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Abstract

In this thesis we develop a hybrid numerical-asymptotic boundary element
method for the efficient approximation of high-frequency time-harmonic wave
scattering by two-dimensional penetrable convex polygons.

It is well known that the numerical simulation of wave scattering problems is
computationally intensive when the wavelength is small relative to the scat-
tering obstacle. In fact, conventional methods based on polynomial approxi-
mation spaces suffer from the requirement that (in two dimensions) the num-
ber of degrees of freedom must grow at least linearly with respect to the fre-
quency in order to maintain a fixed accuracy. The hybrid numerical-asymptotic
(HNA) approach aims to remove this restriction by enriching the approxima-
tion space with oscillatory basis functions chosen to efficiently capture the
high-frequency asymptotics of the solution. Boundary element methods based
on HNA approximation spaces have been developed for scattering by different
kinds of impenetrable obstacle. They have been shown to achieve approxi-
mations of a prescribed accuracy with a number of degrees of freedom which
grows only very mildly with the frequency and in many cases can remain fixed.
This thesis extends the HNA approach for the first time to the penetrable case.

More specifically, the HNA method developed here involves first computing
the geometrical optics approximation on the boundary of the scatterer using a
beam tracing algorithm and then approximating the remaining diffracted field
using a boundary element method with an approximation space enriched with
oscillatory basis functions. These basis functions are chosen via a heuristic
extension of the Geometrical Theory of Diffraction (developed for impenetra-
ble problems) to the penetrable case. We show via numerical experiments that
a significant improvement over geometrical optics can be achieved using an
approximation space containing only a small number of degrees of freedom.
Moreover, as frequency increases we can maintain (or even improve) accuracy
without needing to increase the number of degrees of freedom.



Declaration

I confirm that this is my own work and that the use of all material from other
sources has been properly and fully acknowledged.



Acknowledgements

First and foremost I would like to thank my supervisors, Stephen Langdon,
David Hewett and Anthony Baran. Not only have they taught me a great deal
about integral equations, wave scattering, and numerical methods, but they
have also provided me countless opportunities to meet new people, learn even
more, and have great experiences. One such experience was a six month stay
hosted by Daan Huybrechs at the Katholieke Universiteit Leuven in Belgium.
I would like to thank Daan for the chance to work with him, and for teaching
me of the power and seeming magic of analytic continuation and asymptotic
expansions.

Thank you also to the many friends I have made in Reading along the way.
You have made the past four years so much more than just mathematics.

For funding this work, I thank the EPSRC and the UK Met Office. Of course
without them, none of this would have occurred.

Finally, my parents deserve a great deal of thanks. For their endless support and
encouragement during not only this PhD but all my endeavours, I am hugely
grateful. I hope that at least parts of this thesis are accessible to you!



Contents

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Numerical and asymptotic methods

for scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Asymptotic methods . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 The hybrid numerical-asymptotic method . . . . . . . . . . . . . . . . . . 12
1.4 Main aims and key results . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Problem formulation 18
2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Time-harmonic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The electromagnetic transmission problem . . . . . . . . . . . . . . . . . . 21
2.4 Electromagnetic boundary integral equations . . . . . . . . . . . . . . . . 24
2.5 Two-dimensional problems . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 The (2D) acoustic transmission problem . . . . . . . . . . . . . . . . . . . 28
2.7 Acoustic boundary integral equations . . . . . . . . . . . . . . . . . . . . 30
2.8 Scattering properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8.1 Far-field pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.8.2 Amplitude scattering matrix . . . . . . . . . . . . . . . . . . . . . 40

3 Numerical methods 42
3.1 Boundary element method . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Collocation method . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Galerkin’s method . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 A Galerkin hp-BEM for the 2D transmission problem . . . . . . . . . . . . 45
3.2.1 Approximation space . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



3.2.2 Kernel evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3.1 Singular one-dimensional integrals . . . . . . . . . . . . 53
3.2.3.2 1D integrals with near singularities . . . . . . . . . . . . 55
3.2.3.3 Singular two-dimensional integrals . . . . . . . . . . . . 56

3.2.4 Convergence and accuracy of the 2D Galerkin BEM . . . . . . . . 57
3.3 A Galerkin h-BEM for the 3D transmission problem . . . . . . . . . . . . 60

3.3.1 Convergence and accuracy of the 3D BEM . . . . . . . . . . . . . 62

4 Asymptotic methods 65
4.1 Ray theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Geometrical optics approximation:

a beam tracing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 Reflection and refraction at a planar interface . . . . . . . . . . . . . . . . 72

4.3.1 Plane wave propagation in an absorbing medium . . . . . . . . . . 74
4.3.2 An interface between two media with arbitrary absorption . . . . . 75
4.3.3 Sign choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.4 Sign choice experiment . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Convergence of beam tracing algorithm . . . . . . . . . . . . . . . . . . . 89
4.5 Accuracy of the GO approximation . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Kirchhoff approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7 Geometrical Theory of Diffraction . . . . . . . . . . . . . . . . . . . . . . 96

4.7.1 Sommerfeld problem . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.2 Diffraction by an impenetrable wedge . . . . . . . . . . . . . . . . 99

4.8 Diffraction by a penetrable wedge . . . . . . . . . . . . . . . . . . . . . . 100
4.8.1 Time-domain problem . . . . . . . . . . . . . . . . . . . . . . . . 101
4.8.2 Point source at an interface in the frequency domain . . . . . . . . 104

5 Hybrid Numerical-Asymptotic approximation 108
5.1 The sound-soft case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Hybrid numerical-asymptotic approximation space . . . . . . . . . . . . . 111

5.2.1 Approximation Space 1:
including diffraction from adjacent corners . . . . . . . . . . . . . 111

5.2.2 Approximation Space 2:
including diffraction from non-adjacent corners . . . . . . . . . . . 114

5.2.3 Including other phase functions . . . . . . . . . . . . . . . . . . . 117
5.3 Testing the HNA approximation spaces 1 and 2 . . . . . . . . . . . . . . . 117

ii



5.3.1 Best approximation via least squares . . . . . . . . . . . . . . . . . 118
5.3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.3 Revised Approximation Space 2 . . . . . . . . . . . . . . . . . . . 125

5.4 Finalised approximation strategy . . . . . . . . . . . . . . . . . . . . . . . 128
5.5 A recap of the algorithm for a general convex polygon . . . . . . . . . . . 131
5.6 Scattering by polygons with more than three sides . . . . . . . . . . . . . . 132

5.6.1 Scattering by a square . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6.2 Scattering by a hexagon . . . . . . . . . . . . . . . . . . . . . . . 134

5.7 Convergence in p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 The HNA BEM - an hp Galerkin implementation 138
6.1 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Normalising the basis functions . . . . . . . . . . . . . . . . . . . 141
6.2.2 Oscillatory integrals . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.1 Scattering by a triangle . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.2 Scattering by polygons with more than three sides . . . . . . . . . 152

6.3.2.1 Scattering by a square . . . . . . . . . . . . . . . . . . . 153
6.3.2.2 Scattering by a hexagon . . . . . . . . . . . . . . . . . . 156

7 Conclusions 164
7.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2.1 The HNA approach for the transmission problem . . . . . . . . . . 167
7.2.2 The general HNA methodology . . . . . . . . . . . . . . . . . . . 169

Bibliography 171

iii



Chapter 1

Introduction

In this thesis, we are concerned with the scattering and absorption of time-harmonic elec-
tromagnetic and acoustic waves by penetrable scatterers, that is, regions in which the wave
speed differs from that of the background medium. Such a scenario arises in numerous
applications of mathematical and physical interest. For example, problems associated with
the scattering of laser beams by dielectric metals, ultrasound by organs within the human
body, and seismic waves by geological features in the Earth’s subsurface, each command
active areas of research. We shall focus on one particular application, namely the scattering
of light by the ice crystals composing cirrus clouds in the upper troposphere. This applica-
tion is of significance in climate modelling, specifically in estimating the influence of cirrus
on the Earth-atmosphere radiation balance [8].

Conventional numerical methods for solving such wave scattering problems include
the finite element method (FEM) and the boundary element method (BEM). When imple-
mented using piecewise polynomial approximation spaces, these methods suffer from the
drawback that a fixed number of degrees of freedom is required per wavelength in order to
represent the oscillatory solution. This can lead to prohibitive computational expense when
the scatterer is large relative to the wavelength, as is often the case in applications. In this
“high-frequency” regime one can alternatively appeal to asymptotic approximation tech-
niques such as Geometrical Optics (GO), the Kirchhoff Approximation (KA, sometimes
called “Physical Optics”) and the Geometrical Theory of Diffraction (GTD). However, al-
though such approximations have a low (and often frequency-independent) computational
cost, the price one pays is that they are only accurate for “sufficiently high” frequencies.
The question of how high the frequency needs to be for “sufficient accuracy” depends on
the particular scattering problem being considered, and moreover is usually not known a
priori. In many applications (in particular for the example of light scattering by atmospheric
ice crystals mentioned above) there is a significant and important range of frequencies for

1



which neither conventional numerical methods nor asymptotic methods give satisfactory
results.

The hybrid numerical-asymptotic (HNA) approach is a general methodology for scat-
tering problems which aims to fuse conventional numerical methods with high-frequency
asymptotics to create algorithms that are controllably accurate and computationally feasi-
ble over the whole frequency range. The key idea is to enrich the boundary element ap-
proximation space with oscillatory functions, chosen using partial knowledge of the high
frequency asymptotic behaviour of the solution. More explicitly, one seeks to approximate
the unknown solution v of the relevant boundary integral equation using an ansatz of the
form

v(x, k) ⇡ v
0

(x, k) +
MX

m=1

vm(x, k) exp(ik m(x)), x 2 �, (1.1)

where k (the wavenumber) is proportional to the frequency of the waves, and � is the
boundary of the scatterer. In this representation, v

0

is a known (generally oscillatory) func-
tion, typically the GO approximation, the phases  m are chosen a priori (derived from the
high-frequency asymptotics of the diffracted field) and the amplitudes vm are approximated
numerically using piecewise polynomials. The expectation is that if

(i) v
0

, the GO approximation, is calculated accurately, and

(ii)  m are chosen wisely via an understanding of the high-frequency asymptotics of the
diffracted field,

then vm(·, k) will be much less oscillatory than v(·, k) and so can be more efficiently ap-
proximated by piecewise polynomials than v itself.

For a number of important classes of scattering problems the HNA approach has been
shown to provide a dramatic reduction in the number of degrees of freedom required at
high frequencies compared to conventional methods [28]. However, to date, the HNA
approach has been applied exclusively to problems of scattering by impenetrable scat-
terers, i.e., where perfectly-conducting, sound-soft (Dirichlet), sound-hard (Neumann) or
impedance (Robin) boundary conditions are imposed on the boundary �. Moreover, un-
til very recently in [29] (where a class of simple non-convex impenetrable scatterers was
considered), its successful application was restricted to convex impenetrable scatterers, for
which multiple re-reflections and questions of partial illumination need not be considered.

The main aim of this thesis is to begin the challenging task of generalising the HNA
methodology to the case of so-called “transmission problems” for penetrable scatterers,
where the scatterer is a region in which the wave speed differs from that of the background
propagation medium. The main difficulty in the penetrable case is that the high-frequency
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asymptotic behaviour is significantly more complicated than in the impenetrable case. In
particular, the boundary of the scatterer represents the interface between two media with
different wave speeds, and hence two different wavenumbers, and so we expect to need to
modify the ansatz (1.1) to include terms oscillating with both of these wavenumbers. In ad-
dition to the phenomena of reflection and diffraction that occur in the impenetrable case, in
the penetrable case we observe a new phenomenon, refraction, which occurs when a wave
propagating in the exterior medium is transmitted into the scatterer and vice versa. One key
difficulty this presents is that a wave propagating inside the scatterer can undergo multiple
(in fact, infinitely many) internal reflections/diffractions (this is described in more detail
in §5.2). We therefore expect that, in order for the amplitudes vm to be non-oscillatory,
we would need to consider infinitely many different phases  m. (This is in contrast to the
case of scattering by sound-soft convex polygons considered in [30] and [63], where the
high-frequency behaviour can be completely captured using just two phase functions, i.e.,
M = 2 in (1.1), corresponding to waves travelling clockwise and anticlockwise around
the boundary.) This complicates the development of an ansatz of the form (1.1) for the
transmission problem, because to create a viable numerical algorithm we must choose only
a finite number of these phases.

Another key difficulty is that the high-frequency asymptotic theory for penetrable scat-
terers is not nearly as well understood as for the impenetrable case. In particular, there is
no known closed-form analytical (or even asymptotic) solution to the canonical problem
of diffraction by a penetrable wedge, despite many attempts to derive one (see, e.g., [2],
[24], [104], [121]). This means that we do not have a fully-developed GTD for penetrable
scatterers from which to infer the correct choice of phases  m in the HNA ansatz (1.1).

That being said, one might imagine that the phases describing the diffracted fields in
the penetrable case can be determined by heuristically extending the principles of the GTD
for the impenetrable case. Some evidence exists in the literature (e.g., [49, 77]) to support
the validity of this extension. And we may also look to the time-domain version of the
penetrable wedge problem (§4.8.1) to glean further information about the phase structure
of the diffracted wave in the interior of the wedge, such as the presence of the so-called
head or lateral wave.

Although we may be able to determine with some confidence the phase structure of the
diffracted field for the infinite wedge problem, the problem we really wish to solve is for a
truncated and closed-off wedge, i.e., a polygon. As mentioned earlier, the diffracted waves
will be internally reflected within the polygon giving rise to infinitely many different phase
functions  m. One must then confront the question of how many of these phase functions
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should be included in the HNA approximation space. In the case when the scatterer pos-
sesses some absorption (corresponding to the internal wavenumber containing a positive
imaginary component), which is often the case in applications (see §1.1), the waves propa-
gating within the polygon decay exponentially with distance. Hence, we shall expect that
we may only require to include a small number of these phase functions. In fact, in the
high-absorption limit, the penetrable scattering problem can then be well-approximated by
the impenetrable scattering problem with impedance boundary conditions (see, e.g., [57]
or [3]) for which the HNA ansatz (1.1) with M = 2 is appropriate [31]. As the level of
absorption is reduced, the waves propagating within the polygon become more prominent
and we must include extra phases in the ansatz (1.1).

We aim to construct simple modifications to the ansatz (1.1) which efficiently approxi-
mate solutions to transmission problems. To this end, we shall endeavour to include phase
functions corresponding to the leading order components of the diffracted field and ignore
those corresponding to higher-order diffracted terms. We shall see that this approach is par-
ticularly effective when the scatterer possesses some absorption. Nevertheless, even with
zero absorption, considering only a small number of the leading order components can lead
to an effective HNA BEM since here the diffracted waves decay as they travel, albeit at a
slower rate. The process of constructing appropriate versions of the HNA ansatz shall be
detailed in §5.

In anticipation of later discussions, we pause here to make a brief technical remark. The
evaluation of the GO term v

0

is considerably more difficult when absorption is present. This
difficulty stems from the fact that, since the interior wavenumber is complex, the propaga-
tion direction vectors associated with the geometrical optics waves (or beams) within the
polygon are also complex. Making sense of such direction vectors has been studied before
(see, e.g., [32, 33, 116]), however none of these studies have both considered the precise
problem of interest here and compared the obtained approximation to an “exact” solution.
In §4.3 we employ a method for calculating the GO approximation similar to some previous
authors (in particular, [116] and [32]), however we observe a phenomenon which appears
to be unreported in the literature and dramatically affects the approximation at angles asso-
ciated with total internal reflection. In fact, at these angles, the GO approximation is almost
completely out of phase with the exact solution. An investigation is carried out in §4.3.4
which identifies the occurrence of this phenomenon and shows that a different sign choice
in one of the equations acts to remedy the situation. There remains, nevertheless, a small
(and shrinking as k ! 1) transition region where neither sign choice gives a good approx-
imation and further work, not performed here, is required to improve the approximation in
this region.
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Figure 1.1: Some typical ice crystal geometries: solid and hollow hexagonal plates and
columns. Image taken from [125].

1.1 Background and motivation

Before commencing with a thorough outline of the thesis, we first present some background
into the problem of light scattering by ice crystals to provide motivation for the develop-
ment of the HNA BEM of this thesis.

It is well established that understanding the light scattering properties of atmospheric
ice crystals is important in modelling the radiation balance of cirrus clouds [7,8,92]. Due to
the wide coverage of cirrus over the Earth (approximately 30% at any one time in the mid-
latitudes, and 60-80% in the tropics [7,92,123]), these clouds in turn play an important role
in the Earth-atmosphere radiation balance. Therefore methods which can provide accurate
approximations for scattering by these ice crystals are extremely valuable to atmosphere
and climate scientists. Many such methods exist however no single method is, as yet,
applicable to all of the myriad scattering problems arising within cirrus clouds. We now
consider the variations that lead to the zoo of combinations of particle geometry, incident
radiation wavelength and particle refractive index.

