 2 are significantly larger as time increases, accounting for the uncertainty

in the model state trajectories caused by the errors in the model. Note that the

variances estimated in the combined model error and observation error covariance

matrix R̃∗ with Method 3 do not always increase with time, as can be seen for the

atmospheric variables x, y and z in Figure 7.11. These variances have been estimated

using the nonlinear innovations in the diagnostic present in equation (7.22). Whether

R̂∗ (Method 2) or R̃∗ (Method 3) contain the most appropriate combined model error

and observation error statistics to use in the 4DVar cost function is an area of future
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work. One hypothesis that should be tested is that the the estimate R̃∗ uses the

innovation diagnostics and therefore better recognises the spread of the model error

at each specific observation time. However, the estimate R̃∗(i,i) uses the linerization

of the nonlinear model around the background model state trajectory (as opposed to

the true model trajectory) and this could have a detrimental effect on the estimation

of the combined statistics. Another key point to note is that the variances evaluated

in R∗(i,i) and estimated in R̃∗(i,i) are much closer in value for the ocean variables, than

the atmospheric variables. The reason for this is that the theory for the derivation of

R∗(i,i) (7.11) and estimation of R̃∗(i,i) (7.22) is based on the use of linear models and the

ocean variables w and v are of a less chaotic nature than the atmospheric variables

x, y and z, that are of a highly nonlinear chaotic nature. In the next section we

perform strong constraint 4DVar not accounting for the error in the model (Method

1) and compare the analysis outputs with strong constraint 4DVar performed when

accounting for error in the model (Method 2 and Method 3).
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Figure 7.11: Diagonal elements of R̂∗ as described in Method 2 (red) and R̃∗ as described in
Method 3 (green), compared with the observation error covariance matrix Ri as in Method 1 (blue),
for each of the variables in the idealized coupled nonlinear model, at all observation time-steps t10,
t20, t30, t40, t50. Method 1, Method 2 and Method 3 are described in Table 7.3.
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Method Error covariance Details
matrix in Job

Method 1 R̂ Use of unamended observation error covariance matrices Ri

in the 4DVar cost function (2.9).

Replacement of Ri with diagonal elements of R̂∗
i in the

Method 2 R̂∗ 4DVar cost function (2.9). The elements of R̂∗
i are

calculated directly with equation (7.11), which requires
linearization of the nonlinear model (7.43) around
the true model state trajectory.

Replacement of Ri with diagonal entries of R̃∗
i in

Method 3 R̃∗ the 4DVar cost function (2.9). The diagonal entries of R̃∗
i

are estimated with equation (7.22), which requires linearization
of the nonlinear model (7.42), this is conducted around the
background model state trajectory. The estimation of the

entries in R̃∗
i are evaluated using a sample size of 1000

innovations at each observation time ti (i=10,20,30,40,50).

Table 7.3: Three strong constraint 4DVar methods used with the erroneous idealized
coupled atmosphere-ocean model.

7.5.2 Data assimilation results

We perform data assimilation with Method 1, Method 2 and Method 3 ( see Table

7.3) and compare the analysis and subsequent analysis trajectories by computing the

RMSE (Root Mean Square Error) from a sample of analysis outputs. We conduct

the following steps 100 times to produce a sample size of 100 analysis values for each

of Method 1, Method 2 and Method 3 respectively:

1. Produce a background vector xb by adding noise, consistent with the statistics

prescribed in B, to the true initial state xt0.

2. Produce a random model error vector ηi for each time t1, ..., t50 using the statis-

tics specified in the model error covariance matrix Qi (i=1,...,50).

3. Produce a vector of observations yi at each observation time t10, t20, t30, t40 and

t50 by evaluating the true model state vector xti with equation (7.43) and adding

noise in proportion to the error statistics specified in Ri (i=10,20,30,40,50).
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4. Compute the three analysis outputs as described by Method 1, Method 2 and

Method 3 in Table 7.3 respectively.

The results show a significant reduction in analysis error for all model state vari-

ables when combined model error and observation error statistics are used in the

strong constraint 4DVar cost function, compared with observation error statistics only,

as shown in Figure 7.12 (top). When compared to the observation error variances

(used in Method 1), both the error variances in R̂∗ (Method 2) and the estimated

error variances in R̃∗ (Method 3) give less weight to the comparison of the model

evolved state with observations, due to the uncertainty in the model trajectory. The

reduction in analysis RMSE, when accounting for the model error, is largest for the

atmospheric variables y and z. We hypothesise that this is down to two factors: the

first of which is ratio between the background error and observation error variances

and the second of which is the size of the model error. We will investigate this further

in the upcoming experiments. Accounting for errors in the model with the combined

error statistics reduces the number of minimisation iterations required to reach the

tolerance level. This is demonstrated in this case with the number of minimisation

iterations reducing from 12 for Method 1, to 10 for both Method 2 and Method 3

respectively. This is because the increase in variances in the 4DVar cost function,

leads to the erroneous model trajectory no longer being so tightly constrained to the

observations and therefore a solution is more easily found.

An increase in analysis accuracy does not necessarily lead to an increase in forecast

accuracy, as demonstrated in Figure 7.12 (bottom) which shows the RMSE of the

analysis trajectories throughout the assimilation window. A decrease in forecast

RMSE is only obtained for atmospheric variable z. When we include the model

error statistics in the combined error covariance matrix, we are increasing the values

of the variances from the observation error variances. Therefore, we are letting the
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analysis model trajectory depart further from the observations and this can enable

the analysis trajectory to differ further from the true state trajectory.

Figure 7.12: Analysis RMSE and the subsequent RMSE of the analysis trajectories over the
assimilation window. Results are from applying Method 1, Method 2 and Method 3 (as described
in Table 7.3) over a sample of 100 data assimilation runs.

Work with an erroneous scalar model in Section 7.3 showed that there was the most

improvement to the analysis accuracy, when replacing observation error statistics in

the cost function with combined error statistics, in the presence of: large model error

variance, and a large background error variance in comparison with the observation

error variance. Next we investigate whether these characteristic features hold with

use of the erroneous nonlinear model (7.42) in strong constraint 4DVar. Work from
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Conditions Covariance Variance Variance Variance Variance Variance
matrix for x for y for z for w for v

A Qi 0.02 0.02 0.2 0.01 0.01
A B 0.1 0.3 3.4 1.1 0.52
A Ri 0.09 0.09 0.81 0.04 0.04
B Qi 0.005 0.005 0.05 0.0025 0.0025
C Qi 0.08 0.08 0.8 0.04 0.04
D Qi 0.5 0.5 5 0.25 0.25
E B 0.004 0.012 0.136 0.044 0.0208
E Ri 2.25 2.25 20.25 1 1

Table 7.4: List of error covariance matrices used in strong constraint 4DVar with the
erroneous idealized coupled atmosphere-ocean model. Condition A is as described at
the start of Section 7.5. When error covariance matrices are not explicitly stated for
Conditions in this table, they are as defined by Conditions A.

now on compares the resulting analysis accuracy when firstly using Method 1 (with

Ri in the 4DVar cost function) with that from Method 3 (replacement of Ri with

diagonal entries of R̃∗). This is because we make the assumption that we do not

know the model error covariance matrices explicitly, which is realistic of operational

models. We define conditions A to be the error covariance matrices as described at

the start of this section and restate these in Table 7.4.

We investigate the effect of increasing and decreasing the size of the model error on

the analysis accuracy. We previously defined Qi at each time ti using conditions A in

Table 7.4. We reduce the standard deviations of the model error for each of the model

state variables by a factor of two and label these variances B in Table 7.4. Whereas in

condition C in Table 7.4 we increase the model error standard deviations by a factor

of two. Conditions D in Table 7.4 are the initial model error standard deviations

increased by a factor of five. For each of the conditions B, C and D we recalculate the

diagonal entries in R̃∗i at observation times (i =10, 20, 30, 40, 50) with a sample size of

1000 innovation vectors and subsequently conduct 100 strong constraint 4DVar runs.

Each individual data assimilation run uses independent model error vectors, vectors

of observations and background vectors, and minimises the 4DVar cost function using
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both Method 1 and Method 3. This produces 100 analysis values for both Method 1

and Method 3. From these samples of analysis outputs both the analysis RMSE and

forecast RMSE (in the assimilation window) are evaluated for both Method 1 and

Method 3 with results shown in Figure 7.13. For all specifications of the model error

variance covariance Qi, we achieve a lower analysis RMSE accounting for the model

error (Method 3), as opposed to when not (Method 1). Comparing the levels of model

error within the data assimilation process, where B is lowest and is the D highest,

we demonstrate that the larger the model error, the more significant the increase in

accuracy is when accounting for the model error (Method 3), as opposed to when not

(Method 1). The number of iterations that the minimisation algorithm performs is

lower when accounting for model error, as opposed to not accounting for model error,

as can be seen in Figure 7.13. We also note, similarly to the previous experiment,

an increase in analysis accuracy does not necessarily lead to an increase in forecast

accuracy. In the results shown in Figure 7.13 there is a degradation to the forecast

RMSE (calculated throughout the assimilation window), when accounting for model

error, for all variables excluding z (conditions B and C). With conditions D, there

was a degraded forecast for all model state variables when accounting for model error.

The last of the experiments was conducted with very large model error variances

(conditions D in Table 7.4). The decrease in analysis RMSE, when using the esti-

mated combined error variances in Method 3, is very significant, see Figure 7.13. We

re-emphasise that this remarkable improvement to the analysis accuracy, accounting

for the model error has been made with the diagonal entries of the estimated matrix

R̃∗ (7.22) replacing the observation error variances, was without the requirement of

explicitly specifying the model error statistics in Qi (although in our ‘toy’ experi-

ments we sample the model error vectors from Qi). We also have disregarded any

cross covariance information in R̃∗ as we are only using the diagonal entries in these

experiments. The impact of including this information in R̃∗ could produce even
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further improvement to the analysis accuracy and is an area of further work.

Figure 7.13: Analysis RMSE and the subsequent RMSE of the analysis trajectories over the
assimilation window (Method 1 and Method 3) over a sample of 100 data assimilation runs. The
data assimilation conditions for B, C and D are defined in Table 7.4.

The ratio between the accuracy of the background error and observation error is

also important when investigating the difference between the accuracy of the analysis

obtained when accounting for model error, as opposed to not. We demonstrate this
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property by both increasing the accuracy of the background model state (by reducing

the standard deviations in B by a factor of five) and decreasing the accuracy of the

observations (by increasing the standard deviations in Ri by a factor of five), see

conditions E in Table 7.4. The observations are now far less accurate than the back-

ground. We set Qi back to conditions A as stated in Table 7.4. We recalculate the

diagonal entries of R̃∗i , with the error covariance matrices as specified in conditions E

using a sample size of 1000. We subsequently conduct 100 strong constraint 4DVar

runs for both Method 1 and Method 3. Each individual data assimilation run uses in-

dependent model error vectors, vectors of observations and background vectors. This

produces 100 analysis values for both Method 1 and Method 3. Although account-

ing for the error in the model produces an analysis of higher statistical accuracy for

all model state variables, the significance of this increase is reduced when the ratio

r = σb
2

σob2
is significantly reduced for each of the model state variables, as shown in

Figure 7.14. For case A, the ratio r = σb
2

σob2
for each of the model state variables x, y,

z, w and v is 1.11, 3.33, 4.20, 27.5 and 13 respectively. Whereas for case E the ratios

r are far smaller at 0.002, 0.005, 0.007, 0.044 and 0.0208 for each of the respective

model state variables x, y, z, w and v.

For a general 4DVar problem using a model with random error present at each

time-step, the larger the ratio r = σb
2

σob2
for each of the model state variables, the more

weight is given to the comparison of the observations and erroneous model evolved

state. This leads to a more significant difference in analysis accuracy, when accounting

for model error with the combined error statistics, as opposed to not.
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Figure 7.14: Analysis RMSE and the subsequent RMSE of the analysis trajectories over the
assimilation window (Method 1 and Method 3) over a sample of 100 data assimilation runs. The
data assimilation conditions for A and E are defined in Table 7.4.

7.6 Summary

In this chapter we have developed a combined model error and observation error co-

variance matrix. When a model with random error at each time-step is used within

strong constraint 4DVar, replacing the observation error covariance matrix with this

combined error covariance matrix, produces a statistically better estimate of the ini-

tial state. We have noted that this does not necessarily lead to improvements in the

forecast accuracy. We have shown that when this replacement is conducted the strong

constraint 4DVar diagnostics are upheld. We have developed a method to estimate

this combined model error and observation error matrix without the need for the ex-
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plicit specification of the model error statistics. The theory for both the development

and estimation of the combined model error and observation error covariance matrix

was derived with use of erroneous linear model matrices. However, we have demon-

strated the successful application of our developed methods with use of an erroneous

nonlinear model. In the next chapter we change our focus from improving analysis

accuracy, to improving coupled model forecasts.
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Chapter 8

Improving an erroneous coupled

model forecast

In Chapter 3 we discussed the use of coupled atmosphere-ocean models at operational

NWP centres to produce seasonal to interannual forecasts. These coupled models do

not perfectly describe the true dynamics of the coupled system as they contain model

errors. Bulk formulae used to represent fluxes at the atmosphere-ocean interface

require the specification of coupling parameters. The specification of these coupling

parameter values are often tuned as they do not have a physical meaning [55]. It has

previously been shown that the effect model bias has on a simple coupled forecast

may be reduced through estimation of both atmospheric and oceanic parameter values

along with the coupled model state using an ensemble Kalman Filter method [130]

[131], even if the source of the model bias does not originate from the parameters.

In Section 8.1 we introduce general nonlinear perfect coupled model equations and

subsequently general nonlinear erroneous coupled model equations. In Section 8.2 we

demonstrate the effect model bias can have on a coupled model forecast with use of a
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biased idealized coupled atmosphere-ocean model. In Section 8.3, we extend the idea

of coupled model state estimation, to simultaneously estimating coupling parameters

along with the coupled model state in a 4DVar context, with the objective that

the coupling parameter estimation can mitigate the effect of the model errors on

the forecast. In Section 8.4 we demonstrate how coupling parameter estimation can

compensate for model bias present in an idealized coupled atmosphere-ocean model

and hence improve the accuracy of the coupled forecast. In Section 8.5 we demonstrate

that the developed method is not successfully applicable to compensate for error of

a random nature at each time-step. However, in Section 8.6 we demonstrate how

coupling parameter estimation can compensate for another type of systematic error

in the coupled model, namely static parameter errors present in an idealized coupled

atmosphere-ocean model and hence improve the accuracy of the coupled forecast.

8.1 Erroneous coupled atmosphere-ocean model

In Section 3.1.2 we discussed the presence of errors in operational NWP coupled

atmosphere-ocean models and the difficulties in eliminating these errors from the

model equations. Therefore, we seek to develop data assimilation methods to mitigate

the effect these errors have on coupled model forecasts. We consider a perfect coupled

model of the form,

xti =M{i−1}→i(x
t
i−1,α

t) i = 1, 2, ... (8.1)

where the model operatorM{i−1}→i : Rm −→ Rm describes perfectly the evolution of

the state vector from time ti−1 to time ti. The true values of atmosphere and ocean

variables, at time ti, are represented in the true coupled model state vector xti ∈ Rm.

185



The model’s optimal scalar coupling parameters are represented in the vector αt ∈ Rl

and are assumed to be time invariant. We next consider the situation where the best

known description of the true coupled dynamics is erroneous and of the form,

xi = Me
{i−1}→i(xi−1,α

t) (8.2)

= M{i−1}→i(xi−1,α
t) + ηi i = 1, 2, ... (8.3)

where the model operatorMe
{i−1}→i : Rm −→ Rm erroneously describes the coupled

model dynamics. The erroneous model consists of the summation of the true model

dynamics from time ti−1 to time ti and a vector of model error ηi ∈ Rm at time ti. We

note that here (8.2) we assume the ‘optimal’ values of the coupling parameters αt are

known. In numerical experiments later in this chapter we remove this assumption.

Previously, we have added a vector of model error ηi to the erroneous model equations,

see (2.24) and (7.1), however here we add the vector of model error to the true model

equations (8.3). The inconsistencies in this notation is purely to present workings in

each respective chapter in the most clear manor. Note that above where the additive

model error is present in the equation for the true model, this can be rearranged so

that it is present in the erroneous model with the only difference being that the model

error will be subtracted.

For numerical experiments in this chapter we use the idealized coupled atmosphere-

ocean model [87], discretized in time with time-step ∆t = 0.01, as described in Section

5.2. The model state vector xi consists of the atmospheric state variables x, y and z

and oceanic state variables w and v at time ti. There is one scalar coupling parameter

α present in this idealized coupled model, which can be interpreted as describing the

heat flux at the atmosphere-ocean interface [42]. In Section 5.2.3 we demonstrated

that the specification of the coupling parameter α can have a significant impact on
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the behaviour of both the atmospheric and oceanic model state trajectories over time.

8.2 Biased coupled atmosphere-ocean model

forecast

We let the discretized idealized coupled atmosphere-ocean model, as described in

Section 5.2, with αt = 1 be our ‘true’ reference model (8.1). We consider the situ-

ation where the model error vector in equation (8.3) is constant model bias at each

time ti and hence simplify the notation ηi = η. The ‘true’ model is spun up for

104 time steps starting from (x, y, z, w, v)T = (1, 1, 1, 1, 1)T to give true initial con-

ditions (xt0, y
t
0, z

t
0, w

t
0, v

t
0)
T = (−3.4866,−5.7699, 18.3410,−10.7175,−7.1902)T on

the model attractor. We introduce bias into the model equations (8.3) by denoting

the vector of constant bias η = (5×10−2, 5×10−2, 5×10−2, 5×10−2, 5×10−2)T . This

high level of bias in the model creates model state trajectories that follow the true

general behaviour at the start of the window (approximately up to 50 time-steps),

however this level of bias leads to significant differences between the ‘true’ and ‘bi-

ased’ model trajectories over time. This behaviour is shown in Figure 8.1, where the

‘true’ model state trajectories (black) and the ‘biased’ model state trajectories (pink)

are shown for each of the atmosphere and ocean variables over 750 time-steps starting

from the same true initial conditions. This demonstrates the point that even if the

true model state initial conditions are known and used to initialise a coupled model,

bias present in a coupled model can over time lead to significant errors in a coupled

forecast. The objective of work in this chapter is to mitigate the detrimental effect

that model error can have on the accuracy of a coupled model forecast.

Let us reference back to Figure 5.7 presented in Section 5.2.3 where the ‘true’

reference model (8.1) was run multiple times from the same initial conditions but with
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varying specifications of the coupling parameter α. With just small perturbations to

the coupling parameter (specifically 3% in Figure 5.7) the model state trajectories

of all the atmospheric and oceanic variables deviated from the ‘true’ run over time.

With this in mind for a generic coupled system, we aim to mitigate the effect of

model bias in a coupled forecast, by allowing the model’s coupling parameters to

deviate from their original ‘optimal’ values. To do so we will formulate a 4DVar

method to simultaneously estimate the coupled atmosphere and ocean model state

initial conditions and coupling parameters.
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Figure 8.1: Model state trajectories produced using the ‘true’ idealized coupled model (black

dotted lines), model state trajectories produced using the biased idealized coupled model (pink lines),

shown for atmospheric variables x, y and z and ocean variables w and v. Vector of constant bias

η = (5×10−2, 5×10−2, 5×10−2, 5×10−2, 5×10−2)T present at each time-step ti in the biased coupled

model run. Both models initialised from the same true initial conditions (xt0, y
t
0, z

t
0, w

t
0, v

t
0)T =

(−3.4866,−5.7699, 18.3410,−10.7175,−7.1902)T .

8.3 Joint coupled state-coupling parameter

estimation

In operational coupled models the ‘optimal’ values of coupling parameters are often

unknown, with model experts currently specifying best guesses in bulk formula for
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fluxes at the atmosphere-ocean interface. As coupling parameters help describe fluxes

at the atmosphere-ocean interface, the behaviour of the coupled system, particularly

near the interface, can be sensitive to the specification of the coupling parameters, as

was demonstrated with the idealized coupled model Section 5.2.3.

In Section 4.3, we outlined work previously conducted on both adjusting fluxes

at the atmosphere-ocean interface and estimating model parameters, with the aim to

compensate for model bias and hence improve coupled model forecasts. Operational

centres are moving towards coupled data assimilation, where the initial conditions of

both the atmospheric and oceanic variables are simultaneously estimated. To date,

no prior work has involved using strong constraint 4DVar to simultaneously estimate

coupling parameters along with a coupled model state with the aim for the coupling

parameter estimation to compensate for bias present in a coupled model and hence

improve the coupled forecast. We next develop a strong constraint 4DVar scheme for

this purpose.

8.3.1 Coupled 4DVar with coupling parameter estimation

The vector αt ∈ Rl present in the ‘true’ coupled model (8.1) contains the ‘optimal’

values of the scalar coupling parameters, by which we mean the values of the coupling

parameters which best represent the processes that they portray. We aim to allow the

values of the coupling parameters to deviate from these ‘optimal’ values in order to

compensate for the errors in the model and hence push the model forecast trajectories

closer to the ‘true’ model state trajectories. To do so we add a term onto the strong

constraint 4DVar cost function (2.9) and we augment the 4DVar control vector to
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include the model’s coupling parameters along with the coupled model state as follows,

J (x0,α) =
1

2
(x0 − xb)TB−1(x0 − xb) +

1

2

N∑
i=0

(yi −Hi(xi))
TRi

−1(yi −Hi(xi))

+
1

2
(α−αt)TF−1(α−αt), (8.4)

where the difference between the coupling parameters that lead to forecast error min-

imisation in the assimilation window and the original ‘optimal’ values αt is considered

to be normally distributed around a zero mean with the covariance matrix F ∈ Rl×l.

This difference term is assumed to be uncorrelated with the both the background

errors and observation errors. The cost function (8.4) is to be minimised with respect

to both the initial coupled state vector x0 and the vector of coupling parameters α,

subject to satisfying the coupled model,

xi = Me
{i−1}→i(xi−1,α). (8.5)

Note that this erroneous model (8.5) is the same as the erroneous model specified in

equation (8.2) except for the replacement of αt with α. It is this replacement which

is vital for the performance of this scheme, as we aim for the analysis of the coupling

parameters to compensate for the bias present in the model. This method requires

the specification of F, which for operational models would rely on advice from a

model expert. Currently statistical information for certain atmospheric parameters

is provided by model experts in order to account for the uncertainty in the assigned

model parameter values from which ensemble forecasts are produced at operational

centres, such as the Met Office [19].
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The resulting analysis of the model state xa0 from the minimisation of the cost

function (8.4) is dependent on the analysis of the coupling parameters αa as they occur

within the model equations. Likewise, the analysis of the coupling parameters are

dependent on the analysis of the model state, as the model trajectories are dependent

on the specification of the initial model state. We next investigate the compositional

structure of the analysis of the coupled model state and analysis of the coupling

parameters for a simple erroneous model.