The ice crystals within cirrus exhibit a large array of sizes and shapes [48,64,89]. These

5



Figure 1.2: A bullet-rosette formed from the aggregation of hexagonal columns. Image
taken from [91].

shapes are mostly variations on the hexagonal column or plate as shown in Figure 1.1. In
this figure we observe the most commonly occuring ice crystal shape, namely the “solid”
hexagonal column which is called a “plate” when the length is the column is short compared
to its hexagonal face. This figure also shows variations on the solid column which com-
monly occur; these are the so-called “hollow” columns and plates which are non-convex
owing to inclusions at either end. These hexagonal columns also often aggregate together
to form “bullet-rosettes” such as that shown in Figure 1.2.

The fact that ice tends to form with a hexagonal structure was first noted by Johannes
Kepler [80] and he hypothesised that the hexagonal symmetry was related to the optimal
stacking of spheres, which was later found to be a correct analogy [65]. Nevertheless,
there often occur in nature so-called trigonal ice crystals which possess a three-fold sym-
metry [110]. We shall use this as motivation to consider both triangular and hexagonal ice
crystal geometries in this thesis.

Ice crystals also vary in size, with a characteristic length a (e.g., the radius of the small-
est sphere which circumscribes the crystal) ranging from less than 10 microns to many
thousands of microns [138]. The wavelength � of the radiation incident upon the clouds
also ranges from 10

�7m (ultraviolet) to 10

�1m (microwave). We define the dimensionless
size parameter

� :=

2⇡a

�

to describe the size of the ice crystals relative to the wavelength of the incident light. Then
we can see that the size parameter range of interest is approximately 10

�6 < � < 10

4.
Finally, we note that the refractive index of ice varies with the wavelength of the inci-

dent radiation. Figure 1.3 shows the real part of the refractive index of ice for electromag-
netic radiation with wavelength ranging from 10

�1µm to 10

4µm. We see that it fluctuates
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Figure 1.3: Real part of the complex refractive index of ice; comparison of two different
compilations of measurements, the first made in 1984 in [139] and the second in [140].
Plot taken from [140].

between a minimum value of approximately 0.951 and a maximum value of approximately
1.9. Similarly, the imaginary part of the refractive index varies with wavelength from a
minimum of 0 to a maximum of approximately 1.

These variations in particle geometry, relative size, and refractive index combine to
create an enormous variety of scattering problems to be solved. Over the years, many
methods have been developed for tackling different problems within the myriad combina-
tions of particle shape, size and incident radiation frequency. These methods fall into two
main camps:

• numerical (or “exact”) methods,

• asymptotic (or “approximate”) methods.
1A refractive index of less than 1 leads to a “phase velocity” greater than the speed of light, although the

“signal velocity” is not. See a classical physics textbook, such as [105], for more detail.
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1.2 Numerical and asymptotic methods
for scattering problems

Numerical methods either discretise the underlying equations (Maxwell or Helmholtz) and
solve the resultant discrete system, or adopt a truncated separation of variables ansatz and
obtain the associated coefficients by numerically enforcing the boundary conditions at the
scatterer’s surface. These methods are exact in the sense that, with them, one may in
principle achieve arbitrary accuracy if the numerical approximation is sufficiently refined.
However, they suffer from the fact that to achieve a satisfactory accuracy, each wavelength
of the scattered field must be resolved. This leads to an associated computational cost that
scales with the frequency of the incident wave. Therefore they are in practice limited to
low-frequency problems.

Asymptotic methods, on the other hand, appeal to the high-frequency behaviour of light
to justify the implementation of geometrical techniques. These methods have a computa-
tional cost which is very low and often independent of the frequency, however they are only
accurate for sufficiently high frequencies.

The hybrid numerical-asymptotic approach seeks to unify these two classes of tech-
nique by developing algorithms that are numerically “exact” but have a cost which is inde-
pendent of frequency.

There is in fact a third class of methods which should be briefly mentioned, namely
analytical methods. Maxwell’s equations and the Helmholtz equation can be solved exactly
by the method of separation of variables when the scattering body is a shape for which there
exists a coordinate system in which the Helmholtz equation is separable, namely spherical
and spheroidal scatterers. The separation of variables solution process is often referrred to
as Mie theory, Mie-Lorenz theory or Lorenz-Mie theory in the electromagnetics literature,
e.g., [105]. This analytical approach generally results in a solution of the form of an infinite
sum, and the number of terms which must be taken for an accurate solution increases
drastically with frequency. Hence efficient numerical techniques (such as hybrid methods)
can often prove faster at high frequencies than analytical techniques even when an exact
solution exists.

In addition to separation of variables, there exist the following closely related analytical
techniques: the Kontorovich-Lebedev transform (see, e.g., [113]); the Wiener-Hopf tech-
nique (see, e.g., [76]); and the Sommerfeld-Malyuzhinets method [6]. However, these have
so far been able to yield exact solutions only for problems involving scattering by infinite
lines or wedges with different boundary conditions, although not the transmission bound-
ary conditions as we shall discuss in §4.8. One final technique which can be viewed as
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analytical is the Unified Transform Method of Fokas and co-authors [128], however this is
also limited currently in its applicability for scattering problems, in particular to 2D interior
problems.

We will briefly summarise some of the most popular numerical and asymptotic methods
for solving wave scattering problems with the aim of placing HNA methods within the
context of the most competitive current computational techniques. Figure 1.4 shows the
methods we shall discuss and how they relate to one another. For more detailed reviews,
the reader is referred to [15, 78, 85, 144].

1.2.1 Numerical methods

Numerical methods can be subdivided roughly into two distinct groups: differential equa-
tion techniques, which tackle the governing partial differential equations directly, and inte-
gral equation techniques, which first reformulate the boundary value problem as a system
of boundary integral equations and then discretise these equations.

Differential equation techniques are the most general in that they are suitable for het-
erogeneous media (i.e., media with a spatially varying wavenumber) and they are arguably
the simplest to implement. The two most popular such techniques are the Finite Difference
Time-Domain (FDTD) method [131, 132] and the FEM [75].

The FDTD method, which solves the time-dependent Maxwell’s equations, was pio-
neered by Yee in 1966 [150] and has since become an extremely popular method within
the atmospheric sciences community for calculating solutions to scattering problems [146].
Its popularity stems from the simplicity of its implementation. The solution domain is dis-
cretised into a rectangular grid and the differential operators are approximated via finite
differences. The problem of scattering by a pulse is often considered and the solution is
then mapped to the frequency domain using the discrete Fourier transform. The method
is very flexible in terms of particle geometry and heterogeneity. However, its main draw-
backs are that one must discretise an artificially truncated domain (in the case of an exterior
scattering problem) larger than the particle and it suffers from dispersion errors. Also, its
demand for memory is high, with the number of degrees of freedom (#DOF) scaling with
the size parameter � worse than O(�d+1

) where d = 2, 3 is the spatial dimension of the
problem. (Note that the size of the matrix to be stored scales as (#DOF)2).

The FEM solves the frequency-domain boundary value problem by using a variational
form. Similar to the FDTD method, the FEM discretises a truncated solution domain but
typically with triangular elements rather then rectangular ones. This allows for a much
more accurate representation of the particle shape. The FEM can handle complicated par-
ticle geometries and can deal with heterogeneity, however it possesses similar drawbacks
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to the FDTD method, with its #DOF scaling as O(�d
). However, one attractive feature is

that the system matrix is sparsely populated.
Integral equation techniques are popular for scattering problems in which the exte-

rior unbounded medium is homogeneous since they lead to a finite computational domain.
This domain is either the surface of the scatterer in the case of boundary integral equa-
tions (BIEs) or the volume of the scatterer in the case of volume integral equations (VIEs).
We note that BIEs also have a computational domain of reduced dimension, however this
requires the scatterer to be homogeneous too. The BEM, also known as the Method of
Moments, is the most popular numerical method associated with BIEs. Owing to its re-
duced dimension its #DOF scales as O(�d�1

), however it should be noted that the resulting
system matrix is densely populated in contrast to that for the FEM. VIEs differ from BIEs
in that they are suitable for heterogeneous particles. A popular numerical method based
on VIEs is the Discrete Dipole Approximation (DDA) which discretises the volume of the
scatterer into a periodic cubic lattice so that the fast-Fourier transform may be employed
for calculating the matrix-vector products [151]. The #DOF scales as O(�d

). It should be
pointed out that it is not necessary to store the whole matrix of size (#DOF)2 for BEM when
it is used in conjunction with the fast-multipole method [44] or H-matrix compression [56].
This is also true for VIE methods when they are used with the fast-Fourier transform [112].
Such acceleration techniques reduce the storage requirements to O(#DOF log(#DOF)) al-
though the constant associated with this can often be large, and nevertheless the storage
requirement still increases as � increases .

One final method we mention which also stems from BIEs for scattering problems
is the Null-Field Method (NFM), also known as the T-matrix method, and is similar to
the Method of Fundamental Solutions (MFS) [10]. The NFM dates back to the work of
Waterman in the 1960s (see, e.g., [141]) and detailed derivations may be found in [100] for
acoustics and [105] for electromagnetics. The NFM begins with the fact that the free-space
solution to the underlying equations may be rewritten as an infinite sum over spherical wave
functions multiplied by Bessel functions. Upon truncation of this sum and substitution
into the BIEs, one obtains a representation for the solution also as a sum over products
of spherical wave functions and Bessel functions with coefficients to be determined by
integrations of these functions around the boundary. This method is extremely efficient and
reproduces the exact solution when the scatterer is either a sphere or spheroidal in shape.
There are many drawbacks, however, which include: the fact that the representation for
the solution is only valid outside of the smallest sphere enscribing the scatterer; the error
associated with truncating the series after N terms is not well understood; the linear system
often becomes ill-conditioned as N grows large. The main advantage of this method is that
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once the T-matrix has been calculated, scattering by particles in random orientation can be
solved for in a single calculation rather than solving for many incident wave directions and
averaging the solutions.

1.2.2 Asymptotic methods

The most elementary asymptotic method for wave scattering problems is the geometrical
optics (GO) approximation. In GO, the incident wave is decomposed into a bundle of
rays or beams which are tracked via the laws of reflection and refraction as they strike the
scattering surface/surfaces. Algorithms calculating the GO approximation are called ray
tracing or beam tracing algorithms. In practical applications, such algorithms are often
employed with the addition of Fraunhofer diffraction in the far-field zone [21,94,109,143],
following from Babinet’s principle applied to the flat obstacle which corresponds to the
particle’s geometric shadow area. Babinet’s principle states that the diffraction pattern of
a flat obstacle is identical to that of an aperture of the same size and shape. Such meth-
ods have been termed Conventional Geometrical Optics Methods (CGOM) and have been
reported to be accurate for � > 100 [16]. However, as we shall see in this thesis, such a
broad statement is difficult to justify since the accuracy of GO is very much dependent on
geometrical parameters such as the number of scattering vertices and the refractive index of
the particle. Also, such a statement is very dependent upon the required solution accuracy.

An alternative simple extension to GO is the Kirchhoff approximation (or Physical Op-
tics approximation) which was originally developed in the context of diffraction by aper-
tures [76] (from which Fraunhofer theory also derives). This is obtained via substitution of
the GO approximation on the boundary of the scatterer into the boundary integral represen-
tation. This method has been well-studied and is known to provide an improvement over
CGOM [16, 107] with applicability reported for particles with � > 20 for the algorithm
in [16]. However, in [16] no numerical errors are presented and it appears from far-field
comparison plots that the overall accuracy is poor for small � although some important
features in the scattering pattern are discernible. We present results for the Kirchhoff ap-
proximation developed for our ice scattering application in §4.6.

A more systematic extension of GO is the Geometrical Theory of Diffraction (GTD),
pioneered by Joseph Keller [79], which postulates rays in addition to those of GO. These
additional rays emanate from edges and vertices of the scatterer and together compose the
diffracted field. GTD specifies the phase and amplitude of these rays by analysing the so-
lutions of relevant canonical problems, such as scattering by an infinite half-plane or an
infinite wedge, for which the asymptotic behaviour of the scattered field can be obtained.
Therefore, these methods are limited in their scope to those problems for which the relevant
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canonical problems can be solved exactly (or at least asymptotically). In particular, they
have not been successfully applied to transmission problems owing to a lack of a solution to
the canonical problem of scattering by a penetrable wedge (see §4.8). We note also that the
GTD has been extended via employment of the boundary integral representation (in much
the same way as the Kirchhoff approximation is obtained from GO) to the Physical The-
ory of Diffraction (see [136]), however this theory suffers from the same aforementioned
drawbacks as the GTD.

1.3 The hybrid numerical-asymptotic method

An in-depth historical review of the hybrid numerical asymptotic method may be found
in [28] and so here we shall merely outline some significant milestones in the development
of the method so as to provide some context for the new developments in this thesis.

The first appearance of the hybrid numerical-asymptotic approach in print was in a
paper by Uncles in 1976 [137] in which the numerical solution of “moderate-frequency”
scattering by a sound-hard sphere was discussed. In that paper, Uncles reformulated the
scattering problem as an integral equation on the boundary of the scattterer and made the
ansatz

v = V exp

�
ikdi · x

�
, x 2 �, (1.2)

for the unknown boundary data, where di is the direction of the incident wave. Uncles
showed, via numerical examples, that the function V could be approximated much more
efficiently (i.e., on a coarser computational mesh) than v itself.

This brief paper ignores the fact that the simple ansatz (1.2) breaks down in regions
(so-called “Fock domains”) of size O(k�1/3

) around shadow boundaries and that it neglects
creeping rays. It also does not discuss the efficient evaluation of the oscillatory integrals
that arise as a result of employing the ansatz (1.2) on a coarse mesh. These issues were
addressed to some extent by Bruno et al. [23] where the mesh was adapted to be finer in
the Fock domains to deal with the breakdown of (1.2). The arising oscillatory integrals
were evaluated using the method of stationary phase. More rigorous HNA methods for this
problem have been put forth in [40] and [71] in which the full asymptotic behaviour of
the solution of the boundary is taken into account. In [40] it is shown rigorously that the
proposed method achieves an error that depends only very mildly on the frequency k. The
oscillatory integrals in [40] were later dealt with efficiently via a Filon method in [81] and
those in [71] were handled via the method of Numerical Steepest Descent (NSD).

Of more relevance to the scattering problem of interest in this thesis are the applications
of the HNA approach to polygonal scatterers, for which an ansatz of the form (1.1) is
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required. The first polygon problem to be tackled effectively was scattering by a sound-
soft convex polygon in 2007 by Chandler-Wilde and Langdon [30]. There the authors
proposed the ansatz

v = vgo + v+

(s) exp(iks) + v�
(s) exp(�iks), (1.3)

for the unknown boundary data on a typical side of the polygon. Here vgo is the geometrical
optics approximation to the solution and s is the arc-length along the side. The second
and third terms on the right hand side correspond to diffracted waves travelling in both
directions around the boundary of the scatterer. In [30] an HNA Galerkin h-BEM based on
this ansatz was proposed and analysed. It was proved that in the ansatz (1.3) the functions
v+

(s) and v�
(s) are non-oscillatory and that they may be approximated using a number

of degrees of freedom which is required to grow only logarithmically as a function of k

in order to achieve a prescribed level of accuracy. The same ideas were used to propose
an HNA Galerkin hp-BEM for the same problem in 2013 [63] and were subsequently
extended to convex polygons with impedance boundary conditions [31] and non-convex
polygons [29]. For each of these problems, the same logarithmic dependency of the error
on the wavenumber k was shown.

Remark 1.1 (A note on nomenclature). The term “hybrid numerical-asymptotic” appears
to have first been coined in this context in the paper [51] by Giladi and Keller in 2001.
However, the method proposed there was a FEM rather than a BEM. Although the same
authors extended these ideas to boundary integral equations in [50], they did not reuse
the HNA name. The first application of the name within a BEM context was in [40] in
2007. Nevertheless, numerous different titles have been applied to the HNA BEM methods
described above. These include “O(1) method” [23], “high-frequency BEM” [63] and
“phase extraction technique” [71]. Crucially, all these different methods employ an ansatz
of the form (1.1) within a BIE setting and so fall beneath (in the terminology employed in
this thesis) the HNA umbrella.

Also, it must be noted that there are some related but crucially different methods going
by similar names. For example the term “hybrid asymptotic-numerical” has been used by
Barbone and Michael in [9] to describe a method which employs a BEM in the vicinity of
diffraction points (e.g., vertices) and matches the numerically approximated solution there
to an asymptotically derived solution away from these points.
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1.4 Main aims and key results

The main aim of this thesis is to extend the HNA approach to scattering by 2D penetrable
convex polygons in order to develop a numerical method that can produce approximations
of an accuracy sufficient for many applications without the requirement that the number
of degrees of freedom in its approximation space must increase with frequency in order to
maintain this accuracy. We shall refer to this sufficient level of accuracy as “engineering
accuracy” and we note that this is a common goal in calculations for wave problems [47,
87, 98]. A specific numerical value for this accuracy seems to never be given but it may be
interpreted to mean of the order of a few percent, or such that the solution “looks correct”.
In this thesis, many of the calculations shall aim to achieve approximately 1% relative
L2 error in the solution away from the scatterer boundary or in the far-field. We can be
confident that such an accuracy is equivalent to, if not better than, “engineering accuracy”.
It has been reported that six to ten degrees of freedom per wavelength are usually required
with standard methods for this to be maintained [98].