8.3.2 Coupled state-coupling parameter analysis

We wish to take a simplistic situation where the erroneous nonlinear model (8.2)

contains just one scalar coupling parameter αt. We do so in order to derive an

explicit analysis which we can study. We assume we have a vector of observations

y at a single time t1. The true coupled model dynamics from time t0 to time t1 are

described by a model of the form (8.1) where the optimal scalar coupling parameter

αt is present in one matrix element. We minimise the amended strong constraint

4DVar cost function (8.4) with respect to both the initial coupled state vector x0 and

the scalar coupling parameter α, subject to the coupled model (8.5). As we have just

one scalar parameter αt present in the model, the covariance matrix F in the cost

function (8.4) is simply replaced with the variance σα
2. The resulting analysis of the

initial coupled model state is as follows,

xa0 = xb + K(y −H
(
Mα(xb))

)
, (8.6)

where the gain matrix K = BMαTHT
(
R + HMαBMαTHT

)−1
and the correspond-

ing analysis of the scalar coupling parameter is as follows,
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αa = αt + kα (y −H(Mα(xa0))) , (8.7)

where the gain vector kα = σα
2
(
∂Me

∂α
(xa0)

)T
HTR−1. The model

Mα =Me
0→1(x0,α

a), therefore is the erroneous model (8.2) but with the true value

of the coupling parameter αt replaced with the analysis of the coupling parameter

αa. We have assumed the tangent linear hypothesis [17] holds, for both the nonlinear

observation operator H and nonlinear system equationsMα, as described previously

in Section 2.3.1. In summary, the linear observation operator H is the first order

term in the expansion of the Taylor series of H(x + δx) and the tangent linear model

Mα is the first order term in the expansion of the Taylor series ofMα(x + δx). Note

that in the evaluation of (8.7) we have assumed that the coupling parameter is not

present in the observation operator.

We should note that the departure of the coupling parameter analysis (8.7) from

the original ‘optimal’ value αt is dependent on the specification of the variance σα
2.

We also highlight this departure is also dependent on the comparison of the observa-

tion vector with the model state analysis evolved using the biased model (and then

mapped to observation space). We hypothesise that the deviation of the analysis of

coupling parameters from their prior ‘optimal’ values can compensate for the model

bias and pull the model trajectories closer to the observations and hence improve

the coupled model state forecast. We next investigate the potential improvements to

coupled forecasts this scheme can produce, by implementing this scheme in numerical

experiments.
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8.4 Numerical experiments compensating for

model bias

In this section we apply the coupling parameter estimation scheme to the case when

the model used in 4DVar has error of the form (8.3). In this section, the error present

in the model (8.3) is that of bias. The ‘true’ and biased idealized coupled models

are as described in Section 8.2 with the prior ‘optimal’ coupling parameter αt = 1

and the model bias vector at each time-step set to η = (5 × 10−2, 5 × 10−2, 5 ×

10−2, 5 × 10−2, 5 × 10−2)T . This high level of model bias creates biased model state

trajectories that deviate significantly from the ‘true’ model state trajectories, as can

be seen Figure 8.1. We consider direct observations, with linear observation operator

Hi = I at all observation times ti, of all atmosphere and ocean variables to be

available every 10 time-steps over a total assimilation window length of 250 time-

steps. Later in this section we will vary the assimilation window length and investigate

the impact this has on the results. The observation error covariance matrix Ri is

diagonal at each observation time ti in the assimilation window, initially set with

variances 1.6×10−5, 1.6×10−5, 6.4×10−5, 10−6, 10−6 along the diagonal. The standard

deviations of the observation errors are relative to the amplitude of each of the model

state variables. We assume we have a background model state vector xb of the form

(2.5) where initially we specify a diagonal background error covariance matrix B

with the variances 4 × 10−3, 4 × 10−3, 4 × 10−3, 10−3, 10−3 along the diagonal. The

reasoning for the specification of the background variance for z not being larger

than those for x and y (as was for the observation variances) is that the atmospheric

equation for z (5.4) is the only equation that does not contain the coupling parameter.

Therefore, initial experiments will investigate whether the bias in the forecast of

z can be compensated implicitly through the estimation of α, where we assume a
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reasonably accurate background model state is available. Later, we will investigate

the effect of decreasing the accuracy of the background on our results. As there

is only one coupling parameter α present in the idealized coupled model (5.4), the

covariance matrix F in the cost function is now replaced by the error variance σα
2.

We set the variance of the coupling parameter to σα
2 = 10−4 in the cost function

(8.4), to allow the coupling parameter to deviate from the true value in order to try

to mitigate the effect of the model bias. Experiments in this section will produce

values for the background model state and observations by taking the true model

state values and adding random error consistent with the variances specified in B

and Ri respectively. We will compare the analysis and subsequent forecast accuracy

from two strong constraint 4DVar methods.

• Method 1: Use of the biased model (8.2) in the minimisation of the strong

constraint 4DVar cost function (2.9) to best estimate the initial coupled model

state only. This analysis of the coupled model state will subsequently be used

to produce a coupled forecast with the biased coupled model.

• Method 2: Minimisation of the amended strong constraint 4DVar cost function

(8.4) to simultaneously estimate the coupling parameter α along with the initial

coupled model state. The analysis of the coupled model state and analysis of the

coupling parameter will subsequently be used to initialize a coupled forecast.

We will repeat the performance of both Method 1 and Method 2 to obtain a sample of

100 data assimilation analysis outputs for both methods. On each cycle an indepen-

dent background vector and independent vectors of observations will be used. Both

data assimilation schemes will be performed with the same set of background and

observational data on each cycle. The accuracy of the coupled forecasts from both

methods will be compared through both the assimilation window and over a further

forecast window length of 500 time-steps. Later in this section we will investigate the
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effect the length of the forecast window has on the results. We compute the accuracy

of the forecasts by calculating the RMSE (Root Mean Square Error) between the

analysis model trajectories and the true model trajectories over the sample.

8.4.1 Improved forecast accuracy

With the experimental set up as just described, the resulting RMSE’s in the analysis,

assimilation window and forecast window are shown in plots (a), (b) and (c) respec-

tively in Figure 8.2. Comparing the results from Method 1 and Method 2 in plots

(b) and (c), estimating the coupling parameter along with the coupled model state

has reduced the RMSE for each model state variable in the assimilation window and

hence improved the coupled model forecast in the subsequent forecast window. The

coupling parameter estimation has partially compensated for the model bias and thus

improved the model forecast. In doing so the analysis of the coupling parameter aver-

aged at 0.2486 below the prior ‘optimal’ value of αt = 1, with all coupling parameter

values from the sample of experiments αa < 1. We remark that when simultaneously

estimating the coupling parameter along with the model state (Method 2), this does

not necessarily provide a more accurate model state analysis, than when not estimat-

ing the coupling parameter (Method 1). This result is demonstrated in plot (a) in

Figure 8.2. Let us restate that the objective of the coupling parameter estimation

is to mitigate the effect of the model bias over the assimilation window and hence

provide an improved forecast.

The most significant improvement the coupling parameter estimation has made

to the forecast accuracy is that to the ocean variable v , as shown in Figure 8.2. This

is because the ‘true’ trajectory and ‘biased’ trajectory for v have the most significant

deviations, even when the initial conditions are specified to be the same, as can be seen

in Figure 8.1. Another important outcome to note is that the z equation (5.4) does
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not explicitly contain the coupling parameter, but interaction with the atmospheric

variables x and y which do contain the coupling parameter still enables the bias in z

to be partially compensated for.

To illustrate how the developed scheme works we present the results in the as-

similation window from one sample run of both Method 1 and Method 2 in Figure

8.3. In this case the analysis of the coupling parameter αa = 0.7481. The analysis of

the coupling parameter has partially compensated for the bias in the model enabling

the true model trajectories to be better represented within the assimilation window,

particularly in this case for the atmospheric variables x, y and z. We present Figure

8.3 to emphasise that the data assimilation methods rely on observations over the

assimilation window to represent the true behaviour of the model state variables. It

is therefore the observations that are allowing the coupling parameter estimation to

compensate for the bias in the model. In Section 8.4.2 we investigate the significance

the success of this scheme has on accurate observations.

The forecast duration for which coupled 4DVar with coupling parameter estima-

tion can compensate for the bias in the model is the next area of our investigation.

The coupling parameter is not ‘correcting’ the model bias, in fact an additional error

to the prior ‘optimal’ coupling parameter value is made in order to counteract the

bias in the model. Therefore the model with the analysis of the coupling parameters

present is not expected to be an exact representation of the true dynamics, but is

expected to improve on the forecast subsequent to the assimilation window for a cer-

tain period of time. We now investigate the effect of extending the forecast period

in our numerical experiment from 500 time-steps to 1000 time-steps on our results.

The forecast RMSE’s for this longer period are shown in plot (d) in Figure 8.2. The

comparison we are interested in here is between the plot (c) where the forecast is of

length 500 time-steps with plot (d) where the forecast is of length 1000 time-steps.

With this forecast window extension, a more accurate forecast is obtained with cou-

197



pling parameter estimation (Method 2 results compared with Method 1 results) for

atmospheric variable z and both ocean variables w and v, however there is a slight

degradation to the atmospheric forecasts of x and y. The length of time that coupling

parameter estimation can compensate for the bias and improve a coupled forecast is

model dependent. We hypothesise that the less chaotic the nature of the model vari-

ables, the longer the coupled 4DVar with coupling parameter estimation scheme can

improve the forecast accuracy, as opposed to coupled model state estimation only.

This is an area of further work, as discussed in Section 9.2 of this thesis.

Figure 8.2: Comparison of Method 1 and Method 2 from a sample of 100 data assimilation runs

for both methods with the biased idealized coupled model. The figure shows the resulting RMSE

in the: (a) analysis (b) assimilation window (250 time-steps) (c) forecast window (500 time-steps)

(d) forecast window (1000 time-steps). The analysis of the coupling parameter αa resulted in an

average of 0.2486 below αt = 1.
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Figure 8.3: Atmosphere and ocean variables in the assimilation window from one sample run of

both Method 1: Strong constraint 4DVar used to estimate the coupled model state initial conditions

only (red), Method 2: simultaneous estimation of the coupled model state and coupling parameter α

(turquoise), both schemes using the biased idealized coupled model. Method 2 analysis of coupling

parameter αa = 0.7481.
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8.4.2 Reliance on observations

The observations throughout the assimilation window in the previous experiment

were of high accuracy and hence represented the general behaviour of the true model

trajectories, as can be seen in Figure 8.3. We demonstrate that when there is a

significant degradation in observation accuracy, that coupling parameter estimation

can no longer successfully compensate for bias present in a coupled model to produce

an improved coupled forecast. We illustrate this point by using the same experimental

conditions as specified in Section 8.4, except we significantly increase the observation

error standard deviations by a factor of 10, so the observations are no longer as tightly

constrained to the true model state trajectories. We conduct strong constraint 4DVar

to best estimate the initial coupled model state (Method 1) and also conduct strong

constraint 4DVar with simultaneous estimation of the coupling parameter along with

the initial coupled model state (Method 2). The resulting RMSE’s (from a sample

size of 100) throughout the assimilation and forecast windows are shown in Table 8.1

and Table 8.2 respectively for both data assimilation schemes. Comparing the results

in Table 8.1 and Table 8.2, it is only the atmospheric variables x and y that have a

slight reduction in RMSE throughout the assimilation window when simultaneously

estimating the coupling parameter. It is only the oceanic variable w that has a

reduction in forecast RMSE when simultaneously estimating the coupling parameter.

However, what should be noted is that this reduction in observation accuracy has put

more weight on the background term in the cost function and the estimation of the

coupling parameter has lead to an increase in the analysis accuracy for each of the

model state variables.

When we compare the analysis RMSE when using coupled 4DVar with coupling

parameter estimation (Method 2) in Table 8.2 with those in Figure 8.2 (pink bars),

we observe that a significant degradation in observational accuracy has significantly
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Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 0.5871 5.6339 11.2629
y 0.7848 7.1913 12.3034
z 0.6354 12.2803 10.7122
w 2.8783 3.6373 11.6071
v 1.5192 4.3968 29.4670

Table 8.1: Reduced observational accuracy. Strong constraint 4DVar used to estimate the
coupled model state initial conditions only (Method 1), using the biased idealized coupled
model. Average number of minimisation iterations: 53.

increased the statistical accuracy of the analysis. This is because the results shown in

Figure 8.2 have originated from the combination of a very high observational accuracy

with a high level of model bias. The combination of the initial model state analysis

and coupling parameter analysis that optimally minimises the cost function (8.4) is

that of an inaccurate initial model state. However, when the observational accuracy

is significantly reduced, this allows the analysis trajectories to deviate further from

the ‘true’ trajectories. In this case, less weight is put on the observational term in the

cost function and more weight is given to the background model state and background

coupling parameter terms. This leads to an improvement in statistical accuracy of

the analysis of the initial model state, as shown in Table 8.2.

In general for the estimation of coupling parameters to successfully compensate for

the bias in a model, the scheme needs to be provided with observations that describe

the behaviour of the true model trajectories to a reasonable degree of accuracy. The

inability of the coupling parameter estimation to compensate for the bias in the

assimilation window, leads to an inability of the accuracy of the coupled forecast to

be significantly improved in the forecast window.

Operationally, observations of the ocean are available less frequently in time than

observations of the atmosphere. The ocean is a slow moving system, so as long
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Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 0.0989 5.5055 11.6348
y 0.0622 6.9893 12.9469
z 0.2044 12.3463 11.5105
w 0.7552 3.6637 11.3132
v 0.0464 4.5058 31.5242

Table 8.2: Reduced observational accuracy. Strong constraint 4DVar with coupling pa-
rameter estimation (Method 2) using the biased idealized coupled model. Average number
of minimisation iterations: 42. The analysis of the coupling parameter αa resulted in an
average of 0.2148 below αt = 1.

as there are observations at a sufficient number of points in time throughout an

assimilation window, the general behaviour of the true ocean model state variables

should still be reasonably represented. This is related to the idea of ‘observability’,

as discussed by Navon [90]. With less frequent ocean observations (than observations

of the atmosphere) the coupled 4DVAR with coupling parameter estimation scheme

should still be able to compensate for bias in a coupled model. We demonstrate this

with a numerical experiment where we use the experimental set up as described at

the start of the Section 8.4 except for a reduction in the ocean observation frequency

(to every 20 time-steps as opposed to 10 time-steps). The resulting analysis and

forecast RMSE’s from a sample of runs with both Method 1 and Method 2 are shown

in Table 8.3 and Table 8.4 for Method 1 and Method 2 respectively. Estimation of

the coupling parameter (Method 2) partially compensates for the bias in the model

and leads to a reduction in the RMSE’s for all of the model state variables in the

assimilation window, when compared to coupled model state estimation only (Method

1). This leads to an increase in accuracy in the subsequent forecast for all model

state variables. However, what should be noted is that the reduction in the frequency

of ocean observations has reduced the extent to which the coupling parameter can

compensate for the model bias. This is because the true ocean variables are now
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Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 0.0906 6.7084 11.4883
y 0.0905 8.7133 12.5332
z 0.2970 13.1567 11.8780
w 1.0573 4.0636 11.8999
v 0.5378 5.0298 30.8169

Table 8.3: Reduction in ocean observations (from every 10 time-steps to every 20 time-
steps). Strong constraint 4DVar used to estimate the coupled model state initial conditions
only (Method 1), using the biased idealized coupled model. Average number of minimisation
iterations: 12.

represented at fewer points in time by the observations and in our experimental set

up we have a high level of model bias in each of the model equations, as described in

Section 8.2. In this experiment the analysis of the coupling parameter αa resulted in

an average of 0.1271 below αt = 1, however with more frequent ocean observations a

more accurate forecast was obtained with the analysis of the coupling parameter αa

being an average of 0.2486 below αt = 1, see Figure 8.2. To summarise for the scheme

to work most optimally, it requires the general behaviour of the true model dynamics

to be well represented over time to enable the coupling parameter estimation to push

the variables trajectories away from the biased trajectories and towards the truth.

Therefore, the less frequently the observations occur, the less the coupling parameter

estimation scheme can compensate for the bias and hence improve the coupled forecast

skill.

Both in this experiment and the previous experiments in this section, the bias in

the atmospheric variable z was compensated for implicitly through the estimation of

the coupling parameter α in the model equations for the atmospheric variables x and y

that are present in the model equation for z, see (5.4). We next investigate how reliant

the success of our developed method is on the specification of an accurate background

model state for variables that do not explicitly include the coupling parameter.
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Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 0.0620 6.4960 11.1985
y 0.0651 8.4198 12.2770
z 0.0934 12.9402 11.4234
w 0.0946 3.9482 10.9192
v 0.0488 4.8082 30.0434

Table 8.4: Reduction in ocean observations (from every 10 time-steps to every 20 time-
steps). Coupled 4DVar with coupling parameter estimation (Method 2) using the biased
idealized coupled model. Average number of minimisation iterations: 12. The analysis of
the coupling parameter αa resulted in an average of 0.1271 below αt = 1.

8.4.3 Background model state accuracy

Next we look at changes to the background xb. Reduction in background model

state accuracy leads to more weight being given to the observation term in the cost

function. When estimating the coupling parameter simultaneously along with the

coupled model state, this leads to more flexibility in the estimation of the coupled

model state analysis which can lead to an analysis of the coupled state and coupling

parameter that gives trajectories that fit closer to the vicinity of the observations and

hence a more accurate forecast. However, we need to be cautious, as a decrease in

background model state accuracy does not always lead to a statistically more accurate

coupled forecast when using coupled 4DVar with coupling parameter estimation, as

opposed to coupled model state estimation only. We demonstrate an exception to this

property now with the experimental set up as described at the start of Section 8.4, but

increase the background error standard deviation for the atmospheric variable z by a

factor of two. Specifically we specify a diagonal background error covariance matrix

B with the variances 4 × 10−3, 4 × 10−3, 1.6 × 10−2, 10−3, 10−3 along the diagonal.

The resulting analysis RMSE’s and forecast RMSE’s (over a forecast window length

of 500 time-steps) from a sample of data assimilation runs are shown in Table 8.5
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and Table 8.6 for Method 1 and Method 2 respectively. The coupled 4DVar with

coupling parameter scheme (Method 2) still produces an overall statistically more

accurate forecast than just estimating the coupled model state (Method 1), however

the increase is less significant and there is in fact a slight degradation in forecast

accuracy for the atmospheric variable x and little increase for the atmospheric variable

y. The analysis RMSE increased significantly for Method 1 and the atmospheric

variable z in Method 2 when the background error variance for z was increased, due

to the coupled nature of the model and the large model bias present. Also the increase

in background error variance led to the analysis of the coupling parameter αa being

further from the ‘optimal’ value, specifically 0.3731 away from αt = 1. This changed

the behaviour of the coupled model trajectories to an extent that the forecast of the

model state variable x was degraded.

In general, when the level of bias in a model is high, the coupled 4DVar with

coupling parameter estimation scheme requires both an accurate background and

accurate observations in order to represent the behaviour of the true state and enable

the analysis of the coupling parameters to compensate for the bias in the model.

This is even more important for model variables in which coupling parameters are

not present, as in these cases the coupling parameters are implicitly compensating

for the bias in the model. We next investigate whether the coupled 4DVar with the

coupling parameter scheme can compensate for model bias of even greater amplitude.

8.4.4 Amplitude of model bias

We have demonstrated in Section 8.4.1 that even with a high level of model bias, the

coupled 4DVar with coupling parameter estimation scheme can improve the coupled

forecast accuracy, as opposed to coupled model state estimation only. However, we

demonstrate there are limitations on the size of the model bias that this scheme can
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Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 6.5404 8.2967 11.2699
y 3.4261 10.1293 12.6484
z 7.0395 13.6261 12.6444
w 2.6612 4.0681 10.0414
v 1.6834 4.7229 26.4128

Table 8.5: Reduction in background accuracy for atmospheric variable z. Strong constraint
4DVar used to estimate the coupled model state initial conditions only (Method 1), using
the biased idealized coupled model. Average number of minimisation iterations: 55.

Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 4.8447 6.9316 11.5792
y 3.0861 8.1755 12.6444
z 4.1530 11.2501 11.4129
w 4.5622 3.6189 7.8518
v 2.2604 3.7921 21.1961

Table 8.6: Reduction in background accuracy for atmospheric variable z. Strong con-
straint 4DVar with coupling parameter estimation (Method 2) using the biased idealized
coupled model. Average number of minimisation iterations: 73. The analysis of the coupling
parameter αa resulted in an average of 0.3731 below αt = 1.
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successfully compensate for. We now quadruple the model bias amplitude so that

η = (0.2, 0.2, 0.2, 0.2, 0.2)T at each model time-step. With the numerical set up as

described at the start of Section 8.4, with the exception of the increased model bias,

the resulting RMSE’s from a sample of 100 data assimilation runs for both Method

1 and Method 2 are shown in Figure 8.4. Comparing the results in Figure 8.4 plot

(b) for Method 1 and Method 2, the coupling parameter estimation is shown only

to be successful in reducing the RMSE error throughout the assimilation window for

the atmospheric variable y and ocean variable v. The model bias is of such a sig-

nificantly large amplitude that the coupling parameter estimation has not succeeded

in compensating for the model bias and improving the forecast accuracy for all the

model state variables, as can be seen in Figure 8.4 plot (c). There is only a significant

reduction in the forecast RMSE for the ocean variable v when estimating the coupling

parameter along with the coupled model sate. In order to obtain this reduction the

analysis of the coupling parameter is on average 1.1257 above the original ‘optimal’

value of αt = 1. With such a large change in the specification of the coupling param-

eter, the general behaviour of the coupled model is not maintained and therefore a

degraded forecast is obtained for all variables except x and v. We note that there is a

substantial reduction in analysis RMSE when simultaneously estimating the coupling

parameter along with the coupled model state, as can be seen in plot (a) in Figure

8.4. The increase in model bias has reduced the ability of the coupling parameter

to compensate for the bias across the forecast window, but the coupling parameter

estimation is able to produce an analysis of increased accuracy.
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Figure 8.4: Increase in model bias to η = (0.2, 0.2, 0.2, 0.2, 0.2)T at each time-step. Comparison

of Method 1 and Method 2 from a sample of 100 data assimilation runs for both methods with the

biased idealized coupled model. The Figure shows RMSE errors in the: (a) analysis (b) assimilation

window (250 time-steps) and (c) forecast window (500 time-steps). The analysis of the coupling

parameter αa resulted in an average of 1.1257 above αt = 1.

In general, the coupled 4DVar with coupling parameter estimation scheme should

be used with caution if the model bias is at such a level that the analysis of the

coupling parameters, to compensate for such a high level of bias, are values that

are out of a realistic range (that for operational coupled systems would need to be

specified by a model expert). This brings us to the next topic of discussion. The

cost function (8.4) requires the specification of the ‘optimal’ coupling parameters αt

and the covariance matrix F. For a generic case, it is obvious that if the variances

specified in F are significantly small, the analysis of coupling parameters are limited

to small regions around αt. This can prevent the estimation of coupling parameters
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from successfully compensating for bias present in a coupled model. However, caution

also needs to be taken not to specify the variances in F so large that they enable the

analysis of the coupling parameters to be so far from the original ‘optimal’ values αt

to the extent that they change the general behaviour of the coupled system.