We remark that our aim is slightly different to that in [29, 40, 63] where HNA BEMs
for impenetrable scatterers are presented. There the BEMs also have the desirable property
that they are controllably accurate for a fixed frequency which is possible since the ansatzes
capture all the oscillatory behaviour of the diffracted field. For the penetrable problem,
however, the oscillatory behaviour of the diffracted field is considerably more complicated
and to include all of it would be impossible. Hence we shall aim to incorporate only
the low-order diffracted terms in our HNA ansatz in order to capture the majority of the
field with a small number of degrees of freedom. We shall see that, with a BEM based
on a simple HNA ansatz constructed in this way for the transmission problem, we can
significantly improve on classical asymptotic techniques such as GO and the KA using just
a small number of degrees of freedom which does not increase with increasing frequency.
Indeed, we shall see that, when a small amount of absorption is present in the scatterer, we
may achieve engineering accuracy.

The aim to develop such an HNA BEM for the transmission problem may be broken
down into the following smaller goals:

• develop an accurate method to calculate the geometrical optics approximation to scat-
tering by absorbing (and non-absorbing) 2D convex polygons,

• develop an HNA ansatz for the penetrable scattering problem,

• implement an approximation space based on this ansatz within a Galerkin hp-BEM.
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The novel contributions of this thesis in the pursuit of these goals are the following.

1. A previously unreported phenomenon associated with plane waves propagating be-
tween two absorbing media is observed in §4.3.4. We show that ignoring this phe-
nomenon leads to a seemingly erroneous phase in the solution at particular incident
angles. We present a remedy to correct for this.

2. A beam-tracing algorithm (BTA) based on this novel interpretation of the planar
interface problem is presented. We implement a Kirchhoff approximation which
employs this BTA in §4.6.

3. The development and verification of an HNA ansatz for the transmission problem
(§5). The verification is performed by computing numerical best approximations
(from the HNA approximation space) to reference solutions calculated using a high-
order conventional BEM. We show that a prescribed error tolerance may be achieved
with a number of degrees of freedom which is small and not increasing with increas-
ing wavenumber k. Some of these results have been published in [54].

4. The implementation of this HNA ansatz within a Galerkin hp-BEM (§6). We present
results demonstrating that this BEM produces approximations close to the numerical
best approximations.

A complementary goal of this PhD research was to investigate the effectiveness of BEM
solves for 3D electromagnetic (EM) scattering problems of relevance in climate science.
The main contribution in this regard is the following.

5. The first detailed application of the boundary element method to the 3D EM transmis-
sion problem of light scattering by ice crystals of complex shape (§3.3). The bound-
ary element method employed is the open-source software BEM++ [124]. Here we
shall only present the results from this study that are pertinent to the topic of this
thesis. A more detailed set of results can be found in the publication [53].

1.5 Outline of the thesis

In §2 we describe the boundary value problems we study in this thesis and their reformu-
lations as systems of boundary integral equations. First, we consider the 3D EM problem
of scattering by a dielectric particle. Then we review the fact that in 2D, the EM problem
reduces to solving two 2D acoustic (i.e., scalar) problems. Since the 2D acoustic case is the
main focus of the thesis, we describe its associated BIE reformulation in more detail than
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that for the 3D EM problem and provide a self-contained proof that the resulting integral
equations possess a unique solution. Finally, we describe some scattering properties which
are of interest in applications.

In §3 we discuss the conventional boundary element method and detail the implementa-
tion of it in Galerkin form in the 2D case. This includes an exposition of efficient quadrature
techniques for the evaluation of the arising 2D weakly singular integrals. The 2D Galerkin
hp-BEM described here will serve to provide reference solutions for use later in the thesis.
In §3.3 we briefly present some details and results of the application of the open-source
boundary element library BEM++ to the 3D EM problem, described more fully in [53].

§4 examines the high-frequency asymptotic behaviour of the boundary solution in the
2D case. In particular, we develop the beam-tracing algorithm which shall be used to
calculate the GO term v

0

in (1.1). The BTA relies on the canonical problem of a plane
wave at an interface between two absorbing media which we study in detail in §4.3. Later
in the chapter, we analyse the asymptotic behaviour of the diffracted field in order to derive
a suitable version of the ansatz (1.1) for our transmission problem. This involves a brief
exposition of the Geometrical Theory of Diffraction and a study of the canonical problems
of the scattering of a plane wave by a penetrable wedge and a point source above a planar
interface.

In §5 we develop an HNA boundary element approximation space for our scattering
problem. This is a more sophisticated approximation space than that presented in our pub-
lication [54]. We demonstrate via numerical best-fitting to reference solutions that this
approximation space allows us to obtain accurate and frequency-independent (in terms of
number of degrees of freedom) approximations for scatterers with some absorption. Even
when no absorption is present, we still see that with a small and frequency-independent
number of degrees of freedom, we can achieve a significant improvement in accuracy com-
pared to employing the GO approximation on its own.

§6 details the implementation of a Galerkin hp-BEM which utilises this HNA approxi-
mation space. Such an implementation is non-trivial and requires the evaluation of highly-
oscillatory integrals as well as careful normalisation of particular entries in the matrix
to avoid conditioning issues. It is shown via numerical experiments that the HNA BEM
achieves close to the best approximations and is applicable to different convex polygons.

We conclude the thesis in §7 with a brief synopsis of our key achievements and provide
ideas for the future development of this work.
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Chapter 2

Problem formulation

This chapter is dedicated to the statement of the 3D electromagnetic and 2D acoustic trans-
mission boundary value problems (BVPs) along with their reformulations as systems of
boundary integral equations (BIEs). The 3D EM problem is not the focus of this thesis,
however it is considered here for good reasons: it is the version of the problem that is of
primary interest to applications; it reduces to the 2D acoustic problem upon the assumption
of the independence of the field from one spatial direction; and, finally, we illustrate some
key features of the conventional BEM via application to the 3D EM problem, in §3.3. We
shall be more brief in our presentation of the 3D EM problem than of the 2D acoustic prob-
lem since the latter is of primary interest in this thesis. In particular, we shall not prove the
unique solvability of the BIE system for the EM problem whereas we shall do so for the
2D problem.

We begin in §2.1 by stating the governing equations of electromagnetism - Maxwell’s
equations - and in §2.2 their form for time-harmonic fields. This allows us to give in §2.3
the precise statement of the 3D EM scattering problem to be solved. It is then shown
how this BVP may be reformulated as a uniquely solvable system of BIEs. The BIE for-
mulation chosen here is the popular combined-field formulation which is a well-studied
formulation [102].

In §2.5 we review the fact that when the dependence of the electric and magnetic fields
is reduced by one dimension, the EM scattering problem is equivalent to two 2D scalar (or
acoustic) transmission problems, one for each of the electric and magnetic fields. We state
the general transmission problem for the 2D case in §2.6 and reformulate it as a system
of BIEs in §2.7. The BIEs we derive are similar to those in [35, 83] (where only smooth
scatterers are considered), and also to those proposed in [133] (albeit for an indirect method,
in which the unknowns are non-physical “densities”, rather than the boundary data itself as
is the case here). We remark that other BIE formulations for the transmission problem are
also possible - see, e.g., [37,66,84,88,118]. The unique solvability of our system of BIEs is
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known for smooth scatterers [35], however its proof for non-smooth (Lipschitz) scatterers
does not appear to be present as a whole in the literature. Therefore, for completeness, we
provide such a proof here.

We conclude in §2.8 by detailing briefly the scattering properties which are often of
interest in applications. These constitute the scattered far-field and quantities derived from
it, such as the amplitude scattering matrix.

2.1 Maxwell’s equations

The electric vector E and the magnetic vector H together constitute the electromagnetic
field. Their behaviour is encapsulated in the four Maxwell’s equations which are, assuming
the medium is homogeneous and isotropic [18],

r ⇥ H � "
0

@E
@t

= �E (2.1)

r ⇥ E + µ
@H
@t

= 0 (2.2)

r · E =

⇢

"
0

(2.3)

r · H = 0, (2.4)

where "
0

is the dielectric constant, � is the electrical conductivity, µ is the magnetic per-
meability, and ⇢ is the electric charge density.

For non-magnetic, transparent substances such as air and ice, µ is equal to unity. For
generality, however, we retain µ in all of the formulae in this chapter but we are mostly
interested in the case µ = 1. The electrical conductivity � affects the rate of decay of an
electromagnetic field in a medium and contributes to the imaginary part of the medium’s
refractive index, as we shall see shortly. The electrical charge density is set as

⇢ = 0

since we assume there are no electric charges in the regions concerned.
We have assumed the medium is isotropic and homogeneous so that "

0

, � and µ are
constant. However, we are interested in the case where two differing media are present,
each of which is characterised by its own values of these constants. At the interface between
the two media, the values of "

0

, � and µ change discontinuously. Therefore we must impose
appropriate “jump” conditions on E and H at this interface.

The appropriate boundary conditions can be found by replacing the plane of disconti-
nuity (i.e. the interface between the two media) with a thin layer in which "

0

, � and µ vary
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quickly but continuously between the two media, and then taking limits as the boundary
is approached (see [19, Chapter 1] for more details). The results of this procedure are the
conditions

n ⇥ [H] = 0, (2.5)

n ⇥ [E ] = 0, (2.6)

n · [µH] = 0, (2.7)

n · ["
0

E ] = 0, (2.8)

where [·] denotes the jump of a quantity across the interface and n is the vector normal to
the interface. Physically, (2.5)-(2.6) state that the tangential components of H and E must
be continuous across the boundary, and (2.7)-(2.8) state that the normal components of µH
and "

0

E must be continuous across the boundary. In our case, however, we are assuming
µ = 1 throughout and "

0

to be constant throughout so these two constants may be removed
from these jump relations.

2.2 Time-harmonic fields

We now further specialise our formulae by restricting ourselves to time-harmonic fields,
i.e., those which have a time-dependence e�i!t. Such EM fields are of the form

E(x, t) = Re{E(x)e�i!t}, H(x, t) = Re{H(x)e�i!t}. (2.9)

Upon substitution of (2.9) into the Maxwell equations (2.1)–(2.4), the time-harmonic Maxwell
equations arise:

r ⇥ H + i!"E = 0, (2.10)

r ⇥ E � i!µH = 0, (2.11)

r · E = 0, (2.12)

r · H = 0, (2.13)

where " = "
0

+ i�/!.
Owing to the relationship of E to H as seen in (2.10)–(2.11), it is necessary to solve for

just one of the fields. To obtain equations for E and H separately, we substitute (2.10) into
(2.11), and (2.11) into (2.10) to find that E and H both satisfy:

r ⇥ r ⇥ E � k2E = 0, (2.14)

r ⇥ r ⇥ H � k2H = 0, (2.15)
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where we note that they are still supplemented by equations (2.12)–(2.13). The constant
k := !

p
µ" is called the wavenumber because k/2⇡ gives the number of wavelengths per

unit length. The factor p
µ" is called the refractive index of the medium and is denoted

by n :=

p
µ". Note that for � 6= 0, n 2 C\R. It is helpful for later when we consider

two-dimensional EM problems to note that the vector wave equations (2.14)–(2.15) can be
written as vector Helmholtz equations. This can be seen by using the vector identity

curl curl ⌘ grad div �� (2.16)

and noting that E and H are both divergence free by (2.3) and (2.4), so that we have

�E + k2E = 0, (2.17)

�H + k2H = 0. (2.18)

The time-harmonic versions of the jump-relations (2.5)–(2.8) are simply

n ⇥ [H] = 0, (2.19)

n ⇥ [E] = 0, (2.20)

n · [H] = 0, (2.21)

n · [E] = 0, (2.22)

Note that the final two may be neglected since the normal component of H being contin-
uous across the boundary is equivalent to the tangential component of E being continuous
across the boundary, and similar for the normal component of E and the tangential compo-
nent of H. Hence, from now on we shall only use the first two conditions.

Now we are ready to state the electromagnetic transmission problem which we choose
(as is traditional in the literature) to formulate for the electric field.

2.3 The electromagnetic transmission problem

Consider the scattering of a monochromatic plane wave with time-dependence e�i!t by
an open and bounded set ⌦

2

⇢ R3. Suppose that ⌦
2

is occupied by a homogeneous and
isotropic dielectric material (see Figure 2.1) with a complex refractive index n

2

:=

p
µ
2

"
2

.
Further it is assumed that ⌦

2

is surrounded by an unbounded homogeneous medium ⌦

1

:=

R3\⌦
2

with refractive index n
1

:=

p
µ
1

"
1

where ⌦
2

denotes the closure of ⌦
2

in R3.
Throughout, ⌦

2

will have a Lipschitz boundary � = @⌦
2

(for a definition see, e.g., [103,
pp. 89–91]). Throughout we shall refer to ⌦

1

and ⌦
2

as the exterior and interior domains,
respectively.
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Figure 2.1: Scattering setup

Notation: We employ a combination of the notations used in [26] and [36]. Given
a set ⌦ ⇢ R3, let L2

loc(⌦) denote the complex, vector-valued space of locally square in-
tegrable functions. We denote by Hs

loc(⌦), s � 0 the standard Sobolev spaces with the
convention H0 ⌘ L2 (for definitions, see, e.g., [103], [1]). The suffix loc is removed when
⌦ is bounded, i.e., for spaces on ⌦

2

. We note that for the acoustic case, when the func-
tions under consideration are scalar valued, the boldface letters for function spaces will
be replaced by regular type face. Let D denote a differential operator, then we define for
s � 0:

Hs
loc(D,⌦) := {u 2 Hs

loc(⌦) : Du 2 Hs
loc(⌦)}. (2.23)

For s = 0, we write H0

= H for simplicity. If ⌦ is bounded, Hs
loc(D,⌦) is endowed with

the natural graph norm ||u||2Hs

(D,⌦)

:= ||u||2Hs

(⌦)

+ ||Du||2Hs

(⌦)

. This defines in particular
the Hilbert spaces H(curl,⌦) and H(curl curl,⌦).

Now we may state the electromagnetic transmission problem.
Given an incident field Ei

(x) = E
0

eik1di·x, where x 2 R3 and di is a unit direction
vector, we wish to determine the fields E

1

(x) 2 Hloc(curl,⌦
1

) and E
2

(x) 2 H(curl,⌦
2

)

satisfying

r ⇥ r ⇥ E
1

� k2

1

E
1

= 0 in ⌦
1

, (2.24)

r ⇥ r ⇥ E
2

� k2

2

E
2

= 0 in ⌦
2

, (2.25)

and the transmission conditions on the boundary �:

�+DE
1

= ��DE
2

and
k
1

µ
1

�+NE
1

=

k
2

µ
2

��NE
2

on �, (2.26)

22



where kj = !
p

µj"j for j = 1, 2. In addition, the scattered field Es
:= E

1

� Ei must
satisfy the Silver-Müller radiation condition

ˆx ⇥ r ⇥ Es
(x) + ik

1

Es
(x) = o

✓
1

r

◆
as r := |x| ! 1 (2.27)

uniformly in all directions ˆx := x/r. The above operators �+D and ��D denote respectively
the exterior and interior Dirichlet trace operators where the Dirichlet trace operator �D :

H(curl;⌦) ! H
�1/2
⇥ (�) is the unique bounded and continuous linear mapping for which

�DE := n ⇥ E|
�

,

if E 2 C1
(⌦) and where n is the outward normal to �. The Sobolev space H

�1/2
⇥ (�) is

the trace space defined in [26, Definition 1]. The operators �+N and ��N denote respectively
the exterior and interior Neumann trace operators where the Neumann trace operator �N :

H(curl;⌦) ! H
�1/2
⇥ (�) is the unique bounded and continuous linear mapping for which

�NE :=

1

ik
n ⇥ (r ⇥ E)|

�

,

if E 2 C1
(⌦). Note that here (for the Neumann trace) we are following [124]. This differs

from the definition in [26] in that it includes an extra i factor in the denominator. For more
details on trace operators for vector-valued functions on Lipschitz domains, the reader is
referred to [25] and [26].

Theorem 2.1 (Existence and uniqueness). (See [37, Proposition 4.7].) Let k
1

, k
2

2 C and
↵ := µ

1

/µ
2

2 C\{0} be such that either
k
1

> 0, Im(↵)  0 and Im(↵k2
2

) � 0,
or

Im(k

1

) > 0 or k
1

= 0, and there exist no a, b, c, d > 0 with �↵k2

2

a�k2

1

b+↵c+d = 0.
Then a solution to the electromagnetic transmission problem (2.24)–(2.27) exists and is
unique.

The a, b, c, d are integrals of positive-valued functions. For more details, see [37, Propo-
sition 4.7] and the accompanying proof.

Proof. The proof follows similar arguments to that for the acoustic case shown in [37,
Proposition 4.7]. The main difference being that here one must use the integration by parts
formula for vector functions U and V,

Z

⌦

(r ⇥ U) · Vdx =

Z

⌦

U · r ⇥ Vdx �
Z

@⌦

(U ⇥ n) · Vds (2.28)

rather than Green’s first identity (see, e.g., [36]).
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Remark 2.1. The conditions under which the uniqueness theorem holds are met by the ex-
amples considered in this thesis. These examples all involve the scattering of EM radiation
by an ice crystal surrounded by air. The magnetic permeability of air and ice are both
unity, i.e., µ

1

= µ
2

= 1. The refractive index of air is n
1

= 1, and the refractive index of
ice is such that Re(n

2

) > 0 and Im(n

2

) � 0. So ↵, k
1

, k
2

satisfy

k
1

> 0, ↵ = 1, Re(k

2

) > 0, Im(k

2

) � 0.