8.4.5 Background coupling parameter

In operational coupled atmosphere-ocean models, coupling parameters are best guesses

and therefore may not be equal to the ‘optimal’ values αt. We will denote these cou-

pling parameter best guesses as background coupling parameters αb. Therefore, if

this scheme were to be operationally implemented, it may be the case that αt would

be replaced by αb in the 4DVar cost function (8.4).

We demonstrate using the biased idealized coupled atmosphere-ocean model that

when a background coupling parameter αb is used, as opposed to the ‘optimal’ value

αt, that the coupled 4DVar with coupling parameter scheme can still successfully

compensate for bias in a model and improve a coupled model forecast. With the

numerical set up as described at the start of Section 8.4, with the exception that

we now use the background coupling parameter αb = 1.2 (20% error) in the biased

idealized coupled model and cost function (8.4), we perform a sample of Method 1

and Method 2 minimisations. The resulting RMSEs in the analysis and subsequent

model trajectories through both the assimilation and forecast windows are shown in

Table 8.7 and Table 8.8 for Method 1 and Method 2 respectively. The coupled 4DVar

with coupling parameter scheme is still successful in compensating for the bias in the

model and hence improving the coupled forecast (Method 2), in comparison with only

estimating the model state (Method 1). The analysis of the coupling parameter αa

resulted in an average of 0.2109 below αt = 1.

To summarise work in Section 8.4, we have demonstrated, with the use of a bi-

209



Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 0.5952 8.3758 9.5465
y 0.6222 10.0940 11.2541
z 0.4603 13.5288 13.1486
w 3.6353 4.8505 7.2853
v 2.1834 5.7438 19.6055

Table 8.7: Background coupling parameter in model αb = 1.2. Strong constraint 4DVar
used to estimate the coupled model state initial conditions only (Method 1), using the
biased idealized coupled model.

Model state Analysis RMSE RMSE
variable RMSE assimilation window forecast window
x 3.0074 2.6209 8.1993
y 3.5099 4.2142 9.6016
z 0.6620 5.2283 9.4486
w 6.7301 3.5181 6.0533
v 3.2969 3.0371 16.0080

Table 8.8: Background coupling parameter in model αb = 1.2. Strong constraint 4DVar
with coupling parameter estimation (Method 2) using the biased idealized coupled model.
The analysis of the coupling parameter αa resulted in an average of 0.2109 below αt = 1.
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ased idealized coupled model, estimation of a coupling parameter along with the

initial coupled model state can compensate for bias present in the coupled model and

subsequently improve the coupled model forecast, as opposed to coupled model state

estimation only. We have shown the reliance the success of the scheme has on how ac-

curately the background and observations represent the behaviour of the true system.

We have demonstrated the results are also dependent on the size of the bias present

in the coupled model. We next investigate whether this scheme can compensate for

error of a random nature in a coupled atmosphere-ocean model.

8.5 Numerical Experiments compensating for

random error

We now take the situation where we have a vector of random model error ηi ∼ N (0,Qi)

at each time-step in our coupled model (8.3). We demonstrate that the coupled 4DVar

with coupling parameter estimation scheme is not suited to compensating for error of

this nature and explain why. We take the experimental set as described in Section 8.4,

with the exception that the idealized coupled atmosphere-ocean model is no longer

biased and instead has random error at each time-step. We specify the model error

covariance matrix Qi to be diagonal, specifically with the variances 5 × 10−4 along

the diagonal (so that the standard deviation is less than half of the model bias we set

in the previous section). We run a experiment with 100 sample runs of Method 1 and

Method 2. Both methods use the same set of background vectors, model error vectors

and vectors of observations in each data assimilation run. The resulting RMSE’s in

the analysis, assimilation window and forecast window are shown in plots (a), (b) and

(c) in Figure 8.5. The estimation of the coupling parameter (in Method 2) reduces the

RMSE in both the analysis and the analysis trajectories throughout the assimilation
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window (than that of Method 1). The analysis of the coupling parameter αa resulted

in an average absolute error of 0.0106 from αt = 1, with approximately half the anal-

ysis outputs from the sample above αt = 1 and the other half below αt = 1. However,

this does not lead to an overall improvement in forecast accuracy subsequent to the

end of the assimilation window, as can be seen in Figure 8.5 plot (c).

Figure 8.5: Random error ηi ∼ N (0,Qi) present in the idealized coupled model at each time-

step. Comparison of Method 1 and Method 2 from a sample of 100 data assimilation runs for both

methods. The Figure shows RMSE errors in the: (a) analysis (b) assimilation window (250 time-

steps) and (c) forecast window (500 time-steps). Average number of minimisation iterations: 13

(Method 1), 53 (Method 2). The analysis of the coupling parameter αa resulted in an average of

0.0106 above αt = 1.

When the coupling parameter estimation was shown to be successful in compen-

sating for the model bias and subsequently improving the coupled model forecast in

Section 8.4, it did so by using the background and observations throughout the assim-

ilation window to describe the behaviour of the true coupled system and estimating
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an analysis of the coupling parameter to best fit the coupled model trajectory to this

information. The model error in this case was model bias, therefore of a systematic

nature, which then continued to be of a systematic nature into the forecast window.

This systematic nature of the model error allowed the coupling parameter estimation

to amend the model in such a way to reduce the impact of the model bias on the

forecast. However, in this section we are dealing with model error of a random na-

ture at each time-step, which is unpredictable. In general, when error of a random

nature is present in a coupled model, coupling parameter estimation may indeed lead

to a reduction in error within the assimilation window, but the coupling parameter

analysis is then not expected to lead to an improvement in forecast accuracy.

We next investigate whether the coupled 4DVar with coupling parameter scheme

can improve a coupled model forecast where the coupled model has a different form

of systematic error present, as opposed to model bias.

8.6 Numerical Experiments compensating for

static parameter error

Parameterization schemes are used to represent processes which are not modelled

explicitly. As previously discussed in Section 3.1.2, the specification of atmospheric

and oceanic parameter values is often a source of model error in coupled atmospheric-

oceanic models. We define the ‘optimal’ atmospheric and oceanic parameter values to

be the specifications that best represent the processes. When both the ‘optimal’ and

erroneous parameter values are time invariant, this leads to error in a coupled model

of a systematic nature. For numerical experiments presented in this section we use

the idealized coupled atmosphere-ocean model [87], discretized in time as described

in Section 5.2, as our erroneous model equations (8.2). We denote the erroneous

atmospheric model parameter σm = 10 and oceanic model parameter km = 0.1. In
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this section we no longer consider model bias or error of a random nature to be

present in the coupled model. We create our reference ‘true’ model by perturbing the

atmospheric parameter σm and the oceanic parameter km using a method known as

stochastic representation of model uncertainties [23]. This parameter perturbation

method has previously been used for ensemble forecasting, with the perturbations

taken from a uniform distribution. We use this method to create our true model

parameters σt and kt, but instead of using a uniform distribution, we use the following

Gaussian distributions,

σt = γσσm, γσ ∼ N (1,
1

144
),

kt = γkkm, γk ∼ N (1,
1

36
). (8.8)

Once evaluated σt and kt are held constant in our reference ‘true’ coupled model (8.1).

The atmospheric parameter σt is varied at a ‘low’ level with standard deviation 1
12

and the oceanic parameter kt is varied at a ‘medium’ level with standard deviation 1
6
.

We specify the true initial conditions xt0 = −3.4866, yt0 = −5.7699, zt0 = 18.3410,

wt0 = −10.7175, vt0 = −7.1902, as defined at the start of Section 8.2. Figure 8.6

shows an example of the idealized coupled model run for 750 time-steps, firstly with

the true model parameters σt = 8.1176 and kt = 0.1144 (calculated as described

above) and secondly with the erroneous model parameters σm = 10 and km = 0.1,

where both models have been initialised with the same true initial conditions. There

are significant levels of error in the model state trajectories for all of the variables, with

the atmospheric variables on the wrong side of the model attractor for the majority

of the second half of the time window and the ocean variables drifting from the true

values.
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Figure 8.6: True idealized coupled model trajectories with σt = 8.1176 and kt =

0.1144 (black), erroneous idealized coupled model trajectories with σm = 10 and km = 0.1

(pink). Both models initialised with the same initial conditions (xt0, y
t
0, z

t
0, w

t
0, v

t
0)T =

(−3.4866,−5.7699, 18.3410,−10.7175,−7.1902)T .

We will next investigate the ability of the coupled 4DVar with coupling parameter

estimation scheme to compensate for the erroneous atmospheric and oceanic param-

eter values in the idealized coupled model. We emphasise that is not the atmospheric

and oceanic parameter values we will be estimating, it is the coupled model state and
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the coupling parameter. We will use the same data assimilation set up as described

at the start of Section 8.4, with the exception that the source of the error in the

coupled model is now parameter errors as described above, as opposed to model bias.

We will also extend the assimilation window length to 500 time-steps. Looking at

Figure 8.6, we can see this time length of 500 time-steps allows the parameter errors

to create a significant difference in the model state trajectories, particularly towards

the end of the window. We also increase the variance of the coupling parameter to

σα
2 = 10−2 in the cost function (8.4), to allow the coupling parameter to deviate from

the true value in order to try to mitigate the effect of the parameter errors across this

longer window. To recap, the error covariance matrices B and Ri are set as defined

as conditions A in Table 8.9.

We perform data assimilation with Method 1 (coupled 4DVar) and Method 2

(coupled 4DVar with coupling parameter estimation) and compare the analysis and

subsequent analysis trajectories by computing the RMSE (Root Mean Square Error)

from a sample of analysis outputs. We conduct the following steps 100 times.

1. Produce a background vector xb by adding noise, consistent with the statistics

prescribed in B, to the true initial state xt0.

2. Compute the true model parameters σt and kt as described in (8.8).

3. Produce a vector of observations yi at each observation time ti by evaluating

the true model state vector xti with equation (8.1) with the true coupling pa-

rameters σt and kt present and subsequently adding noise in proportion to the

error statistics specified in Ri.

4. Use the coupled model (8.2) with erroneous parameter values σm = 10 and

km = 0.1 in the data assimilation methods (Method 1 and Method 2) to compute

the analysis outputs.
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5. Initialize the coupled model with the respective analysis outputs to produce a

coupled model forecast (over 500 time-steps) for both Method 1 and Method 2.

8.6.1 Results

With the experimental set up as just described, the results comparing the performance

of Method 1 (estimating the coupled model state only) and Method 2 (simultaneously

estimating the coupled model state and the coupling parameter) are shown in Figure

8.7. We observe that the coupling parameter estimation has partially compensated

for the atmosphere and ocean parameter errors in the assimilation window, with a

reduction in RMSE as shown in plot (b) in Figure 8.7. This has lead to improvements

in the subsequent forecast accuracy of each of the model state variables, as can be

seen in plot (c) in Figure 8.7. This illustrates the ability of the coupling parameter

estimation to partially compensate for the static atmospheric and oceanic parameter

errors and produce analysis trajectories that are a closer representation of the true

behaviour of the model state variables. The analysis of the coupling parameter αa re-

sulted in an average absolute error of 0.0526, with the values of αa equally distributed

above and below the true value αt. Again, we note that an increase in forecast accu-

racy does not necessarily lead to an increase in analysis accuracy, which can be seen

when comparing the analysis RMSE’s in plot (a) between Method 1 and Method 2 for

the ocean variable v. The least significant increase in forecast accuracy, comparing

the forecast RMSE from Method 1 and Method 2, is for the atmospheric variable z.

This is because the model equation for this variable (5.4) does not contain either of

the erroneous parameter values σm and km and also does not contain the coupling

parameter α.

We next demonstrate that the increase in forecast accuracy, from coupling param-

eter estimation, does not remain for an indefinite time. We have extended the forecast
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window by 500 time-steps to a total length of 1, 000 time-steps and calculated the

corresponding forecast RMSE’s which are shown in plot (d) in Figure 8.7. With this

increase in the forecast window length, the forecast accuracy is no longer improved

with coupling parameter estimation for the atmospheric variable z.

Figure 8.7: Parameter errors in σm and km in idealized coupled model. Comparison of Method

1 and Method 2 from a sample of 100 data assimilation runs for both methods. The Figure shows

RMSE’s in the: (a) analysis (b) assimilation window (500 time-steps) (c) forecast window (500 time-

steps) and the (d) extended forecast window (1000 time-steps). Average number of minimisation

iterations: 53 (Method 1), 80 (Method 2). The analysis of the coupling parameter αa resulted in an

average absolute error of 0.0526.

We next conduct numerical experiments to investigate how the following changes

in the data assimilation set-up conditions affect the results.

• Conditions A: No changes (see Table 8.9).

• Conditions B: Reduction in the accuracy of both the atmosphere observations

and ocean observations (see Table 8.9).
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• Conditions C: Reduction in the frequency of the ocean observations,

– from every 10 time-steps to every 20 time-steps.

• Conditions D: Reduction in the accuracy of the background model state (see

Table 8.9).

• Conditions E: Increase in the amplitude of the atmosphere and ocean parameter

errors,

– σm varied at a ‘medium’ level with standard deviation 1
6

and km varied at

a ‘high’ level with standard deviation 1
3

(8.8).

• Conditions F: The true coupling parameter is unknown to the data assimilation

process,

– instead we set the background coupling parameter αb = 1.2.

We present results from a sample size of 100 data assimilation runs using both

Method 1 (estimation of the coupled model state only) and Method 2 (coupled 4DVar

with coupling parameter estimation) for each set of conditions (A-F). We summarise

the results in Figure 8.8, where the overall combined coupled model state % increase

in RMSE is presented, from using Method 2 as opposed to Method 1. The RMSE

has been computed with all variables for Method 1 and Method 2 respectively. Sub-

sequently the % increase from using Method 2 as opposed to Method 1 has been

computed. The presence of negative values indicate that the coupling parameter

estimation has compensated for the model error and hence increased the forecast

accuracy. The results shown in Figure 8.8 for conditions A use the same data as pre-

sented in Figure 8.7, which we use as our control conditions and results. The results

in plot (c) Figure 8.8 show that use of all the conditions (A-F) result in an increase in

forecast accuracy, however the extent of which varies depending on the specification
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of the conditions. It should be noted again that the increase in forecast accuracy

does not necessarily originate from an increase in analysis accuracy, as can be seen in

plot (a) in Figure 8.8. The reason for this is that this method aims to use coupling

parameter estimation to compensate for the bias in the model. At the initial time

there is no effect from the bias in the model as the model has not yet been evolved.

For the coupling parameter to compensate for the atmosphere and ocean param-

eter errors, accurate observations are required in order to represent the true coupled

dynamics. We next demonstrate that a decrease in observational accuracy has a detri-

mental effect on the success of the developed scheme. Using conditions B as stated in

Table 8.9, where the observation error standard deviations have been increased by a

factor of 10, the accuracy of both the atmosphere and ocean observations have been

degraded leading to the coupled 4DVar with coupling parameter scheme (Method 2)

producing analysis trajectories of less accuracy throughout the assimilation window,

than when not estimating the coupling parameter (Method 1), as shown in plot (b)

in Figure 8.8. There is still however a small increase in forecast accuracy post the as-

similation window, shown in Figure 8.8, as the coupled model behaviour towards the

end of the assimilation window is better captured with the analysis of the coupling

parameter (than with the true value) when there is model error present, which sub-

sequently leads to forecast trajectories that begin closer to the true conditions. The

general result is that the more accurate the observations are, the more successfully the

coupling parameter can compensate for the atmosphere and ocean parameter errors.
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Conditions Covariance Variance Variance Variance Variance Variance
matrix for x for y for z for w for v

A, B, C, E, F B 4× 10−3 4× 10−3 4× 10−3 10−3 10−3

A, C, D, E, F Ri 1.6× 10−5 1.6× 10−5 6.4× 10−5 10−6 10−6

B Ri 1.6× 10−3 1.6× 10−3 6.4× 10−3 10−4 10−4

D B 4× 10−1 4× 10−1 4× 10−1 10−1 10−1

Table 8.9: Error covariance matrices used in Method 1 and Method 2 with the ideal-
ized coupled atmosphere-ocean model with parameter errors. Condition A is as used
in the initial experiment at the start of Section 8.6.1 .

Figure 8.8: Parameter errors in σm and km in the idealized coupled model. Comparison of

Method 1 and Method 2 from a sample of 100 data assimilation runs. The Figure shows overall

% increase in RMSE in the: (a) analysis (b) assimilation window (500 time-steps) and (c) forecast

window (500 time-steps) from using Method 2 as opposed to Method 1.

Operationally, observations of the ocean are available less frequently in time than

observations of the atmosphere. The ocean is a slow moving system, so as long as there

are observations at a sufficient number of points in time throughout an assimilation

window, the general behaviour of the true ocean model state variables should still
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be reasonably represented. With less frequent ocean observations (than observations

of the atmosphere) the coupled 4DVAR with coupling parameter estimation scheme

should still be able to compensate for static atmosphere and ocean parameter errors

in a coupled model. We demonstrate this with a reduction in the ocean observation

frequency (to every 20 time-steps as opposed to 10 time-steps) as in ‘Conditions C’.

There is a significant % reduction RMSE in the resulting RMSE’s when estimating the

coupling parameter along with the model state (Method 2), as opposed to estimating

the model state only (Method 1), as shown in Figure 8.8. When comparing the results

in Figure 8.8 when using conditions C as opposed to conditions A, i.e. a reduction in

ocean observation frequency, we observe that the reduction in % RMSE is less in the

assimilation window, however it is slightly larger in the forecast window.

We next demonstrate that increasing the error variances of the background coupled

model state can lead to a more significant improvement in the forecast accuracy, when

using Method 2 as opposed to Method 1. We significantly increase the background

error standard deviations by a factor of 10 for all atmosphere and ocean model state

variables, as stated in conditions D in Table 8.9. The resulting RMSE % reduction is

shown in Figure 8.8. Comparing the results from this experiment using conditions D

with those from the control experiment using conditions A, we observe a much larger

% reduction RMSE in the coupled forecast when estimating the coupling parameter

along with the coupled model state using conditions D, see plot (c). Increasing the

background variance, puts less weight on the background term in the 4DVar cost

function. When estimating the coupling parameter along with the coupled model

state in order to compensate for model error, this can lead to a significant decrease

in analysis accuracy, as can be seen in the plot (a) in Figure 8.8. However, the

decrease in weight of the background term in the cost function can allow the coupled

model state trajectories to better fit the vicinity of the observations towards the

end of the assimilation window and with coupling parameter estimation capture the
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general behaviour of the coupled model with more accuracy in the latter part of the

assimilation window which can lead to a subsequent improvement in the forecast

accuracy. Let us remark that the analysis of the coupling parameter αa resulted in an

average absolute error of 0.1249 from the true value αt, which is a significantly larger

error than the control run, in order to fit the coupled model state analysis trajectories

in close vicinity to the observations in the latter part of the assimilation window.

The increase in forecast accuracy simultaneously estimating the coupling param-

eter along with the model state, as opposed to coupled model state estimation only,

increases with an increase in amplitude of the parameter errors. We demonstrate this

result by increasing the standard deviations of the atmospheric and oceanic param-

eter errors by two, as stated in conditions E, where σm is now varied at a ‘medium’

level with standard deviation 1
6

and km is now varied at a ‘high’ level with standard

deviation 1
3

(8.8). The % reduction in RMSE results are shown in Figure 8.8 for

these conditions, where in comparison to the control run (conditions A), there are

increased % reductions in the RMSE’s in both the assimilation and forecast window.

This is because when not accounting for model error (Method 1), the data assim-

ilation scheme is unable to closely fit the erroneous model state trajectories to the

observations. Whereas, the coupling parameter estimation enables the model state

trajectories to better fit to the close vicinity of the observations.

So far work in this section has assumed that the ‘optimal’ value of the coupling

parameter in the idealized coupled atmosphere-ocean model (5.4) is known, specif-

ically αt = 1. However, in operational coupled atmosphere-ocean models coupling

parameters are best guesses and therefore may not be equal to the ‘optimal’ values.

We demonstrate that even when the ‘optimal’ coupling parameter αt in the idealized

coupled model and hence in the cost function (8.4) is replaced with a ‘background’

coupling parameter αb, that Method 2 is still successful in compensating for the er-

rors in the model and hence improving the coupled forecast. We replace αt = 1 with
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αb = 1.2 in the erroneous idealized coupled model and denote these conditions F. The

results in Figure 8.8 show that the coupled 4DVar with coupling parameter scheme

(Method 2) is still successful in compensating for the parameter errors in the model

and hence improving the coupled forecast, in comparison to when estimating the cou-

pled model state only (Method 1). The analysis of the coupling parameter αa resulted

in an average of 0.0851 away from αt = 1, which is a significant increase from the

‘control’ run using conditions A. The % reduction in forecast RMSE has significantly

increased with these conditions F in comparison to the control conditions A. This is

because there is now error in the coupling parameter αb as well as the atmosphere

and ocean model parameters σm and km and when not accounting for the parameter

errors (Method 1), this causes a significant degradation in forecast accuracy.

Coupled 4DVar with coupling parameter estimation can improve a coupled model

forecast, when compared with the forecast initialised with the estimation of the ini-

tial coupled model state only. We have shown, with use of an idealized coupled

atmosphere-ocean model, that coupling parameter estimation can compensate for

both model bias and time invariant atmosphere and ocean parameter errors, which

can then subsequently improve a coupled forecast. We have shown that our developed

scheme is not able to mitigate the effect random errors present in a coupled model

have on the coupled forecast.

We predict that coupled 4DVar with a coupling parameter estimation scheme

can compensate for other types of systematic error, as well as model bias and static

parameter errors that we have focused on, and this is discussed in Section 9.2, further

work, of this thesis. Further work also includes how the covariance matrix F in

the 4DVar cost function (8.4) should be specified for operational coupled models.

Other proposed further work is to consider the estimation of time varying coupling

parameters in order to better compensate for the error within the assimilation window.

We define time varying coupling parameters as coupling parameters that are not
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static over the full assimilation window, but instead are static for shorter periods

within the window. Numerical experiments conducted in this section have used the

idealized coupled atmosphere-ocean model [87]. Further work involves extending this

investigation to use more complex coupled atmosphere-ocean models which are of a

more realistic nature.

8.7 Summary

Coupled atmosphere-ocean models at operational NWP centres are used to produce

seasonal to interannual forecasts. Bulk formulae represent fluxes at the atmosphere-

ocean interface in the coupled model equations, where these formulae require the

specification of coupling parameters. Operational centres are moving towards coupled

data assimilation, where the initial conditions of both the atmospheric and oceanic

variables are simultaneously estimated. We have extended the idea of coupled model

state estimation to also simultaneously estimating coupling parameters in the strong

constraint 4DVar framework. We have demonstrated, with use of an idealized coupled

atmosphere-ocean model, how estimation of a coupling parameter can compensate

for both model bias and static atmosphere and ocean parameter errors present in a

coupled model and hence improve the accuracy of the coupled forecast.
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Chapter 9

Conclusions

Variational data assimilation methods aim to best estimate the state of a system,

with practical applications including both atmospheric and oceanic forecasting. We

acknowledge in this thesis that models are representations of true dynamical systems

and therefore consist of incorrect equations. The inconsistencies these incorrect equa-

tions have with the truth can be of a random or systematic nature. In this thesis we

define these inconsistencies as ‘model error’. In particular we focus on the fact that

coupled atmosphere-ocean models contain model error [104] [54] [34]. In Chapter 3

we outlined current variational data assimilation methods used at operational NWP

centres for both forecasting and reanalysis. A current objective of operational weather

centres is how to better account for model error in the data assimilation process.