Hence we have that k
1

> 0, Im(↵)  0 and Im(↵k2
2

) � 0. Thus the conditions of
Theorem 2.1 are satisfied.

2.4 Electromagnetic boundary integral equations

We briefly summarise the reformulation of the transmission problem as a system of bound-
ary integral equations. The exposition here follows that of [124] which in turn closely
follows [26]; the latter gives an in-depth review of the boundary integral formulation for
this problem.

The first step in deriving a (direct) boundary integral equation formulation is to write
down representation formulae for the fields in each of the two domains, ⌦

1

and ⌦
2

, in terms
of their unknown boundary data. To do this we introduce the single-layer potential operator
 SL and double-layer potential operator  DL:

 SLv(x) :=ik

Z

�

Gk(x,y)v(y)d�(y)

� 1

ik
r
Z

�

Gk(x,y)r · v(y)d�(y) (2.29)

and
 DLv(x) := r ⇥

Z

�

Gk(x,y)v(y)d�(y), (2.30)

where Gk is the Green’s function of the Helmholtz equation with wavenumber k:

Gk(x,y) =
exp(ik|x � y|)
4⇡|x � y| .

Now an integral representation for E in ⌦
1

can be written succinctly as

E(x) =  DL�
+

DE(x) + SL�
�
NE(x), x 2 ⌦

1

, (2.31)

where  SL and  DL are as in (2.29) and (2.30), respectively, with k = k
1

. Similarly, E in
⌦

2

possesses the representation

E(x) = � DL�
+

DE(x) � SL�
+

NE(x), x 2 ⌦
2

, (2.32)
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where  SL and  DL are as in (2.29) and (2.30), respectively, with k = k
2

. These are the
Stratton-Chu representation formulae and are often written in a more explicit form without
potential operators. For these expressions the reader is referred to [101] and [111].

Boundary integral operators are constructed by applying the Dirichlet and Neumann
traces �±D, �±N to the potentials  SL and  DL. We might expect to obtain four different
boundary integral operators, however due to the fact that r⇥ SL = k DL and r⇥ DL =

k SL, we have that
�±N SL = �±D DL, �±N DL = �±D SL.

Hence two different boundary integral operators are sufficient for electromagnetic scatter-
ing. We define them as

R± := �±D SL = �±N DL, C± := �±D DL = �±N SL.

Applying the interior and exterior traces to the Stratton-Chu formulae, we arrive at the
boundary integral equations [26]

✓
�1

2

I + C�

◆
��DE + R��

�
NE = 0 (2.33)

�R��
�
DE +

✓
�1

2

I + C�

◆
��NE = 0 (2.34)

✓
1

2

I + C
+

◆
�+DE + R

+

�+NE = �+DEi (2.35)

�R
+

�+DE +

✓
1

2

I + C
+

◆
�+NE = �+NEi. (2.36)

Writing (2.33) and (2.34) in terms of exterior traces by using the transmission conditions
�+Du = ��Du, k2

µ2
�+Nu =

k1
µ1
��Nu, and writing ⇢ = µ2k1

µ1k2
, gives

✓
�1

2

I + R�

◆
�+DE +

1

⇢
R��

+

NE = 0 (2.37)

�R��
+

DE +

1

⇢

✓
�1

2

I + C�

◆
�+NE = 0. (2.38)

We have arrived at the four boundary integral equations (2.37), (2.38), (2.35) and (2.36) for
the two unknowns �DE and �NE. There are numerous ways to select two equations or two
linear combinations of these; see [101] for a discussion of five of these. Here we choose
the simplest, the combined-field formulation, which is known to be uniquely solvable [102].
This consists of taking the two combinations

(2.35) + (2.37) and (2.36) + (2.38).
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After dropping the ± on the traces, we have the system of boundary integral equations to
be solved: ✓

C
+

+ C� R
+

+

1

⇢R�

�R
+

� ⇢R� C
+

+ C�

◆✓
�DE
�NE

◆
=

✓
�DEi

�NEi

◆
. (2.39)

Once this system is solved for E and its normal derivative on �, the solution is simply
substituted into (2.31) or (2.32) to obtain the solution anywhere in R3.

2.5 Two-dimensional problems

In this thesis we are mainly concerned with time-harmonic scattering by a two-dimensional
penetrable obstacle. We shall demonstrate that when the dependence of the electric and
magnetic fields is reduced by one dimension, the electromagnetic scattering problem is
equivalent to two scalar (or acoustic) transmission problems, one for each of the electric
and magnetic fields. This provides our motivation for studying the acoustic problem in two
dimensions.

We begin by assuming that the vectors E and H in three dimensional space have no
z-dependence, i.e.,
E = E(x, y) and H = H(x, y), although they may have z-components. It is convenient to
introduce the notation

E? := (0, 0, Ez), (2.40)

Ek := (Ex, Ey, 0), (2.41)

H? := (0, 0, Hz), (2.42)

Hk := (Hx, Hy, 0), (2.43)

where E = (Ex, Ey, Ez) and H = (Hx, Hy, Hz) so that E = E?+Ek and H = H?+Hk.
We also assume that the scatterer � is an infinite prism stretching to z = ±1, hence its ge-
ometry is independent of the z-direction. The outward pointing normal to n = (nx, ny, 0).

The first two spatial components of (2.10) give us

(Ex, Ey) =
i

!"

✓
@

@y
, � @

@x

◆
Hz. (2.44)

Hence it is only necessary to solve for H? (i.e., Hz) in order to find Ek. Similarly, the first
two spatial components of (2.11) gives

(Hx, Hy) =
i

!µ

✓
� @

@y
,
@

@x

◆
Ez. (2.45)

26



So knowledge of E? (i.e., Ez) allows us to determine Hk. That is, in order to determine
the entire EM field, we must solve the two scalar Helmholtz equations for Ez and Hz

(r2

+ k2

)Ez = 0, (2.46)

(r2

+ k2

)Hz = 0. (2.47)

In order to ascertain the correct boundary conditions for Ez and Hz at the interface �,
we must first consider the boundary condition (2.20). By the linearity of the curl operator,
we have that

n ⇥ [Ek] + n ⇥ [E?] = 0. (2.48)

Since Ek and E? are orthogonal, we must have that both

n ⇥ [Ek] = 0 (2.49)

and
n ⇥ [E?] = 0. (2.50)

Expanding out (2.49) and making use of the relation (2.44) leads to the boundary condition

1

"

@Hz

@n

�
= 0. (2.51)

Expanding out (2.50) leads to the boundary condition

[Ez] = 0. (2.52)

In a similar fashion, the vector boundary condition (2.19) leads to the two scalar boundary
conditions 

1

µ

@Ez

@n

�
= 0, (2.53)

[Hz] = 0. (2.54)

To summarise, the 2D electromagnetic problem is equivalent to solving two scalar
Helmholtz equations

(�+ k2

)Ez = 0, (2.55)

(�+ k2

)Hz = 0, (2.56)

subject to the boundary conditions

[Ez] = 0, (2.57)

[Hz] = 0, (2.58)

1

µ

@Ez

@n

�
= 0, (2.59)


1

"

@Hz

@n

�
= 0. (2.60)
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2.6 The (2D) acoustic transmission problem

Wave scattering problems in which the unknown scattered field is a scalar function arise in
acoustical applications. Therefore, we take the time to restate our boundary value problem
in a manner in keeping with the acoustics literature. This task is also warranted by the fact
that there exist some fundamental differences between two and three-dimensional problems
which lead to different integral operators and representation theorems. The most notable
differences are that the fundamental solution of the Helmholtz equation is now a Hankel
function as opposed to a spherical function, and that the boundary integral equations for
the transmission problem now involve four boundary integral operators as opposed to just
two in the EM problem.

The acoustic transmission problem is stated as follows. Let⌦
2

denote a convex polygon
in 2D with boundary � and outward pointing normal n, where a convex polygon is a convex
subset of R2 enclosed by intersecting straight-line segments. Let ⌦

1

:= Rd\⌦
2

denote the
exterior unbounded domain. Given k

1

, k
2

,↵ 2 C and F 2 H1/2
(�), G 2 H�1/2

(�), find
u
1

2 H1

loc(⌦1

) and u
2

2 H1

(⌦

2

) such that

(�+ k2

1

)u
1

= 0, in ⌦
1

, (2.61)

(�+ k2

2

)u
2

= 0, in ⌦
2

, (2.62)

��u
2

� �+u
1

= F, on �, (2.63)

↵@�n u
2

� @+n u
1

= G on �, (2.64)

with u
1

satisfying the Sommerfeld radiation condition, i.e.,

@u
1

@r
(x) � ik

1

u
1

(x) = o(r�(d�1)/2
) (2.65)

as r := |x| ! 1, uniformly in ˆx := x/r. The operators �+ and �� denote respectively
the exterior and interior Dirichlet trace operators where the Dirichlet trace operator
� : H1

(⌦) ! H1/2
(�) is the unique bounded linear operator defined by

�u := u|
�

, (2.66)

if u 2 C1
(⌦). The operators @+n and @�n denote respectively the exterior and interior

Neumann trace operators where the Neumann trace operator @n : H1

(⌦) ! L2

(�) is the
unique bounded linear operator defined by

@nu := ru · n|
�

, (2.67)

if u 2 C1
(⌦) and with n the normal to � pointing from ⌦

2

into ⌦
1

. For more information
on trace operators for scalar functions on Lipschitz domains the reader is referred to [103].
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n �

⌦

1

⌦

2

ui
= eik1d

i·x

|d| = 1

Figure 2.2: Scattering of a plane wave by a 2D polygon.

The acoustic scattering problem of interest to us, namely a plane wave ui
(x) = eik1di·x

incident upon a polygon as in Figure 2.2, can be formulated in this way with the functions
F and G in (2.63)–(2.64) being given by

F = �+ui and G = @+n ui. (2.68)

The total field is given by

u(x) =

(
ui
(x) + u

1

(x), x 2 ⌦
1

.

u
2

(x), x 2 ⌦
2

,
(2.69)

and the transmission conditions (2.63)–(2.64) can be written in terms of the total field as

�+u =��u, (2.70)

@+n u =↵@�n u. (2.71)

Sufficient conditions on the constants k
1

, k
2

,↵ ensuring unique solvability of (2.61)–
(2.65) are provided by the following theorem which we quote from [88, Proposition 2.1
and Corollary 3.4], which follows from results in [37, 133], and also the related result
of [99, Corollary 8.5] (note the similarity to Theorem 2.1).

Theorem 2.2 (Existence and uniqueness). Let k
1

, k
2

2 C and ↵ 2 C\{0} be such that
either

k
1

> 0, Im(↵)  0 and Im(↵k2
2

) � 0,
or

Im(k

1

) > 0 or k
1

= 0 and there exist no a, b, c, d > 0 with �↵k2

2

a�k2

1

b+↵c+d = 0.
Then a solution to the problem (2.61)–(2.65) exists and is unique.

Remark 2.2. The problems considered in this thesis shall be based upon the application
to light scattering by ice crystals for which the exterior medium ⌦

1

is air which has unit
refractive index. Hence k

1

2 R. The interior medium ⌦

2

is ice which has a complex
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refractive index n = nR+inI with nR > 0 and nI � 0. So k
2

:= nk
1

2 C with Re(k

2

) > 0

and Im(k

2

) � 0. As mentioned earlier, the 2D electromagnetic problem can be decoupled
into two 2D acoustic problems - one for the electric field and one for the magnetic field.
The difference between these two problems, as can be seen in [52], is the jump ↵ in the
solution’s normal derivative across �.

For the electric problem, ↵ = 1, and we can immediately see that the first set of con-
ditions in Theorem 2.2 hold. For the magnetic problem, ↵ =

p
k
1

/k
2

. For this case, it
is simple to show that Im(↵)  and Im(↵k2

2

) � 0 and hence the first set of conditions in
Theorem 2.2 hold.

We highlight here that in this thesis, we shall concentrate on the 2D magnetic problem,
i.e., ↵ = 1. This is done for simplicity and we leave the verification of the method for ↵ 6= 1

to future work. Nevertheless, we derive the integral equations in §2.7 and the geometrical
optics formulae in §4 for general ↵ 2 C so that the implementation of the method for ↵ 6= 1

should be straightforward.

2.7 Acoustic boundary integral equations

We now reformulate the BVP (2.61)–(2.65), with F and G as given in (2.68), as a system of
boundary integral equations via Green’s representation theorem. In order to state Green’s
representation theorem, we first define the single-layer and double-layer potentials for � 2
L1

(�) as (for further details see [28, §2.2])

Sj�(x) :=

Z

�

�j(x,y)�(y)ds(y), x 2 Rd\�, (2.72)

Dj�(x) :=

Z

�

@�j(x,y)

@n(y))
�(y)ds(y), x 2 Rd\�, (2.73)

where �j is given by

�j(x,y) :=
i

4

H(1)

0

(kj|x � y|)

in 2D for j = 1, 2.
A form of Green’s representation theorem holds for the total field in the interior domain

⌦

2

[28, Theorem 2.20]

S
2

@�n u(x) � D
2

��u(x) =

(
0, x 2 ⌦

1

.

u(x), x 2 ⌦
2

.
(2.74)

Similarly, in the exterior domain ⌦
1

, for the scattered field we have [28, Theorem 2.21]

�S
1

@+n u
1

(x) + D
1

�+u
1

(x) =

(
u
1

(x), x 2 ⌦
1

.

0, x 2 ⌦
2

.
(2.75)

30



In order to obtain an integral representation for the total field in ⌦
1

, as opposed to merely
the scattered field, we first note that from [28, Theorem 2.20], since ui is a C1 solution of
(r + k2

1

)ui
= 0 in a neighbourhood of ⌦

2

,

0 = S
1

@+n ui
(x) � D

1

�+ui
(x) = 0, x 2 ⌦

1

. (2.76)

Adding (2.76) to (2.75) and then adding ui
(x) to both sides, we find that

u(x) = ui
(x) � S

1

@+n u(x) + D
1

�+u(x), x 2 ⌦
1

. (2.77)

Combining (2.74) and (2.77) we have a representation for u in the entire domain R2, namely

u(x) =

(
ui
(x) � S

1

@+n u(x) + D
1

�+u(x), x 2 ⌦
1

.

S
2

@�n u(x) � D
2

��u(x), x 2 ⌦
2

.
(2.78)

Now to obtain integral equations, we take the Dirichlet and Neumann traces of u onto
�. We require the standard jump relations for layer potentials which we quote from [28,
p. 115]. We have on H�1/2

(�)

�±Sj = Sj, (2.79)

@±n Sj = ⌥1

2

I + D0
j, (2.80)

and, on H1/2
(�),

�±Dj = ±1

2

I + Dj, (2.81)

and
@±n Dj = Hj . (2.82)

Here I is the identity operator and Sj, Dj, D0
j, Hj , for j = 1, 2 are, respectively, the single-

layer, double-layer, adjoint double-layer and hypersingular integral operators defined for
� 2 L2

(�) as (see [28, § 2.3] for technical details)

Sj�(x) :=

Z

�

�j(x,y)�(y)ds(y), (2.83)

Dj�(x) :=

Z

�

@�j(x,y)

@n(y)
�(y)ds(y), (2.84)

D0
j�(x) :=

Z

�

@�j(x,y)

@n(x)
�(y)ds(y), (2.85)

Hj�(x) :=
@

@n(x)

Z

�

@�j(x,y)

@n(y)
�(y)ds(y). (2.86)
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Applying both the Dirichlet traces �+ and �� to (2.78) and employing the jump rela-
tions (2.79) and (2.81) yields the boundary integral equations

✓
1

2

I � D
1

◆
�+u + S

1

@+n u = �+ui, (2.87)
✓
1

2

I + D
2

◆
��u � S

2

@�n u = 0, (2.88)

where we have also dropped the explicit dependence on x for brevity of presentation. Now
applying both the Neumann traces @+n and @�n to (2.78) and employing the jump relations
(2.80) and (2.82) yields the boundary integral equations

✓
1

2

I + D0
1

◆
@+n u � H

1

�+u = @+n ui, (2.89)
✓
1

2

I � D0
2

◆
@�n u + H

2

��u = 0. (2.90)

We shall write all the equations henceforth in terms of positive traces. To this end, we
employ the transmission conditions (2.70)–(2.71) in equations (2.88) and (2.90). We also
drop the trace notation, for the sake of simplifying the presentation, by writing u(x) =

�+u(x) and @u(x)/@n = @+n u(x) when x 2 �. Thus, equations (2.87)–(2.90) are written
as ✓

1

2

I � D
1

◆
u + S

1

@u

@n
= ui, (2.91)

✓
1

2

I + D
2

◆
u � 1

↵
S
2

@u

@n
= 0, (2.92)

✓
1

2

I + D0
1

◆
@u

@n
� H

1

u =

@ui

@n
, (2.93)

✓
1

2

I � D0
2

◆
@u

@n
+ ↵H

2

u = 0. (2.94)

These are four boundary integral equations in two unknowns u and @u/@n. Which equa-
tions, or linear combination of equations, should we solve? One simple choice would be
to solve only (2.91) and (2.92). But this pair is known to not always be uniquely solv-
able [106]. The choice we make follows that of [83] and [82] (where the smooth scatterer
case was considered), and is motivated by the desire to obtain a pair of second kind in-
tegral equations with weakly singular kernels by making the singularites in the hypersin-
gular operators partially cancel. We do this by taking the combinations (2.91)+(2.92) and
↵(2.93)+(2.94) to give

1

2

(I + ↵I)u + (↵D
2

� D
1

)u + (S
1

� S
2

)

@u

@n
= ui, (2.95)

1

2

(I + ↵I)
@u

@n
+ (↵D0

1

� D0
2

)

@u

@n
+ ↵(H

2

� H
1

)u = ↵
@ui

@n
. (2.96)
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This cancellation of the strong singularities in H
1

and H
2

is attractive from both an analytic
and a computational viewpoint.