In chapter 3 we described the use of consistency diagnostics, that assume a correct

model, as quality checks for the specification of both background error and observa-

tion error covariance matrices. In Chapter 4 we explained the current difficulties in

specifying model error covariance matrices for operational models at NWP centres

and highlighted the negative effects the use of weak constraint 4DVar with inaccu-

rately specified model error covariance matrices can have on forecasts. In Chapter
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4, we also examined data assimilation methods that have been formulated to com-

pensate for bias present in coupled atmosphere-ocean models, with the objective to

improve coupled model forecasts. Compiling this background research provided us

with the motivation for the work in this thesis. The key objectives of this thesis

were to develop methods in two key areas; firstly, to verify and refine an estimated

model error covariance matrix and secondly, to account for model error in the data

assimilation process without the need for the explicit specification of the model error

statistics. The latter of these tasks is split into two sub areas; accounting for model

error to improve the estimation of the initial conditions and accounting for model

error to improve the accuracy of a coupled atmosphere-ocean model forecast. We

next summarise the work carried out in this thesis and the subsequent conclusions

drawn and then suggest ideas for further work.

9.1 Conclusions

A set of four diagnostics tools were developed by Desroziers et al. [38] as consistency

checks for the specification of both background error and observation error covariance

matrices. These diagnostic tools were not formulated to include model evolution and

hence when used with model evolution, do not account for any errors present in the

model. Practical use of these diagnostic tools at operational weather centres has

been conducted with model evolution included [2]. We know that operational NWP

models contain error and work in Chapter 6 involved investigating the effect random

model error has on the diagnostic tools. One strong constraint 4DVar diagnostic

equation has been derived previously which accounts for random error present in

a model [33] [2]. In Chapter 6 we developed three further strong constraint 4DVar

diagnostic equations that account for random error present in a model. We conducted

comparisons of the diagnostic tools that account for random model error with the set
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of diagnostic tools that assume a perfect model and observed an additional term

involving the model error covariance matrix present in each respective diagnostic

equation. We emphasized that caution should be taken, if random model error is

or could be present, when using any of the four diagnostic equations that assume a

perfect model.

In Chapter 6, we next demonstrated that the set of four diagnostic equations, that

account for the presence of random error in a model, can be used as quality checks to

verify the consistency of an estimated model error covariance matrix, in observation

space, with both background error and observation error covariance matrices. We

subsequently described how the strong constraint 4DVar diagnostic tools have the

potential, under certain conditions, to be used to refine an estimated model error

covariance matrix.

Weak constraint 4DVar relies on the accurate specification of a model error co-

variance matrix. In Chapter 6 we developed four diagnostic equations specifically

for the weak constraint formulation of 4DVar. We subsequently demonstrated the

use of these weak constraint 4DVar diagnostic equations to verify the consistency of

an estimated model error covariance matrix, in observation space, with both back-

ground error and observation error covariance matrices. The theory developed in this

chapter is not specific to erroneous models of atmospheric and oceanic dynamics and

can be used with any erroneous model where the error is of a random nature at each

time-step.

In Chapter 4 we described data assimilation techniques developed to acknowledge

that the comparison between observations and the model state, in the presence of

representativity error, is not optimal without amending the cost function [56]. We

then discussed the relationship between representativity error and model error and

subsequently identified the fact that methods to deal with representativity error had

the potential to be further developed to account for model error. In Chapter 7
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we developed a combined model error and observation error covariance matrix that

accounts for the errors in the comparison of observations with a model evolved initial

state (mapped to observation space), where the model is of an erroneous nature

with random error at each time-step. When a model with random error at each

time-step is used within strong constraint 4DVar, replacing the observation error

covariance matrix with this combined error covariance matrix, produces a statistically

better estimate of the initial state. This replacement ensures the 4DVar problem is

formulated to be mathematically correct, in order to best estimate the initial state

with use of an erroneous model of this nature.

The equation we derived for the combined model error and observation error co-

variance matrix (7.9) includes the specification of model error covariance matrices. As

previously discussed, these are often unknown and therefore we developed a method,

with use of diagnostic tools, to estimate the combined model error and observation

error covariance matrix without the need for explicit specification of the model error

statistics. We subsequently demonstrated the successful application of our developed

4DVar method with the estimated combined model error and observation error co-

variance matrix. These numerical experiments involved use of an erroneous idealised

nonlinear coupled model, where the coupled model analysis was of higher accuracy

when using the estimated combined error variances in the cost function, as opposed

to the observation error variances alone. Similarly to Chapter 6, the theory developed

in Chapter 7 is not specific to erroneous models of atmospheric and oceanic dynamics

and can be used with any erroneous model where the error is of a random nature at

each time-step.

In Chapter 8 we focused our attention on coupled atmosphere-ocean models, which

at operational NWP centres are used to produce seasonal to interannual forecasts.

Bulk formulae represent fluxes at the atmosphere-ocean interface in the coupled model

equations, where these formulae require the specification of coupling parameters. Op-
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erational centres are moving towards coupled data assimilation, where the initial con-

ditions of both the atmospheric and oceanic variables are simultaneously estimated.

We extended the idea of coupled model state estimation to also simultaneously es-

timating coupling parameters by augmenting the strong constraint 4DVar control

vector to include the model’s coupling parameters along with the model state initial

conditions. We demonstrated, with use of an idealized coupled atmosphere-ocean

model, how estimation of a coupling parameter can compensate for both model bias

and static atmosphere and ocean parameter errors present in a coupled model and

hence improve the accuracy of the coupled forecast. We investigated and presented

the conditions under which coupling parameter estimation can best compensate for

these systematic errors in the model. These conditions include accurate observa-

tions of the model state variables to describe the general behaviour of the true model

trajectories throughout the assimilation window.

9.2 Further work

Methods developed in this thesis have been formulated with the future objective to

be of practical use at operational NWP centres. Prior to possible implementation,

we suggest the following ideas for further work.

Work in Chapter 6 involved the derivation of diagnostic equations that accounted

for model error of a random nature. We developed and demonstrated use of both

strong constraint and weak constraint 4DVar consistency diagnostic equations (6.8),

(6.10), (6.12), (6.13) and (6.29), (6.33), (6.35), (6.36) respectively. It was assumed

that samples of innovation vectors that include samples of model error were available

for use in the diagnostic equations. In ‘toy’ models we can create the model error

vectors required as we have the model error covariance matrix from which we can

sample vectors of random error. However, this is certainly not the case for operational
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models of the atmosphere and ocean. Therefore, how to obtain the required samples

of innovation vectors operationally is an area of further work.

Of course there is no ‘true’ forecast model of the atmosphere and ocean. Op-

erational weather centres have forecast models that best describe the atmosphere

and ocean as well as they can, but contain errors. What operational centres do also

have are ensemble prediction systems that aim to represent random error in a model

forecast using stochastic physics [23]. Therefore, we suggest use of these ensemble

prediction systems to obtain the innovation data. We have two suggested options

to do so: Firstly, obtaining a sample of background vectors at a unique time and

using an ensemble prediction system to evolve the sample of background vectors to

the subsequent time. A sample of observation vectors are required at this subsequent

time. Secondly, again using the ensemble prediction system to evolve a sample of

background vectors, but using innovations across multiple times and therefore allow-

ing use of observational data from different times and considering a time-averaged

model error covariance matrix. The first of these methods would be advantageous as

this would allow for the model error covariance matrix to evolve with each time-step.

However, this is dependent on the availability of the sample observation data at a

unique time. The next step is to work with weather centres to discuss the availability

of innovation data.

Further work also involves the possible simplification and the possible use of the

weak constraint 4DVar consistency diagnostics (6.29), (6.33), (6.35) and (6.36) we

derived in Chapter 6 to enable an estimated model error covariance matrix to be

refined.

Work in Chapter 7 involved the derivation of a combined model error and ob-

servation error covariance matrix. Both an explicit calculation and an estimation

(using diagnostic tools) of the combined model error and observation error covariance

matrix were conducted in Chapter 7 with a nonlinear erroneous idealized coupled
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atmosphere-ocean model. Further work should be conducted to investigate which of

these combined covariance matrices, explicit calculation or estimation with diagnostic

tools, is the most successful combined model error and observation error statistics to

use in the 4DVar cost function with a nonlinear erroneous model to improve the anal-

ysis accuracy the most. Although, it should be kept in mind that if this were to be

conducted operationally the method used would be estimation (using the diagnostic

tools) as the model error covariance matrix is unknown.

Work in Chapter 7 assumed that the true background error statistics were known

in the estimation of the combined model error and observation error covariance ma-

trix. Operationally background error statistics are estimated and therefore are likely

to contain inaccuracies. Further work involves the investigation of the possible detri-

mental implications an inaccurately specified background error covariance matrix

could have on the estimation of the combined error statistics. Further to this, inves-

tigations should be conducted into the implications an inaccurately specified back-

ground error covariance matrix has on the analysis accuracy when using estimated

combined model error and observation error covariance statistics in 4DVar.

Demonstrations we conducted in Chapter 7 to show the success of the developed

method, to account for model error and hence improve the analysis, involved use of

an erroneous idealised nonlinear coupled model, where only the diagonal entries of

the combined model error and observation error matrix were evaluated and used in

the process. An investigation into the significance of including cross covariance infor-

mation within the combined error matrix should be conducted. We hypothesise that

the inclusion of this cross covariance information will further improve the analysis

accuracy. Practical limitations on specifying very large full error covariance matrices

should be kept in mind and therefore investigation into which cross covariance infor-

mation is most important to include and why should be conducted. Further work

should also involve implementation of the developed method, to both estimate the
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combined statistics and then subsequently use these in the strong constraint 4DVar

cost function, with an erroneous coupled atmosphere-ocean model of a more complex

nature.

Although the objectives of strong constraint 4DVar and weak constraint 4DVar

are different, an interesting comparison would be the analysis accuracy and the subse-

quent forecast accuracy from strong constraint 4DVar, strong constraint 4VDar with

combined model error and observation error statistics and weak constraint 4DVar.

This would allow a summary of which method could be most appropriate to use de-

pending on the objective of the assimilation. We hypothesise that strong constraint

4DVar with combined error statistics would be most appropriate when the the objec-

tive is to best estimate the initial model state, however to improve the accuracy of

the analysis trajectory across the assimilation window weak constraint 4DVar should

be used.

Work in Chapter 8 of this thesis involved coupling parameter estimation, in the

strong constraint 4DVar framework, to compensate for both model bias and static

atmosphere and ocean parameter errors present in a coupled model and hence im-

prove the accuracy of the coupled forecast. The investigation into how best to specify

the variances for the coupling parameters for operational coupled models should be

conducted. Further work should involve contact with operational weather centres to

assess which coupling parameters are most suitable for inclusion in the scheme. We

suggest that future work in this area should also include estimation of time varying

coupling parameters with the aim to better compensate for the error in the model

over time. Specifically, whether splitting an assimilation window into sub intervals,

where coupling parameters were estimated and stayed constant only in each sub-

window, could further improve the accuracy of the analysis trajectory. It may be

possible characteristic features could be identified, for example certain values of cou-

pling parameters compensating for errors during the day and other values of coupling
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parameters better compensating for the errors over night. This information could

then be applied to improve coupled forecasts further and possibly for a longer length

of time.

We hypothesise that the less chaotic the nature of a model, the longer the coupled

4DVar with coupling parameter estimation scheme can improve the forecast accuracy.