To recap, the solution of the transmission problem (2.61)–(2.65), with F and G given
by (2.68), satisfies Green’s representation formula

u(x) =

(
ui
(x) � S

1

@u
@n(x) + D

1

u(x), x 2 ⌦
1

.

S
2

1

↵
@u
@n(x) � D

2

u(x), x 2 ⌦
2

,
(2.97)

and the boundary integral equation
Av = f , (2.98)

where

v =

✓
u
@u
@n

◆
, f =

✓
ui

↵@u
i

@n

◆
,

and
A =

✓
1

2

(1 + ↵)I + (↵D
2

� D
1

) S
1

� S
2

↵(H
2

� H
1

)

1

2

(1 + ↵)I + (↵D0
1

� D0
2

)

◆
. (2.99)

The boundary integral operator A can be viewed as a mapping

A : H1/2
(�) ⇥ H�1/2

(�) ! H1/2
(�) ⇥ H�1/2

(�),

A : H1

(�) ⇥ L2

(�) ! H1

(�) ⇥ L2

(�),

or
A : L2

(�) ⇥ L2

(�) ! L2

(�) ⇥ L2

(�).

It is desirable here to work in the final context since this will be the most simple for the
Galerkin implementation we shall describe later in the thesis. This choice is reasonable
since the data f are always in L2

(�) ⇥ L2

(�) for the problems we consider.
We shall now prove that for the relevant k

1

, k
2

, ↵ (as described in Remark 2.2), A is
invertible on L2

(�) ⇥ L2

(�). This will complete the proof of the following theorem.

Theorem 2.3. For k
1

> 0, Re(k
2

) > 0, Im(k

2

) � 0, and either

(i) ↵ = 1, or

(ii) ↵ =

p
k
1

/k
2

= 1/
p

n,

the solution of the acoustic scattering problem exists, is unique, and is given by Green’s
representation theorem (2.97), where u and @u/@n satisfy the boundary integral equation
(2.98). Futhermore, the boundary integral operator A is invertible on L2

(�) ⇥ L2

(�).
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Proof. It only remains to prove the final statement of the theorem, i.e. that A is invertible
on L2

(�) ⇥ L2

(�). This is shown using a modification of the Fredholm-type argument
employed in [133] where an indirect formulation for the three-dimensional acoustic trans-
mission problem for Lipschitz scatterers is considered.

We first sketch an outline of the proof before providing the details. We begin by de-
composing the integral operator A as A = J + K where J is shown to be an invertible
operator on L2 ⇥ L2 (thus trivially a Fredholm operator of index zero), and K is shown
to be a compact operator on L2 ⇥ L2 via perturbations from the Laplace case. Hence
A = J + K is Fredholm of index zero (by [103, Theorem 2.26]) and so the Fredholm
Alternative ( [103, Theorem 2.27(i)]) is available to us. Thus, we endeavour to show that A
is injective on L2 ⇥L2 and then conclude, by the Fredholm Alternative, that A is invertible
on L2 ⇥ L2.

Now to commence with the proof of the invertibility of A. First let us introduce the
k = 0 versions of the single-layer, double-layer and adjoint double-layer operators and
denote them as S

0

, D
0

and D0
0

, respectively. Then notice that

1

2

(1+↵)I + (↵D
2

� D
1

) =

1

2

(1+↵)I � (1�↵)D
0

+ (D
0

� D
1

) +↵(D
2

� D
0

) (2.100)

and

1

2

(1+↵)I +(↵D0
1

�D0
2

) =

1

2

(1+↵)I � (1�↵)D0
0

+(D0
0

�D0
2

)+↵(D0
1

�D0
0

). (2.101)

Therefore we may write
A = J + K (2.102)

where
J =

✓
1

2

(1 + ↵)I � (1 � ↵)D
0

0

0

1

2

(1 + ↵)I � (1 � ↵)D0
0

◆
(2.103)

and
K =

✓
(D

0

� D
1

) + ↵(D
2

� D
0

) S
1

� S
2

↵(H
2

� H
1

) (D0
0

� D0
2

) + ↵(D0
1

� D0
0

)

◆
. (2.104)

For ↵ = 1, J is clearly invertible. In order to show J is invertible for ↵ 6= 1, we shall
use the following result quoted from [46, Theorem 2.2(i)].

Theorem 2.4. Assume ⌦ is a bounded Lipschitz convex domain in Rn, n � 2. Then the
spectral radius of D0

0

on L2

(@⌦) equals 1

2

.

An immediate consequence of Theorem 2.4 is that �I � D0
0

is invertible for |�| > 1

2

.
This statement also holds for �I � D

0

. A further consequence of Theorem 2.4 is the
following lemma, which we quote from [133, Lemma 3.2].
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Lemma 2.1. Suppose �I � D
0

is invertible in L2

(�), then �I � D
0

is invertible in H1

(�).

From the fact that �I � D
0

is invertible on L2

(�) (a consequence of Theorem 2.4), we
can deduce that the operator J is invertible if

����
1 + ↵

1 � ↵

���� > 1. (2.105)

The values of ↵ that we are interested in are those such that ↵ = n�1/2 where Re(n) > 0

and Im(n) � 0. So we may write ↵ = |n|�1/2ei✓ where �⇡/4  ✓  0 and hence we have
that Re(↵) > 0. Since Re(↵) > 0, the condition (2.105) holds and J is invertible.

Now we wish to show that K is compact. In order to do this we require the following
known results.

(i) Sk � S
0

: L2

(�) ! L2

(�) is compact [28, p. 122],

(ii) Dk � D
0

: L2

(�) ! L2

(�) is compact [133, p.1466]
(and hence so is D0

k � D0
0

: L2

(�) ! L2

(�)) ,

(iii) Hk � H
0

: L2

(�) ! L2

(�) is compact [133, Lemma 6.2],

(iv) Dk � D
0

: L2

(�) ! H1

(�) is bounded [133, p. 1466].

Using these results, we can immediately see that each operator entry in K is compact, and
hence K is compact on L2

(�) ⇥ L2

(�). Therefore A is a Fredholm operator of index
zero and thus, by the Fredholm alternative (see, e.g., [103, Theorem 2.27(i)]), the system
of boundary integral equations (2.98) has a unique solution if the homogeneous system
(f = 0) has only the trivial solution. In other words, we must show that A is injective.

To prove the injectivity of A, we begin by supposing that

v =

✓
�
 

◆
2 L2

(�) ⇥ L2

(�) (2.106)

solves the system (2.98) with ui
= 0, i.e. Av = 0, and we endeavour to prove that v = 0.

First let us note that � possesses more regularity than we have assumed; in fact we have
that � 2 H1

(�). This can be seen by expanding out Av = 0, i.e. (J + K)v = 0 and
considering the first row. This gives us

✓
1

2

(1 + ↵)I � (1 � ↵)D
0

◆
� = (D

1

� D
0

)�� ↵(D
2

� D
0

)�� (S
1

� S
2

) .

Since (D
1

�D
0

) and (D
2

�D
0

) map L2

(�) to H1

(�) (see result (iv) on p.35), and Sk maps
L2

(�) to H1

(�) also [133, p.1466], we have that
✓
1

2

(1 + ↵)I � (1 � ↵)D
0

◆
� 2 H1

(�).
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Then by Lemma 2.1 the operator
�
1

2

(1 + ↵)I � (1 � ↵)D
0

�
is invertible in H1

(�), showing
that � 2 H1

(�). This will be necessary later for showing that the functions to be designed
are in the required function spaces in order to satisfy the BVP.

Now consider the functions v
1

and v
2

defined by

v
1

:= ↵D
2

�� S
2

 in ⌦
1

, (2.107)

v
2

:= D
1

�� S
1

 in ⌦
2

, (2.108)

where we note that the interior and exterior wavenumbers are switched and we wish to show
that these functions satisfy the homogeneous version of the BVP defined by (2.61)–(2.65)
and (2.70)–(2.71). Applying the trace operators and using the jump relations (2.79)–(2.82),
we get

�+v
1

= ↵

✓
1

2

I + D
2

◆
�� S

2

�, (2.109)

��v
2

=

✓
�1

2

I + D
1

◆
�� S

1

 , (2.110)

@+n v
1

= ↵H
2

��
✓

�1

2

I + D0
2

◆
 , (2.111)

@�n v
2

= H
1

��
✓
1

2

I + D0
1

◆
 . (2.112)

Then
�+v

1

= ��v
2

and @+n v
1

= ↵@�n v
2

.

Since, as was shown earlier, (�, ) 2 H1

(�)⇥ L2

(�), as can be shown via the well-known
mapping properties of the single- and double-layer potentials (see, e.g., [28, Theorem 2.15])
that

Sk 2 H1

loc(R2

) and Dk� 2 H1

loc(⌦k)

for k = 1, 2. Thus v
1

2 H1

loc(⌦1

) and v
2

2 H1

(⌦

2

). Hence we see that v
1

, v
2

also satisfy
the homogeneous version of the BVP defined by (2.61)–(2.65) and (2.70)–(2.71), and so
by Theorem 2.2 (uniqueness) we have that v

1

⌘ u
2

⌘ 0.
Next consider the functions u

1

and u
2

defined by

u
1

:= D
1

�� S
1

 in ⌦
1

, (2.113)

u
2

:= �D
2

�� 1

↵
S
2

 in ⌦
2

. (2.114)
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Note here that (2.113) and (2.114) are identical to u as defined in (2.97) for ui ⌘ 0. Apply-
ing the trace operators and using the jump relations gives

�+u
1

= ↵

✓
1

2

I + D
1

◆
�� S

1

�, (2.115)

��u
2

=

✓
1

2

I � D
2

◆
�+

1

↵
S
2

 , (2.116)

@+n u
1

= ↵H
1

��
✓
1

2

I � D0
1

◆
 , (2.117)

@�n u
2

= �H
2

�+

1

↵

✓
1

2

I + D0
2

◆
 . (2.118)

Then we see that

�+u
1

� ��u
2

= (D
1

+ D
2

)�� (S
1

+

1

↵
S
2

) 

=

1

↵
�+v

1

+ ��v
2

= 0 since v
1

⌘ v
2

⌘ 0,

and

@+n u
1

� @�n u
2

= (H
1

+ ↵H
2

)�� (D0
1

+ D0
2

) 

= @+n v
1

+ @�n v
2

= 0 since v
1

⌘ v
2

⌘ 0.

Further, by the same use of [28, Theorem 2.15] as above, we have that u
1

2 H1

loc(⌦1

) and
u
2

2 H1

(⌦

2

). Hence we see that u
1

, u
2

also satisfy the homogeneous BVP. Therefore by
uniqueness, u

1

⌘ u
2

⌘ 0.
Now we have all the pieces in place for the final step of the proof. Recall that we are

supposing that

A
✓
�
 

◆
= 0.

Expanding this out, we have

1

2

(1 + ↵)� = (S
2

� S
1

) � (↵D
2

� D
1

)�, (2.119)

1

2

(1 + ↵) = ↵(H
1

� H
2

)�+ (D0
2

� ↵D0
1

) , (2.120)
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which after some manipulation yield

� = (S
2

� S
1

) � (↵D
2

� D
1

)�� ↵

2

�+

�

2

= S
2

 � ↵

✓
1

2

I + D
2

◆
�

| {z }
��+v1

+

✓
1

2

I + D
1

◆
�� S

1

 

| {z }
�+u1

= 0, since u
1

⌘ v
1

⌘ 0,

and

↵ = ↵(H
1

� H
2

)�+ (D0
2

� ↵D0
1

) +

↵

2

 � 1

2

 

= �↵H
2

�+

✓
�1

2

I + D0
2

◆
 

| {z }
�@+

n

v1

+↵H
1

�� ↵

✓
�1

2

I + D0
1

◆
 

| {z }
↵@+

n

u1

= 0,

hence  = 0 since we have assumed ↵ 6= 0. Therefore v = 0 and the BIE system is
uniquely solvable.

2.8 Scattering properties

When solving scattering problems via (direct) boundary integral equations, the solution we
obtain is the field and its normal derivative only on the surface of the scatterer. However,
the boundary data is often of little practical interest. Rather it is the field in the scattering
domain away from the scattering surface which is the desired output. This field can be
calculated by substituting the boundary data into the Stratton-Chu formulae (2.31)–(2.32)
in the EM case, or Green’s representation formulae (2.78) in the acoustic (and 2D EM) case.
However, when the point of observation is “far” from the scatterer, i.e., k

1

r � 1, where
|r| := |x|, the asymptotic versions of the aforementioned formulae are employed. We
shall state these far-field formulae in this section. We also detail the amplitude scattering
matrix and its calculation which is relevant for the EM scattering problem. This matrix
describes how the far-field amplitudes of the scattered radiation’s different polarisation
states are related to those of the incident wave. We also discuss briefly the scattering
phase function and scattering cross section which are quantities of interest in EM scattering
simulations. For more detail on these and other scattering properties, the reader is referred
to [18] or [142].
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2.8.1 Far-field pattern

Recall the Stratton-Chu formula for Es 2 ⌦
1

,

Es
(x) = � DL�

+

DE(x) � SL�
+

NE(x), x 2 ⌦
1

. (2.121)

When k
1

r � 1, this may be written in the asymptotic form [111]

Es
(x) ⇠ �eik1r

ik
1

r
F(ˆds

), as kr ! 1, (2.122)

where ˆds
:= x/|x| 2 S2 is the unit scattering direction, with the far-field pattern being

given by
F =  

F
DL(�

+

DE) + 

F
SL(�

+

NE),

where the far-field versions of the single- and double-layer potentials are defined as

[ 

F
DLv]( ˆds

) =

k2

1

4⇡

Z

�

e�ik( ˆds·y)
⇣
ˆds ⇥ v(y)

⌘
d�(y) (2.123)

[ 

F
SLv]( ˆds

) =

k2

1

4⇡

Z

�

e�ik( ˆds·y)v(y)d�(y)

� k2

1

4⇡

Z

�

e�ik( ˆds·y)v(y) · ˆdsd�(y). (2.124)

It is customary to define the scattering direction ˆds in terms of the two angles # and �. The
angle � dictates the scattering plane and is a rotation about the x-axis, and # is the angle
from the forward scattering direction which describes the scattering direction within that
plane. In the 3D scattering examples presented in §3, the forward scattering direction is
always taken to be the positive x-direction. Therefore, the scattering direction ˆds is written

ˆds
= (cos(#), cos(�) sin(#), sin(�) cos(#)). (2.125)

In the examples shown in §3, we shall consider, for simplicity, the plane � = 0, i.e., the
(x, y)-plane, hence

ˆds
= (cos(#), sin(#), 0)

for 0 < # < 2⇡.
For the acoustic case, recall Green’s representation formula for us 2 ⌦

1

,

us
(x) = �S

1

@+n u(x) + D
1

�+u(x), x 2 ⌦
1

. (2.126)

The so-called far-field is obtained by using the asymptotic behaviour of the Hankel func-
tions H(1)

0

and H(1)

1

for large argument [39] within Green’s representation formula for the
scattered field (2.75). This gives

uff
(x) ⇠ ei⇡/4

2

p
2⇡

eik1rp
k
1

r
F (

ˆds
), as r := |x| ! 1, (2.127)
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where ˆds
:= x/|x| 2 S1, the unit circle, with the far-field pattern F being given by

F (

ˆds
) = �

Z

�

e�ik1 ˆds·y
✓
ik

1

(

ˆds · n(y))u(y) + @u

@n
(y)

◆
ds(y). (2.128)

Here the scattering direction ˆds is only dependent on # 2 [0, 2⇡) and is

ˆds
= (cos(#), sin(#)).

2.8.2 Amplitude scattering matrix

Before describing the amplitude scattering matrix, it is necessary to define the reference
and scattering planes. We choose the reference plane to be defined by the incident wave
direction di and two perpendicular unit vectors ˆei

k and ˆei
? such that ˆei

? ⇥ ˆei
k = di. Here,

for simplicity (as mentioned in the previous section), we take di
=

ˆx, and so ˆei
k =

ˆy and
ˆei
? =

ˆz. The scattering plane is the plane containing both di and the scattering direction
ds, and we define vectors ˆes

? and ˆes
k such that ˆes

? ⇥ ˆes
k = ds. The angle between the two

planes is denoted by �. We shall here take � = 0 for simplicity, and the resulting reference
and scattering planes are both the (x, y)-plane with vectors ˆei

k, ˆei
?, ˆes

k, ˆes
? depicted in

Figure 2.3.

ˆx

ˆz

ˆy

ˆes
?

ˆes
k

ˆds

#
di

ˆei
?

ˆei
k

Figure 2.3: Reference and scattering planes.