Testing this statement further is an area of suggested work. Demonstrations in Chap-

ter 8 used an idealized coupled atmosphere-ocean model, firstly that was biased and

secondly, that contained static atmosphere and ocean parameter errors. Future work

involves extending this investigation to compensate for other types of systematic error

present in a coupled model and the combination of multiple forms of systematic errors

present in a coupled model. We suggest that future work should also involve imple-

mentation of the coupled 4DVar with coupling parameter estimation scheme with an

erroneous coupled atmosphere-ocean model of a more complex nature. The complex

coupled model under consideration could contain multiple coupling parameters to be

estimated along with the coupled model state.

234



Bibliography

[1] C.D. Ahrens. Meteorology today: An introduction to Weather, Climate, and the

Environment. Cengage Learning, 2012.

[2] E. Andersson. Modelling the temporal evolution of innovation statistics. In

Recent developments in data assimilation for atmosphere and ocean, ECMWF,

pages 153–164, 2003.

[3] E. Andersson, M. Fisher, R. Munro, and A. McNally. Diagnosis of background

errors for radiances and other observable quantities in a variational data assim-

ilation scheme, and the explanation of a case of poor convergence. Quarterly

Journal of the Royal Meteorological Society, 126(565):1455–1472, 2000.

[4] M.A. Balmaseda and D. Anderson. Impact of initialization strategies and ob-

servations on seasonal forecast skill. Geophysical Research Letters, 36(1), 2009.

[5] M.A. Balmaseda, K. Mogensen, and A.T. Weaver. Evaluation of the ECMWF

ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological

Society, 139(674):1132–1161, 2013.

[6] M.A. Balmaseda, A. Vidard, and D.L.T. Anderson. The ECMWF Ocean Anal-

ysis System: ORA-S3. Monthly Weather Review, 136(8):3018–3034, 2008.

235



[7] R.N. Bannister. A review of forecast error covariance statistics in atmo-

spheric variational data assimilation. I: Characteristics and measurements of

forecast error covariances. Quarterly Journal of the Royal Meteorological Soci-

ety, 134(637):1951–1970, 2008.

[8] R.N. Bannister. A review of forecast error covariance statistics in atmospheric

variational data assimilation. II: Modelling the forecast error covariance statis-

tics. Quarterly Journal of the Royal Meteorological Society, 134(637):1971–1996,

2008.

[9] S. Bélair, J. Mailhot, C. Girard, and C.P. Vaillancourt. Boundary layer and

shallow cumulus clouds in a medium-range forecast of a large-scale weather

system. Monthly weather review, 133(7):1938–1960, 2005.

[10] M.J. Bell, R.M. Forbes, and A. Hines. Assessment of the FOAM global data as-

similation system for real-time operational ocean forecasting. Journal of Marine

Systems, 25(1):1–22, 2000.

[11] M.J. Bell, M.J. Martin, and N.K. Nichols. Assimilation of data into an ocean

model with systematic errors near the equator. Quarterly Journal of the Royal

Meteorological Society, 130(598):873–893, 2004.

[12] C.M. Biouele. Earth’s Atmosphere Dynamic Balance Meteorology. Scientific

Research Publishing, Inc. USA, 2015.

[13] J. Bjerknes. A possible response of the atmospheric Hadley circulation to equa-

torial anomalies of ocean temperature. Tellus, 18(4):820–829, 1966.

[14] E. Blayo, M. Bocquet, E. Cosme, and L.F. Cugliandolo. Advanced data assim-

ilation for geosciences. In International Summer School-Advanced Data Assim-

ilation for Geosciences, page 608. Oxford University Press, 2014.

236



[15] E.W. Blockley, M.J. Martin, A.J. McLaren, A.G. Ryan, J. Waters, D.J. Lea,

I. Mirouze, K.A. Peterson, A. Sellar, and D. Storkey. Recent development of the

Met Office operational ocean forecasting system: an overview and assessment of

the new global FOAM forecasts. Geoscientific Model Development, 7(6):2613–

2638, 2014.

[16] Space Studies Board. Earth Science and Applications from Space: National

Imperatives for the Next Decade and Beyond. National Academies Press, 2007.

[17] F. Bouttier and P. Courtier. Data assimilation concepts and methods March

1999. Meteorological training course lecture series, ECMWF, 2002.

[18] P.A. Bouttier, E. Blayo, J.M. Brankart, P. Brasseur, E. Cosme, J. Verron, and

A. Vidard. Toward a data assimilation system for NEMO. Mercator Ocean

Quarterly Newsletter, (46):24–30, 2012.

[19] N.E. Bowler, A. Arribas, K.R. Mylne, K.B. Robertson, and S.E. Beare. The

MOGREPS short-range ensemble prediction system. Quarterly Journal of the

Royal Meteorological Society, 134(632):703–722, 2008.

[20] J.M. Brankart, G. Candille, F. Garnier, C. Calone, A. Melet, P.A. Bouttier,

P. Brasseur, and J. Vernon. A generic approach to explicit simulation of uncer-

tainty in the NEMO model. Geoscientific Model Development, 8(5):1285–1297,

2015.

[21] G.B. Brassington, M.J. Martin, H.L. Tolman, S. Akella, M. Balmeseda, C.R.S.

Chambers, E. Chassignet, J.A. Cummings, Y. Drillet, P.A.E.M Jansen, et al.

Progress and challenges in short-to medium-range coupled prediction. Journal

of Operational Oceanography, 8(2):239–258, 2015.

237



[22] M. Buehner, P. Gauthier, and Z. Liu. Evaluation of new estimates

of background-and observation-error covariances for variational assimilation.

Quarterly Journal of the Royal Meteorological Society, 131(613):3373–3383,

2005.

[23] R. Buizza, M. Milleer, and T.N. Palmer. Stochastic representation of model

uncertainties in the ECMWF ensemble prediction system. Quarterly Journal

of the Royal Meteorological Society, 125(560):2887–2908, 1999.

[24] A. Carrassi and S. Vannitsem. Accounting for model error in variational data

assimilation: A deterministic formulation. Monthly Weather Review, 138(9),

2010.

[25] F. Castelli, D. Entekhabi, and E. Caporali. Estimation of surface heat flux

and an index of soil moisture using adjoint-state surface energy balance. Water

Resources Research, 35(10):3115–3125, 1999.

[26] D.M. Causon and C.G. Mingham. Introductory Finite Difference Methods for

PDEs. Bookboon, 2010.

[27] S.E. Cohn, N.S. Sivakumaran, and R. Todling. A fixed-lag kalman smoother for

retrospective data assimilation. Monthly Weather Review, 122(12):2838–2867,

1994.

[28] P. Courtier, J.N. Thépaut, and A. Hollingsworth. A strategy for operational

implementation of 4D-Var, using an incremental approach. Quarterly Journal

of the Royal Meteorological Society, 120(519):1367–1387, 1994.

[29] J. Crank and P. Nicolson. A practical method for numerical evaluation of

solutions of partial differential equations of the heat-conduction type. In Math-

238



ematical Proceedings of the Cambridge Philosophical Society, volume 43, pages

50–67. Cambridge Univ Press, 1947.

[30] R. Daley. Estimating model-error covariances for application to atmospheric

data assimilation. Monthly weather review, 120(8):1735–1746, 1992.

[31] R. Daley. Atmospheric Data Analysis. Number 2. Cambridge university press,

1993.

[32] R. Daley. Estimating observation error statistics for atmospheric data assimi-

lation. In Annales geophysicae, volume 11, pages 634–647. Copernicus, 1993.

[33] D.P. Dee. On-line estimation of error covariance parameters for atmospheric

data assimilation. Monthly weather review, 123(4):1128–1145, 1995.

[34] D.P. Dee. Bias and data assimilation. Quarterly Journal of the Royal Meteoro-

logical Society, 131(613):3323–3343, 2005.

[35] D.P. Dee, S.M. Uppala, A.J. Simmons, P. Berrisford, P. Poli, S. Kobayashi,

U. Andrae, M.A. Balmaseda, G. Balsamo, P. Bauer, et al. The ERA-Interim

reanalysis: Configuration and performance of the data assimilation system.

Quarterly Journal of the Royal Meteorological Society, 137(656):553–597, 2011.

[36] J.C. Derber. A variational continuous assimilation technique. Monthly weather

review, 117(11):2437–2446, 1989.

[37] G. Desroziers, L. Berre, and B. Chapnik. Objective validation of data assimila-

tion systems: diagnosing sub-optimality. In Proceedings of ECMWF Workshop

on diagnostics of data assimilation system performance, pages 15–25, 2009.

239



[38] G. Desroziers, L. Berre, B. Chapnik, and P. Poli. Diagnosis of observation,

background and analysis-error statistics in observation space. Quarterly Journal

of the Royal Meteorological Society, 131(613):3385–3396, 2005.

[39] G. Desroziers and S. Ivanov. Diagnosis and adaptive tuning of observation-

error parameters in a variational assimilation. Quarterly Journal of the Royal

Meteorological Society, 127(574):1433–1452, 2001.

[40] F.X. Dimet and O. Talagrand. Variational algorithms for analysis and assimila-

tion of meteorological observations: theoretical aspects. Tellus A, 38(2):97–110,

1986.

[41] C.J. Donlon, M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wim-

mer. The operational sea surface temperature and sea ice analysis (OSTIA)

system. Remote Sensing of Environment, 116:140–158, 2012.

[42] M.A. Dubois and P. Yiou. Testing asynchronous coupling on simple “ocean-

atmosphere” dynamic systems. Climate dynamics, 15(1):1–7, 1999.

[43] ECMWF. Operational implementation part II: Data assimilation, IFS docu-

mentation. Technical report, 2013.

[44] A. El-Said. Conditioning of the Weak-Constraint Variational Data Assimilation

Problem for Numerical Weather Prediction. PhD thesis, University of Reading,

2015.

[45] G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Science

& Business Media, 2009.

[46] M. Fisher. Minimization algorithms for variational data assimilation. Recent

Developments in Numerical Methods for Atmospheric Modelling, pages 364–385,

1998.

240



[47] M. Fisher. Background error covariance modelling. In Seminar on Recent

Development in Data Assimilation for Atmosphere and Ocean, pages 45–63,

2003.

[48] M. Fisher and P. Courtier. Estimating the covariance matrices of analysis and

forecast error in variational data assimilation. ECMWF, 1995.

[49] W. Fu, J. She, and M. Dobrynin. A 20-year reanalysis experiment in the

Baltic Sea using three-dimensional variational (3DVAR) method. Ocean Sci-

ence, 8(5):827–844, 2012.

[50] L.S. Gandin and R. Hardin. Objective analysis of meteorological fields.

Jerusalem: Israel program for scientific translations, 242, 1965.

[51] P. Gauthier, M. Tanguay, S. Laroche, S. Pellerin, and J. Morneau. Extension

of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service

of Canada. Monthly weather review, 135(6):2339–2354, 2007.

[52] A.E. Gill. Atmosphere-ocean dynamics, volume 30. Academic press, 1982.

[53] R.J. Graham, M.Gordon, P.J. McLean, S. Ineson, M.R. Huddleston, M.K.

Davey, A. Brookshaw, and R.T.H. Barnes. A performance comparison of cou-

pled and uncoupled versions of the Met Office seasonal prediction general cir-

culation model. Tellus A, 57(3):320–339, 2005.

[54] A.K. Griffith and N.K. Nichols. Adjoint methods in data assimilation for esti-

mating model error. Flow, turbulence and combustion, 65(3-4):469–488, 2000.

[55] K. Haines. Coupled atmosphere-ocean data assimilation. In Seminar on Data

assimilation for atmosphere and ocean, pages 249–264. ECMWF, 2012.

241



[56] D. Hodyss and N. Nichols. The error of representation: basic understanding.

Tellus A, 67, 2015.
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