Now the incident and scattered fields may be decomposed into parallel and perpendic-
ular components in the following way

Ei
(x) =

�
Ei

kˆe
i
k + Ei

?ˆe
i
?
�

eik1x, (2.129)

Es
(x) =

�
Es

kˆe
s
k + Es

?ˆe
s
?
�

eik1r. (2.130)
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We note that this decomposition for Es is possible since the scattered field is approximately
transverse in the far-field, that is, ˆds·F ⇡ 0 (see, e.g., [73]). Ei

k and Ei
? are scalar, complex-

valued electric amplitudes of the parallel and perpendicular components of the incident
electric field vector, and Es

k and Ei
? are their counterparts for the scattered electric field

vector. These quantities are related via the amplitude scattering matrix in the following
way: ✓

Es
ks

Es
?s

◆
=

eik1(r�x)

�ik
1

r

✓
A

11

A
12

A
21

A
22

◆✓
Ei

ki
Ei

?i

.

◆
(2.131)

It may be readily observed that if the incident field is polarised in either of the ˆy- or ˆz-
directions, then the amplitude scattering matrix only has two non-zero entries. A simple
way to calculate all entries Aij , is to solve the scattering twice, once with each of the
aforementioned polarisations of the incident wave. For example, we may take the two
incident fields

Ei
1

= (1 · ê?i + 0 · êki)e
ik1x (2.132)

and
Ei

2

= (1 · êki + 0 · ê?i)e
ik1x. (2.133)

From the solution to the scattering problem with incident field Ei
1

, one may calculate A
12

and A
22

, and from the solution to the scattering problem with incident field Ei
2

, one may
calculate A

12

and A
21

.
From the amplitude scattering matrix, the entries of the so-called scattering matrix

can be calculated. The scattering matrix relates the Stokes parameters of the incident and
scattered fields and the reader is referred to an EM scattering monograph such as [18]
or [105] for details of these quantities. We shall only state the first entry of the scattering
matrix which provides a measure of the scattered intensity and is analogous to the square
of the far-field pattern (2.128) in the acoustic case. This entry is often called the phase
function and is given by

S
11

=

1

2

(|A
11

|2 + |A
22

|2 + |A
21

|2 + |A
12

|2). (2.134)

This entry is often normalised in the following manner:

P
11

=

4⇡S
11

k2

1

Csca
, (2.135)

where Csca is the scattering cross section defined as

Csca =

Z
2⇡

0

Z ⇡

0

S
11

k2

1

sin#d#d�, (2.136)

that is, the scattering cross section is the integral of the far-field amplitude over all scattering
directions.
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Chapter 3

Numerical methods

In §1.2.1 a brief review of popular numerical methods for wave scattering problems was
given. Each method has its own particular advantages and disadvantages, but, in their con-
ventional form, they all have in common a computational cost which grows with increas-
ing size parameter �. In this chapter we shall describe in detail one particular numerical
method - the boundary element method. The #DOF for the conventional BEM, which em-
ploys piecewise polynomial basis functions, scales with � as O(�d�1

) where d = 2, 3 is
the dimension of the scattering problem. However, it is applicable to any particle geome-
try, is relatively simple to implement, and has excellent and well-understood convergence
properties.

The outline of this chapter is as follows. In §3.1 we describe the boundary element
method in general terms. Such a description is pertinent also to the HNA approach which
lies within the BEM framework. §3.2 details the implementation of a conventional 2D
Galerkin hp-BEM for scattering by convex polygons. This includes in §3.2.2 a discussion
of the evaluation of the singular integral operator differences arising in our 2D boundary
integral equation choice (2.99). In particular, we see explicitly the cancellation of the strong
singularities in the hypersingular operators. In §3.2.3 we detail efficient quadrature methods
for evaluating the arising singular integrals. All of these implementation techniques are
relevant also for the HNA BEM of §6. §3.2.4 demonstrates the convergence properties of
the 2D Galerkin hp-BEM which shall be employed in the following chapters to generate
the necessary reference solutions.

Finally, §3.3 briefly describes the use of a 3D open-source BEM code, BEM++ [124],
to solve the 3D EM transmission problem. The purpose of this demonstration is to illus-
trate the extremely demanding computational cost of a state-of-the-art implementation of a
BEM for a simple 3D scattering problem. In particular, we demonstrate that, to achieve ap-
proximately 1% accuracy in the far-field pattern for scattering by a hexagonal ice column,
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the limit in terms of � when using a quad-core PC with 16.4 Gigabytes of RAM is � = 15.
This provides motivation for the development of HNA methods.

3.1 Boundary element method

We briefly outline the main ideas of the BEM in two of its main forms - the collocation and
Galerkin methods - following the exposition given in [5, Chapter 3].

Consider the integral equation
Ku = b, (3.1)

where K is an integral operator mapping a Banach space X into itself. For the context we
work in in this thesis, X = L2

(�) ⇥ L2

(�).
We begin by choosing a finite dimensional subspace XN ⇢ X where N denotes the

dimension of XN . Let XN have a basis {�
1

, . . . ,�N}. Then we seek a function vN 2 XN

which may be written as

vN(x) =
NX

i=1

ci�i(x), x 2 �. (3.2)

The function representation (3.2) is substituted into the integral equation (3.1) and we may
define the residual rN(x) as

rN(x) =
NX

i=1

ciK�i(x) � b(x). (3.3)

The coefficients {c
1

, . . . , cN} are chosen by forcing the residual rN(x) to be approximately
zero in some sense. The two different “senses” we describe define the collocation and
Galerkin methods.

3.1.1 Collocation method

In the collocation method, one chooses N distinct collocation points y
1

, . . . ,yN on the
boundary �, and then enforces the residual to be zero at these points. This leads to the
determination of {c

1

, . . . , cN} via the solution of the linear system

NX

j=1

cjK�j(yi) = b(yi), i = 1, . . . , N. (3.4)

Or, written in matrix form, we are required to solve

Kv = b, (3.5)
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where the entries in the matrix K are defined by

Ki,j = K�j(yi) (3.6)

and v and b are column vectors with their entries defined as

vi = ci and bi = b(yi).

The collocation method is extremely popular owing to its conceptual simplicity. Also,
the integrals to be performed in the left-hand side of (3.4) are all of dimension d � 1 for
d = 2, 3, and so the method is relatively straightforward to implement. However we note
that the stability of the method can depend strongly on the choice of collocation points yi

(see [115], although we note that there the author is employing an HNA approximation
space).

3.1.2 Galerkin’s method

Another approach to determine the coefficients {c
1

, . . . , cN} is Galerkin’s method. Let h·, ·i
denote the usual inner product on L2

(�), defined by

hf, gi :=
Z

�

f(x)g(x)d�(x).

Then in Galerkin’s method we require that the residual rN(x) satisfy

hrN ,�ii = 0, i = 1, . . . , N. (3.7)

This leads to the determination of the coefficients ci via the solution of the linear system

NX

j=1

cjhK�j,�ii = hb,�ii, i = 1, . . . , N. (3.8)

Or, written in matrix form, we are required to solve

Kv = b, (3.9)

where the entries in the matrix K are defined by

Ki,j = hK�j,�ii (3.10)

and v and b are column vectors with their entries defined as

vi = ci and bi = hb,�ii.
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To implement the Galerkin method we now are required to evaluate integrals of dimen-
sion 2(d � 1) for d = 2, 3, as opposed to d � 1 for the collocation method, hence making
the Galerkin method more costly (although only in terms of CPU time and not in terms of
memory). However, this method possesses many advantages over the collocation method.
In particular, for many scattering problems it is possible to prove that the Galerkin solution
is quasi-optimal, i.e., it produces an approximation that is equivalent to the best approxima-
tion, up to a constant (although such a proof is not available for the transmission problem).
Also, one does not have to worry about the different possible choices of the collocation
points with the potential for ill-conditioned systems if they are poorly chosen. For the lat-
ter reason, we choose to employ the Galerkin method in this thesis. However, as will be
noted in §6, if the stability issues associated with the collocation points could be resolved,
a collocation based implementation of the HNA method described in this thesis could offer
significant savings in terms of computation and implementation time. This is because the
oscillatory integrals arising would be of lower dimension and hence easier to evaluate using
oscillatory quadrature techniques.

3.2 A Galerkin hp-BEM for the 2D transmission problem

In this section we describe the application of the Galerkin BEM to the 2D transmission
problem in a “conventional” way. By conventional, we mean that we use piecewise poly-
nomials as the basis functions which populate the approximation space. The method de-
scribed in this section shall be used to generate reference solutions for later comparison
with the HNA BEM. It also has many features in common with the HNA BEM to be pro-
posed later in the thesis so we take the time to describe its implementation in detail here.

Recall that the integral equation we wish to solve may be written as
✓

1

2

(1 + ↵)I + (↵D
2

� D
1

) S
1

� S
2

↵(H
2

� H
1

)

1

2

(1 + ↵)I + (↵D0
1

� D0
2

)

◆✓
u
@u
@n

◆
=

✓
ui

↵@u
i

@n

◆
. (3.11)

In §3.2.1 we choose a finite dimensional space of piecewise polynomials {�i}N
i=1

⇢ L2

(�)

so that the two unknowns u, @u/@n may be approximated by v, w where

u ⇡ v :=

NX

i=1

Vi�i and
@u

@n
⇡ w :=

NX

i=1

Wi�i. (3.12)

Applying the Galerkin method to the equation (3.11) with the representations of the un-
knowns as in (3.12), yields the matrix system to be solved:

A
✓

v
w

◆
=

✓
b
c

◆
, (3.13)
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where the entries in matrix A are defined by

Ai,j =

8
>>><

>>>:

1

2

(1 + ↵)h�j,�ii + h(↵D
2

� D
1

)�j,�ii, i = 1, . . . , N ; j = 1, . . . , N,

h(S
1

� S
2

)�j,�ii, i = 1, . . . , N ; j = N + 1, . . . , 2N,

h↵(H
2

� H
1

)�j,�ii, i = N + 1, . . . , 2N ; j = 1, . . . , N ;

1

2

(1 + ↵)h�j,�ii + h(↵D0
1

� D0
2

)�j,�ii, i = 1, . . . , N ; j = 1, . . . , N,
(3.14)

and v, w, b, c are column vectors with their entries defined as

vi = Vi, wi = Wi, bi = hui,�ii, ci = ↵

⌧
@ui

@n
,�i

�
. (3.15)

In §3.2.1 we choose a suitable approximation space {�i}N
i=1

⇢ L2

(�) for our scattering
problem. §3.2.2 and §3.2.3 then discuss the implementation of the Galerkin approximation
(3.13). In particular, §3.2.2 is concerned with the accurate numerical evaluation of the ker-
nels in (3.14). The differences of singular operators can lead to large cancellation errors if
not handled correctly. §3.2.3 discusses the 1D and 2D integrals that must be evaluated. This
includes an exposition of some efficient singular integral quadrature techniques which, al-
though standard, are rarely presented in detail for specific BIE calculations. §3.2.4 presents
numerical results demonstrating the excellent accuracy and convergence properties of this
Galerkin approximation.

3.2.1 Approximation space

We build our basis functions from a suitable set of orthogonal polynomials owing to their
desirable interpolation properties. Here, in view of our L2 setting, we choose the Legendre
polynomials which are defined on the interval [�1, 1] by the three-term recurrence

L
0

(x) = 1, (3.16)

L
1

(x) = x, (3.17)

Lj+1

(x) =

2j + 1

j + 1

xLj(x) � j

j + 1

Lj�1

(x), j � 1. (3.18)

The Legendre polynomials form an orthogonal basis for L2

([�1, 1]), specifically, we have
Z

1

�1

Lj(x)Lk(x)dx =

⇢
0, j 6= k

2

2j+1

, j = k.

On a general interval [a, b], we work with

Ln

✓
2(x � a)

b � a
� 1

◆
, (3.19)
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where x 2 [a, b]. When we take the inner product of (3.19) with itself, we get, after a
change of variables,

Z b

a

✓
Ln

✓
2(x � a)

b � a
� 1

◆◆
2

dx =

b � a

2

Z
1

�1

(Ln(s))
2ds (3.20)

=

b � a

2

2

2n + 1

. (3.21)

So, in order to have an orthonormal basis for L2

([a, b]), we multiply the polynomials (3.19)
by

q
2

b�a

q
2n+1

2

.
In order to describe the mesh we use, it is useful to first define some notation pertaining

to the geometry of the polygon. Label the corners of the polygon going anti-clockwise by
Pn, n = 1, . . . , Ns, where Ns is the number of sides. Set PN

s

+1

:= P
1

, and, for n =

1, . . . , Ns, denote by �n the side between corners Pn and Pn+1

. The point x 2 �, whose
arc length measured anti-clockwise around � from P

1

is s, is represented parametrically
by

x(s) = Pn + (s � ˜Ln�1

)

✓
Pn+1

� Pn

Ln

◆
, for s 2 [

˜Ln�1

, ˜Ln], n = 1, . . . , Ns, (3.22)

where Ln = |Pn+1

� Pn| is the length of side �n, and ˜Ln =

Pn
m=1

Lm, n = 1, . . . , Ns

denotes the arc-length distance from P
1

to Pn+1

. We set ˜L
0

= 0 and denote the total length
of � by L :=

˜LN
s

.
Now consider the nth side of the polygon, i.e., �n. The construction of the mesh on �n

(for each n = 1, . . . , Ns) is performed in two stages. First, we construct a uniform mesh
with Ne = dL

n

�1
e elements, where �

1

= 2⇡/k
1

is the wavelength of the incident wave. That
is, we have at least two elements per wavelength in the mesh. Let us denote this uniform
mesh as Un. Its meshpoints xi are defined by

xi :=
iLn

Ne
, i = 0, 1, . . . , Ne. (3.23)

This mesh ensures that we have a minimum number of two mesh elements per wavelength,
however is does not account for potentially low-regularity behaviour of the Cauchy data at
the corners of the polygon. We shall make a short digression to discuss this behaviour in
order to justify our mesh design.

The behaviour of (u, @u/@n) at each corner is dependent upon the refractive index
of the scatterer, the corner angle, and the complex parameter ↵ (from the transmission
condition (2.71)). Some information about this behaviour is presented in [37] however it is
not particularly explicit, nor is there any dependence upon the refractive index leading one
to discern that their analysis is incomplete. Particularly, one should expect a dependence
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on the imaginary part of the refractive index since in the limit of high absorption (as the
imaginary part of the refractive index goes to infinity), it can be seen that the transmission
problem becomes an impenetrable scattering problem with Dirichlet boundary conditions.
For this problem it is known (see, e.g., [63]) that the boundary data @u/@n behaves like

����
@u

@n

����  Ck
1

|k
1

s|��, as s ! 1,

where s is the distance from the corner of interest, C is a constant, and � = 1�⇡/✓, where
✓ is the interior corner angle. For such a problem, meshes which are geometrically graded
towards the corner are often employed to capture this singular behaviour. For low and zero
absorption problems, we do not anticipate such singular behaviour. Nevertheless, in what
follows, we shall construct our meshes to account for this high-absorption “worst-cast”
scenario.

More precisely, in the construction of our meshes, we replace the two elements nearest
the corner points (i.e., those within a wavelength of the corners) with meshes geometrically
graded towards Pn and Pn+1

. Given A > 0, denote by G+

N
l

(

˜Ln, ˜Ln + A) the geometric
mesh with Nl layers graded towards Pn, whose meshpoints xi are defined by

x
0

:=

˜Ln, xi :=
˜Ln + �N

l

�iA, i = 1, 2, . . . , Nl, (3.24)

where 0 < � < 1 is a grading parameter. Similarly, denote by G�
N

l

(

˜Ln+1

� A, ˜Ln+1

) the
geometric mesh with Nl layers graded towards Pn+1

, whose meshpoints xi are defined by

x
0

:=

˜Ln+1

� A, xi :=
˜Ln+1

� �N
l

�iA, i = 1, 2, . . . , Nl. (3.25)

A smaller value of the grading parameter represents a more severe grading.
The mesh we use on each side �n is the union of the the three meshes defined above.

Denote the final mesh on �n as Mn, then we have that

Mn = Un(
˜Ln, ˜Ln+1

) [ G+

N
l

(

˜Ln, ˜Ln + Ln/Ne) [ G�
N

l

(

˜Ln+1

� Ln/Ne, ˜Ln+1

), (3.26)

where the number of layers N is yet to be specified. An example of this mesh with N = 3,
and for k

1

= 3 and Ln = 2⇡ is shown in Figure 3.1.

grading grading

PnPn+1

�/2

Figure 3.1: Mesh with Nl = 3 on a side with Ln = 2⇡ and for k
1

= 3.
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Now we define the space of piecewise polynomials housed on the mesh Mn. We do
so in stages, as we did with the meshes. Beginning with the graded meshes; consider the
mesh graded towards Pn. Given a vector p 2 (N

0

)

n, we let Pp,n(0, A) denote the space of
piecewise polynomials on the mesh Gn

l

(0, A) with the degree vector p, i.e.,

Pp,n(0, A) :=

�
⇢ : [0, A] ! C : ⇢|

(x
i�1,xi

)

is a polynomial of

degree less than or equal to (p)i, i = 1, . . . , n} .

For reasons of efficiency and conditioning it is common to decrease the order of the approx-
imating polynomials towards the singularity. Specifically, in the method proposed here we
use a “linear slope” degree vector p with

(p)i :=

(
p �

j
(n+1�i)

n p
k

, 1  i  n � 1,

p, i = n,

where the integer p � 0 is the highest polynomial degree on the mesh. For the mesh graded
towards Pn+1

, the setup is entirely similar to the above except in this case everything must
be flipped so that the grading and slope in p is toward the corner Pn+1

.
On the uniform portion of the mesh, each element accommodates polynomials up to and

including degree p. This leads to a total number of degrees of freedom in the approximation
space given by

M :=

N
sX

j=1

(p + 1)

✓⇠
k
1

Lj

2⇡

⇡
+ p

◆
. (3.27)

Now that the approximation space for our conventional hp-BEM has been established,
we shall discuss some of the implementational details of the method. In particular, we
consider the numerical evaluation of the kernels of the integral operators for the transmis-
sion problem. Then we present effective methods for evaluating the integrals necessary for
computing the mass matrix.

3.2.2 Kernel evaluation

The BIE formulation (2.95)-(2.96) was chosen since it contains the difference H
1

� H
2

,
meaning that for the strong singularities in the hypersingular operators cancel with each
other, leaving behind a weakly (logarithmically) singular kernel which may be integrated
efficiently using the quadrature techniques presented in the following section. However,
close to the singularities of the operators (i.e., when x � y is small), large cancellation
occurs when performing the subtraction H

1

� H
2

which may lead to inaccurate kernel
evaluations due to numerical rounding error. Near these singularities it is better to use a
Taylor series approximation of the difference H

1

�H
2

directly rather than compute H
1

and
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H
2

separately and subtract one from the other. Here we shall present this series approxi-
mation for H

1

� H
2

which is obtained from the well-known series expansions of Hankel
functions [39]. This also serves to illustrate the aforementioned cancellation of the strong
singularities in the hypersingular operators.

We are interested in the accurate evaluation of the difference

(H
1

� H
2

) (x) =
@

@n(x)

Z

�(y)

✓
@�

1

(x,y)

@n(y)
� @�

2

(x,y)

@n(y)

◆
 (y)ds(y). (3.28)

It can be shown that

@2�k

@n(x)@n(y)
=

i

4

kH(1)

1

(kR)

R
n(x) · n(y)

+

i

4

k2H(1)

2

(kR)

R2

((y � x) · n(x))((x � y) · n(y)).
(3.29)

So we see that the difference (3.28) contains the following two terms (multiplied by other
factors), namely

�Ha =
k
1

H(1)

1

(k
1

R)

R
� k

2

H(1)

1

(k
2

R)

R
, (3.30)

and

�Hb =
k2

1

H(1)

2

(k
1

R)

R2

� k2

2

H(1)

2

(k
2

R)

R2

, (3.31)

where R = |x � y|. Recall n = k
2

/k
1

is the refractive index of ⌦
2

, and let us define

⇢ = k
1

R

so that �Ha and �Hb may be written as

�Ha =
k2

1

⇢

⇣
H(1)

1

(⇢) � nH(1)

1

(n⇢)
⌘

.

and
�Hb =

k4

1

⇢2

⇣
H(1)

2

(⇢) � n2H(1)

2

(n⇢)
⌘

.

We can observe from (3.29) that the �Hb term is multiplied by zero when x and y are on
the same side of the polygon since then (x � y) · n = 0. However, when the x and y are
on different sides but are close to each other at a corner, we need to consider the behaviour
of the kernel difference for small R.

Consider the �Ha term first. Using the definition H(1)

⌫ (z) := J⌫(z) + iY⌫(z) and the
series expansions for J⌫(z) and Y⌫(z) for small z as given in [39] with ⌫ = 0, we have that,
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for z < 1,

H(1)

1

(z) = � 2i

⇡

1

z
� i

⇡

⇣
ln 2 � � + 1 � ⇡

2

⌘
z

+

i

⇡
z ln z +

i

8⇡

✓
ln 2 � � +

5

4

+

i⇡

2

◆
z3

� i

8⇡
z3 ln z + O(z5).

(3.32)

as z ! 0, where � is Euler’s constant. Hence, when ⇢ ⌧ 1, �Ha possesses the expansion

�Ha ⇠ � k2

1

i

⇡

h⇣
ln 2 � � + 1 � ⇡

2

⌘
(1 � n2

) + n2

lnn
i

+ k2

1

i

⇡
(1 � n2

) ln ⇢+ k2

1

i

8⇡

✓
ln 2 � � +

5

4

+

i⇡

2

◆
(1 � n4

) + n4

lnn

�
⇢2

� k2

1

i

8⇡
(1 � n4

)⇢2 ln ⇢+ O(⇢4),

(3.33)

which we observe has a logarithmic singularity at ⇢ = 0.
Now consider the �Hb term. The function H(1)

2

(z) possesses the following series ex-
pansion for z < 1:

H(1)

2

(z) = �4i

⇡

1

z2
� i

⇡
� i

4⇡

✓
ln 2 � � +

3

4

+

⇡i

2

◆
z2 +

i

4⇡
z2 ln z + O(z3) (3.34)

Hence the difference �Hb has the expansion

�Hb ⇠ � ik4

1

4⇡

✓
ln 2 � � +

3

4

+

⇡i

2

◆
(1 � n4

) + n4

lnn

�
+

ik4

1

4⇡
(1 � n4

) ln ⇢+ O(⇢)

(3.35)

for ⇢ < 1. It can be seen that the two strong (non-integrable) singularities from the individ-
ual hypersingular potentials have cancelled to leave a singularity of the form x2

log(x).
It is recommended to employ the Taylor expansions (3.33) and (3.35) when ⇢ ⌧ 1

to avoid round-off errors becoming pervasive. Here we recommend these expansions are
used when ⇢ = 10

�4 which leads to a relative error of better than 10

�8 in the evaluation of
(3.29).

3.2.3 Quadrature

One of the main drawbacks of the boundary element method is the difficulty in its im-
plementation compared to that of a finite element method. In particular, we are required
to approximate integrals numerically, many of which have a singular kernel. Such inte-
grals cannot be approximated efficiently using standard quadrature rules such as Gauss-
Legendre, midpoint- or Simpson’s rule, and require something more sophisticated. One
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approach would be to subdivide the domain of integration according to a geometric grading
towards the singularity and then apply a standard quadrature rule on each of the subdivi-
sions. Indeed, this approach is the simplest and most robust method for general integrable
singularities. However, if we know the nature of the singularity, it is possible to employ
a more efficient approach. We have chosen our BIE formulation specifically so that the
kernels all possess singularities of a weak (logarithmic) nature. Thus we may use a gen-
eralised Gaussian quadrature (see, e.g., [68]) which is tailor-made for such singularities.
We shall detail the application of this approach, as well as the aforementioned geometric
grading approach, herein.

In the Galerkin formulation, we must evaluate 2D integrals of the form

I =

Z

�

i

Z

�

j

k(x,y)�j(y)�i(x)dydx, (3.36)

where k(x,y) is a kernel with a logarithmic singularity at x = y, �i and �j are basis
functions with respective supports �i and �j . The integral (3.36) is the general form of
those in (3.14). It is helpful for later to rewrite (3.36) in parametric form as

I =

Z
1

0

Z b

a

p(s)q(t)f(x � y)dydx, (3.37)

where the function f(x � y) has a logarithmic singularity at x = y, p(x) 2 C1 and
q(x) 2 C1 are typically polynomials for our purposes, and a, b are such that a � 0 and
b � a + 1. We note that such a rewriting of (3.36) is always possible after appropriate
scalings and potentially switching the order of integration.

There are also 1D integrals which arise when computing the right-hand side of (3.13).
These take the form

Irhs =

Z

�

ui
(x)�(x)dx. (3.38)

These 1D integrals are non-singular and may be easily and efficiently evaluated using, for
example, Gaussian quadrature. In fact, when ui is a plane wave, these integrals can be
evaluated analytically. Owing to their simplicity, we shall discuss them no further here.

The 2D integrals of the form (3.37) may be categorised in four cases corresponding to
different integration domains defined by a and b. These cases are

(i) a � 1 > " (" small): [0, 1] and [a, b] are well-separated,

(ii) [a, b] = [0, 1]: singularity on diagonal x = y,

(iii) a = 1: corner singularity at x = 1, a = 1,

(iv) 0 < a � 1 < " (" small): near singularity.
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In case (i), the integral (3.38) may be efficiently evaluated by taking tensor product of 2D
Gaussian quadrature rules. Cases (ii), (iii) and (iv) require a more sophisticated treatment
which we shall discuss in stages. First we shall present two quadrature rules for 1D integrals
with logarithmic singularities or near-singularities, and then show how they may be used
via tensor products to efficiently tackle the 2D integrals in cases (ii), (iii) and (iv).

3.2.3.1 Singular one-dimensional integrals

Consider the integral

I :=

Z
1

0

p(x)f(x)dx (3.39)

where f has a logarithmic singularity at x = 0 and p is a polynomial. Example functions for
f are f(x) = ln x and f(x) = xH(1)

0

(x). It is well known that Gauss-Legendre quadrature
converges exponentially for smooth integrands without singularities [134]. However, the
presence of a singularity at x = 0 will cause the Gauss-Legendre rule to exhibit slower
algebraic convergence. A simple way to overcome this issue is to use a composite Gauss-
Legendre rule on a mesh geometrically graded towards the singularity. The points of the
geometrically graded mesh are defined as follows.

x
0

:= 0, xi := �n�iL, i = 1, 2, . . . , n,

where n is the number of layers. On each layer [xi�1

, xi], i = 1, 2, . . . , n we use appropri-
ately scaled Gauss-Legendre nodes and weights. We shall adopt an hp-approach in which
the number of Gauss-Legendre nodes on each layer varies across the mesh. Let the number
of nodes on each layer be determined by the vector p 2 N

0

which we define (as in §3.2.1)
by

(p)i :=

(
p �

j
(n+1�i)

n p
k

, 1  i  n � 1,

p, i = n.

We choose the integer p = n, i.e., equal to the number of layers in the mesh. Also, �=0.15
was chosen as experiments revealed it to be a robust choice that achieves good convergence
rates.

Figure 3.2 shows comparisons of this composite approach with standard Gauss-Legendre
for f(x) = log(x) and f(x) = xH(1)

0

(x) for x 2 [0, 1]. It can indeed be seen that the hp-
composite method has a convergence rate than far exceeds that of standard Gauss-Legendre.
Close to machine precision is reached with n = 16 and hence nG = 231 for f(x) = log(x)

and with n = 17 for f(x) = xH(1)

0

(x). However, it is possible to do better.
The Gauss-Legendre quadrature rule relies on the orthogonality of the Legendre poly-

nomials, which are orthogonal to each other with weight 1. This rule, with a number of
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Figure 3.2: Comparison of the absolute errors in the numerical evaluation of the inte-
grals

R
1

0

ln xdx (left) and
R

1

0

xH(1)

0

(x) (right) using the hp-composite scheme and standard
Gauss-Legendre.

nodes n, integrates a polynomial of degree 2n + 1 exactly. Since the integrand of inter-
est here is poorly approximated by polynomials, we see poor convergence for this rule.
However, if we introduce a rule which relies on polynomials orthogonal to each other with
respect to the weighting function log(x), we can hope to achieve the same degree result for
our integrand. Let us explain this more thoroughly.

Consider the integral

I[f ] :=

Z
1

0

f(x)dx, (3.40)

for the function
f(x) = p(x) log(x),

where p 2 P is a polynomial. Let us define the set of functions Tn (as in [68]) for n =

0, 1, . . . , by

Tn :=

⇢
{1, log(x), x, x log(x), . . . , xl�1

log(x), xl}, n = 2l is even,
{1, log(x), x, x log(x), . . . , xl�1

log(x), xl, xl
log(x)}, n = 2l + 1 is odd.

(3.41)
They form the sequence {1}, {1, log(x)}, {1, log(x), x}, {1, log(x), x, x log(x)} with the
corresponding function spaces Vn being defined as

Vn := span {Tn} , n = 0, 1, . . . .

Then the Generalised Gauss rule (GG) Q[·] with n nodes and weights as calculated from
[68] has an associated error which satisfies

En
(f) = 0 for all f 2 V

2n�1

.
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Figure 3.3: Convergence of Generalised Gauss quadrature rule for integrating f(x) =

xH(1)

0

(x) between 0 and 1.

Figure 3.3 shows the error in the approximation of f(x) = xH(1)

0

(x) for x 2 [0, 1]. We
see that machine precision is reached with 10 points, compared to 140 for the hp-composite
method. The drawback to this approach is that the nodes and weights are more expensive to
calculate, however to circumvent this issue, it is possible to compute the nodes and weights
beforehand and store them in a lookup table.

3.2.3.2 1D integrals with near singularities

Consider the integral

I(") :=

Z
1

"

p(x)f(x)dx, (3.42)

where p(x) is a polynomial, f(x) is a function with a logarithmic singularity at x = 0 and
0 < " < 1. If " is small, then we expect that the presence of the nearby singularity at x = 0

will hinder the convergence of Gauss-Legendre quadrature. To handle such integrals, we
propose a modified version of the composite rule proposed in §3.2.3.1 for the limiting case
" = 0.

The idea is to create a graded mesh for the interval [0, 1] as in §3.2.3.1 and then simply
truncate at " to create a mesh on the interval [", 1]. On each of the elements in the new mesh,
we use nG quadrature points. This approach yields a quadrature rule which converges
exponentially in p as was seen for the " = 0 case. Note that this rule degenerates to the
standard Gauss-Legendre rule when " � �.

To generalise the GG rule to the near singularity case, it is more complicated and ex-
pensive to calculate the nodes and weights. We shall not demonstrate how to do this here
(see [68] for more details) and shall use the hp composite quadrature method for integrals
with near singularities.
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3.2.3.3 Singular two-dimensional integrals

For the case [a, b] = [0, 1], the integral (3.37) has the form

I[p, q, f ] =

Z
1

0

Z
1

0

p(x)q(y)f(x � y)dydx, (3.43)

with f being singular along the diagonal x = y of the integration domain [0, 1] ⇥ [0, 1].
A common approach here is to divide the square integration domain along this diagonal,
creating two triangular domains T

1

and T
2

defined as

T
1

:= {(x, y) : 0  y  x  1}, (3.44)

T
2

:= {(x, y) : 0  x  y  1}, (3.45)

and to rewrite the integral (3.43) as the sum I = I
1

+ I
2

, where

I
1

=

Z
1

0

Z x

0

p(x)q(y)f(x � y)dydx, (3.46)

I
2

=

Z
1

0

Z
1

x

p(x)q(y)f(x � y)dydx. (3.47)

Consider first the integral I
1

. We employ the Duffy transformation [41], defined here by
the substitution

x = s, y = s(1 � t), (3.48)

so that I
1

becomes

I
1

[p, q, f ] =

Z
1

0

Z
1

0

p(s)q(s(1 � t))f(st)sdtds. (3.49)

We see that the integration domain of (3.46) has been mapped from a triangle to a square,
and that the singularity in the integrand of the transformed integral (3.49) is along the sides
s = 0 and s = t of its integration domain.

The new integral may be evaluated using a tensor product of one-dimensional GG
quadrature rules so that we obtain the approximation

I
1

[p, q, f ] ⇡ Qn
1

[p, q, f ] =
n
sX

i=1

n
tX

j=1

ws
iw

t
jp(si)q(si(1 � tj))f(sitj)si. (3.50)

Now consider the second integral, I
2

. We make the substitution

x = 1 � s, y = st + 1 � s. (3.51)

Then I
2

becomes

I
2

=

Z
1

0

Z
1

0

p(s)q(s(1 � t))f(st)sdtds (3.52)
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as for I
1

, and so we may employ the same tensor product quadrature rule.
For the case when a = 1, the integral (3.37) takes the form

I[p, q, f ] =

Z
1

0

Z b

1

p(x)q(y)f(x � y)dydx, (3.53)

with f being singular at the corner point x = 1, y = 1 of the integration domain [0, 1] ⇥
[1, b].

For such an integral, we may immediately use the product of two one-dimensional
composite Gauss rules with the grading directed towards the singular point which will be
located at one of the corners of the integration domain. We cannot, however, directly use
the product of two one-dimensional generalised Gauss rules since for that we would require
that the integrand be simultaneously singular along the entire sides x = 1 and y = 1, rather
than just the one corner point. It is possible to use Duffy transformations to “smear out”
the singularity along an entire side however this may lead to complications involving the
introduction of near singularities which we shall not cover here. Therefore, for the sake of
versatility, a tensor product of two one-dimensional composite rules is employed here for
this case.

Finally, for the case when a singularity is close to the integration domain, i.e., we have
an integral of the form

I[p, q, f ] =

Z
1

0

Z b

1+"

p(x)q(y)f(x � y)dydx, (3.54)

where " < 0.15, a product of two composite rules is also employed. The individual one-
dimensional rules are each modified according to the location of the singularity in a way
identical to that discussed in §3.2.3.2.

3.2.4 Convergence and accuracy of the 2D Galerkin BEM

In §3.2.1 we presented the approximation space for a conventional hp-Galerkin BEM for
the 2D transmission problem. Here we present numerical results demonstrating that the
method is exponentially convergent in the polynomial degree p but we also demonstrate
that, in order to maintain a prescribed error tolerance for the solution as the wavenumber
k
1

increases, the number of degrees of freedom in the approximation space must increase
in proportion to k

1

. Hence the size of the mass matrix increases in proportion to k2

1

. This,
of course, is to be expected from a conventional method. We draw attention to this fact to
highlight the need for methods that do not suffer from this limitation.
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Figure 3.4: Scattering setups for triangle.

The numerical results we present shall be for the problem of the scattering by an equi-
lateral triangle of a plane wave travelling in the direction identified with “Angle 1” in Fig-
ure 3.4. The triangle of side length 2⇡ so that k

1

wavelengths fits along each side, and its
refractive index is n = 1.5 + 0i. Here we also take ↵ = 1. In Figure 3.5 we plot the real
part of the field @u/@n on the boundary (normalised by k

1

) and in Figure 3.6 we plot the
absolute value of the far-field pattern F as defined in (2.128) for the problem with k

1

= 10.

Figure 3.7 shows the relative L2 error around the boundary of @u/@n (on a logarithmic
scale) against the polynomial degree p for a range of k

1

. In each case we take the “exact”
reference solution to be that computed with p = 11. The L2 norm is computed using
the midpoint quadrature rule with 60 points per wavelength Re(�

2

), where �
2

= 2⇡/k
2

;
experiments suggest that this is sufficient to achieve five digits of precision.

The linear plots in Figure 3.7 demonstrate that the error in @u/@n on � is approximately
equal to 5e�2p. That is, it is exponentially decaying in p. We also observe that changing
the value of k

1

has little effect on the error of the resulting approximation. This is to be
expected since the mesh has been constructed so that it gets refined at a rate proportional
to k

1

.
Figure 3.8 compares the relative L2 errors of @u/@n and the far-field pattern F for

k
1

= 5. The L2 norm in the far-field is approximated by the discrete L2 norm, sampling
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Angle 1 in Figure 3.4 by a triangle with n = 1.5 + 0.05i. The boundary solution @u/@n
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Figure 3.6: Scattering of a plane wave with k
1

= 10 travelling in direction defined by
Angle 1 in Figure 3.4 by a triangle with n = 1.5+0.05i. The absolute value of the far-field
pattern F .

at 100Re(�
2

) evenly spaced points on the unit circle S1. We see that relative errors in
the far-field are often an order of magnitude, or more, smaller than the relative errors in
the boundary data. Further, the trend appears to be that, the higher the value of p is, the
greater the improvement in accuracy observed when mapping the boundary solution to the
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= 5.

far-field.
We observe from Figure 3.8 that to achieve better than 1% error in the far-field, we

require p = 2 in our approximation space. Employing (3.27) we see that this equates
to 4.2 degrees of freedom per wavelength �

2

(or approximately 6 per �
1

). Although this
is a relatively modest memory requirement to achieve a satisfactory accuracy, it is still
proportional to k

1

so that, for high enough k
1

, the solution will become intractable via this
method. This memory requirement is much greater for the 3D transmission problem as we
shall see in the next section.

3.3 A Galerkin h-BEM for the 3D transmission problem

In this section we employ the open-source Galerkin boundary element library BEM++ [124]
to approximate the solution to the 3D transmission problem (2.24)–(2.27). The purpose of
this section is to demonstrate the capabilities of a state-of-the-art boundary element method
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for problems of relevance to the atmospheric science community. The results presented
here also serve as motivation for the development of more efficient “exact” (i.e., numerical
as opposed to asymptotic) methods, which can be applied at larger size parameters.

BEM++ is a Galerkin boundary element library which has recently been developed
and made open-source at http://www.bempp.org by the group of Betcke at al. [124]. The
library has the capability of solving the Laplace equation, Helmholtz equation and Maxwell
equations on domains with piecewise smooth Lipschitz boundaries. Here, we are interested
in the Maxwell case, and, more precisely, we wish to solve the system of boundary integral
equations (2.39) which is equivalent to the electromagnetic transmission problem (2.24)–
(2.27). We note that the results presented here are given in more detailed form, and for a
variety of scatterers (here we just focus on the hexagonal column), in the paper [53].

For solving Maxwell’s equations BEM++ currently provides a single discrete approx-
imation space, namely the space of lowest order Raviart-Thomas functions [119]. This
leaves mesh refinement as the only way to increase the accuracy of the approximation.
That is, we are working with a low-order h-version BEM in contrast to the high-order
hp-BEM discussed in the previous section. In §3.3.1, we illustrate how the accuracy of
BEM++, in approximating scattering by a hexagonal column, varies with mesh refinement,
i.e., as we increase the number of mesh elements per wavelength. It is found here that (in
accordance with the commonly stated rule [98]) ten boundary elements per wavelength is
sufficient to achieve approximately 1% accuracy. Higher resolution meshes generate more
accurate approximations at the cost of increased CPU time and memory requirements.

There are various tolerances to be set in BEM++ for the different algorithms it employs.
These tolerance values were chosen after experimentation and led by examples provided
on the BEM++ webpage, along with [13]. These values were chosen with the aim of
ensuring that the accuracy of the solution is essentially dependent on the mesh size alone.
We state the tolerances used to generate the results presented here. The adaptive cross
approximation (ACA) tolerance is set as 1 ⇥ 10

�5, and the generalised minimal residual
(GMRES) tolerance as 1 ⇥ 10

�8. The accuracy of the LU decomposition is chosen as
1 ⇥ 10

�2. Finally, the accuracy of the single and double regular integral quadrature was
increased from the default settings by a factor of two, see [124] for details.

It should be noted that there are other ACA settings such as the maximum rank and
maximum block size that may be altered to improve the performance of BEM++. It was
found here, however, that for the relatively small scale computations performed here, al-
tering these settings from their defaults made a negligible difference. For large scale com-
putations, it is expected that adjusting these ACA settings will affect the performance of
BEM++, with the optimal settings being dependent on the specifications of the computer
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(or computers) being used. Finally, we note that all calculations were performed with
BEM++ 2.0 which interfaces to the AHMED library [11] for H-matrix calculations. More
recent BEM++ releases come with a built-in H-matrix implementation which may result
in different memory consumption performance to the results presented here.

3.3.1 Convergence and accuracy of the 3D BEM

To get a measure of the speed, accuracy and convergence rate of BEM++, we examine
the case of scattering by a hexagonal ice column with ka = 2.5, where a is the radius of
the smallest circle which enscribes the hexagonal face, and refractive index n = 1.311 +

2.289 ⇥ 10

�9

i. The aspect ratio of the hexagonal column is the ratio L/a where L is the
height of the column. Throughout we take this ratio to be 2. The incident wave direction
and orientation of the hexagonal ice column are both as illustrated in Figure 2.1.

We perform an experiment in which we consider uniform meshes of increasing refine-
ment, starting from an element size of h = �

1

/2.5 and doubling the refinement for each
successive numerical experiment until we reach an element size of h = �

1

/40. Such a
triangulated mesh is shown for the hexagonal column in Figure 3.10. For each level of
refinement, we record in Table 3.9 the memory requirement for the operator S�, the total
run time, along with the errors in the normalised phase function P

11

defined in (2.135).
The reference solution used was calculated by the T-matrix method code of [59] which was
shown there to produce accuracies of better than 0.01%. It can be seen from the table that
the memory cost of BEM++ increases by approximately a factor of 5 each time the refine-
ment of the mesh is doubled. When looking at the calculation times, it is difficult to observe
a clear pattern as the mesh resolution in increased, perhaps since the calculation times are
too short. But we notice that going from the �/20 resolution to the �/40 resolution leads
to approximately a five-fold increase in computing time which is in accordance with the
increase in memory requirement. We observe that the BEM is slightly better than 1% ac-
curate at a mesh size of h = �

1

/10 when approximating P
11

. Hence we shall use this mesh
size for the remaining results presented in this section. It should be noted that typically it
is advisable to grade the surface mesh towards the edges in order to optimise the number of
degrees of freedom used. For scattering by perfectly conducting obstacles, this is strongly
advised. However, for the dielectric ice particles of interest here, the singular behaviour of
the solution near edges and vertices is weaker and so we expect that grading will give only
a small advantage. Therefore we shall employ uniform meshes here for simplicity.

Next we compare the performance of a well-established T-matrix method code and
BEM++. The T-matrix method was described briefly in §1.2.1 and more details can be
found in the references mentioned there. The particular T-matrix code used here is that of
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h Mem. Time P
11

(MB) (s) err.(%)
�/2.5 0.0138 0.183 18.9
�/5 0.108 0.441 9.83
�/10 6.85 6.81 0.690
�/20 91.9 63.0 0.212
�/40 487 340 0.164

Table 3.9: Scattering by a hexagonal ice column with ka = 2.5 and n = 1.311 + 2.289 ⇥
10

�9i. Memory use for operator R�, run time, and relative error (%) in the approximation
of P

11

at each mesh refinement.

Figure 3.10: A surface mesh for the hexagonal column generated with Gmsh.

[59]. Comparisons are made for hexagonal ice columns with refractive index n = 1.311+

2.289 ⇥ 10

�9

i of three size parameters (ka = 5, 10, 15). Figure 3.11 displays P
11

for
ka = 10 as calculated by both the T-matrix method and BEM++. It is clear from the
figure that the two methods are in excellent agreement. Table 3.12 displays some of the
performance details for the two methods. BEM++, which has been optimised for compu-
tations in parallel, was run on a 4-core machine with a total of 16.4 Gigabytes of RAM,
whereas the T-matrix code was run on a single core of the same machine. The memory

ka CPU (s) CPU (s) Mem. (MB) Mem. (MB)
(T) (BEM) (T) (BEM)

5 319 65.5 3.81 496
10 7470 471 34.3 2420
15 27600 1720 92.3 7050

Table 3.12: CPU time and memory load utilised (given to 3 significant figures) by the T-
matrix method and BEM++ to calculate the scattering properties of hexagonal ice columns
of different size parameters.

requirements for BEM++ shown in the table are those required to store the four operators
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Figure 3.11: Phase function as calculated by the T-matrix method and BEM++ for ka = 10

and n = 1.311 + 2.289 ⇥ 10
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i.

R
+

, R�, C
+

, C� that compose the system matrix in (2.39). Similarly, the memory require-
ment figures shown for the T-matrix method relate to the memory required to store the
system matrix arising in that method. It is evident from the table that the memory utilised
by the BEM is currently much greater than that utilised by the T-matrix code. This memory
consumption is the main drawback of conventional BEMs and is the reason why BEM++ is
limited to relatively small size parameters. However, we notice that due to its parallelisation
and high-level implementation, BEM++ is extremely fast, with a CPU time more than 16
times faster than the T-matrix mode for ka = 15. Despite its lower memory requirements,
it is evident that the T-matrix still becomes more memory intensive as ka grows and hence
is also limited to problems with small size parameters. We found that it was also limited to
� = 15 on the aforementioned computer.
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Chapter 4

Asymptotic methods

High-frequency asymptotic methods are applicable when the wavelength is much smaller
than a typical lengthscale a of the scattering obstacle, that is, when ka � 1. A wealth of
asymptotic methods exist for wave scattering problems, many of which were mentioned in
§1. Here however, we consider only two of these, both of which rely on ray theory which
we shall review shortly in §4.1. These two methods are Geometrical Optics (GO) and the
Geometrical Theory of Diffraction (GTD). Together these form the foundation for the HNA
approach.

GO and GTD arise from the classical high-frequency decomposition of the total field
as

u = ugo + ud,

where ugo is the GO approximation to u and is composed of the incident, reflected and
refracted fields. The remainder ud is interpreted as the diffracted field. The motivation
for this decomposition comes from asymptotic expansions for those “canonical” scattering
problems for which an exact solution is known. We shall examine in more detail some such
problems later, in particular, scattering by an infinite half-line and scattering by an infinite
wedge.

As ka ! 1, ud vanishes and we are left with only ugo (except at degenerate points
such as shadow boundaries - see below), hence for very high-frequency problems, the GO
approximation can be sufficiently accurate for many applications. We are interested, how-
ever, in developing a method suitable for all frequencies so are required to include ud if we
wish to obtain accurate approximations.

This chapter paves the way for the construction of our HNA approximation space for
scattering by a penetrable convex polygon, which we describe in §5. Here we detail the
calculation of ugo via a beam tracing algorithm, and investigate the high-frequency phase
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structure of ud. These two tasks rely upon the analysis of certain canonical problems rele-
vant to scattering by penetrable polygons. These are:

(i) the reflection/refraction of a plane wave at an interface between two absorbing media,

(ii) the scattering of a plane wave by an infinite penetrable wedge.

The first canonical problem is the subject of §4.3 and constitutes the majority of the dis-
cussion of the GO approximation which is the subject of §4.2 and §4.3. §4.6 discusses the
natural extension of the GO approximation, namely the “Kirchhoff” or “Physical Optics”
approximation, which is obtained by inputting the GO approximation on the boundary into
the boundary integral representation (or typically its far-field form).

In §4.7–§4.8.2 we analyse the character of the diffracted field arising from the corners
of the polygon. We begin in §4.7 by giving an overview of GTD. In order to illustrate
this theory, we review the classical canonical problem of the scattering of a plane wave by
an infinite half line and also by an infinite impenetrable wedge. In these cases the GTD
approximations can be obtained by computing the large k asymptotics of the known exact
solutions. §4.8 discusses the extension of GTD to the canonical problem of scattering by
an infinite penetrable wedge for which there is no known exact solution. This discussion
will lay the foundations for the development of our HNA ansatz in §5.

4.1 Ray theory

We give here a brief review of the ray theory from which both GO and the GTD stem.
We are concerned with the scattering of time-harmonic waves which are modelled by

the Helmholtz equation:
(r2

+ k2

)u = 0. (4.1)

We first assume that all lengths have been non-dimensionalised with respect to a suitable
lengthscale (such as a), so that k is a non-dimensional parameter. Ray theory assumes that
u possesses the asymptotic expansion (k ! 1)

u(x, k) ⇠ eik (x)
1X

n=0

✓
1

ik

◆n

An(x) (4.2)

known as the ray expansion. Upon substitution of the ray expansion into (4.1) and equating
like powers of k, one obtains the eikonal equation for  ,

|r |2 = 1, (4.3)
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and the transport equations for the functions A
0

, A
1

, . . . , An,

2rA
0

· r + A
0

r2 = 0, (4.4)

2rAj · r + Ajr2 = �r2Aj�1

, j > 0. (4.5)

The eikonal equation (4.3) is a first-order, non-linear partial differential equation which
can be solved using the method of characteristics. For completeness we briefly present this
process which is known as “Charpit’s method”. Following the exposition of [113, §8.2],
we first define the function

F (x, y, , p, q) :=
1

2

(✓
@ 

@x

◆
2

+

✓
@ 

@y

◆
2

� 1

)

=

1

2

(p2 + q2 � 1) = 0,

where p =

@ 
@x and q =

@ 
@y . The general notation employed above for F is to highlight that

Charpit’s method can be applied more widely than for just solving the eikonal equation, see
[113, §8.2] for more details. We use t to parameterise the characteristics and differentiate
with respect to t to find

dx

dt
=

@F

@p
,

dy

dt
=

@F

@q
,

d 
dt

= p
@F

@p
+ q

@F

@q
,

dp

dt
= �@F

@x
� p

@F

@ 
,

dq

dt
= �@F

@y
� q

@F

@ 
.

These are known as Charpit’s equations. For our specific F , they simplify to

dx

dt
= p,

dy

dt
= q,

d 
dt

= p2 + q2 = 1,

dp

dt
= 0,

dq

dt
= 0. (4.6)

We see that (p, q) = r and so both p and q remain constant on the characteristics, the
distance along which is parameterised by t. The characteristics are in fact the individual
rays composing the field. The curves normal to the rays are called wavefronts.

On each ray, since dp/dt = dq/dt = 0, we have that p = p
0

(s), q = q
0

(s) where s

parameterises a family of rays. Integrating (4.6), we obtain x, y and  on the rays to be

x(s, t) = p
0

(s)t + x
0

(s), (4.7)

y(s, t) = q
0

(s)t + y
0

(s), (4.8)

 (s, t) = t +  
0

(s), (4.9)
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where the subscript zeros denote values on the initial curve. Equations (4.7)–(4.9) show
that the rays are straight-line trajectories in a homogeneous medium. As we shall see in
the next section, when an inhomogeneity is encountered the rays undergo reflection and
refraction.

Now we consider the solution of the transport equations (4.4)–(4.5) along each ray. It
can be shown that the Jacobian of the transition from Cartesian to ray coordinates

J :=

����
@(x, y)

@(s, t)

����

satisfies the equation
@J

@t
=

dp
0

ds

@y

@t
� dq

0

ds

@x

@t
= Jr2 . (4.10)

The transport equations (4.4-4.5) then become a system of ODEs along each ray:

2

dA
0

dt
+

1

J

dJ

dt
A

0

= 0, (4.11)

2

dAj

dt
+

1

J

dJ

dt
Aj = �r2Aj�1

, j � 1. (4.12)

Integrating (4.11) and (4.12) gives

A
0

(s, t) = A
0

(s, 0)

s
J(s, 0)

J(s, t)
, (4.13)

Aj(s, t) = Aj(s, 0)

s
J(s, 0)

J(s, t)
� 1

2

Z t

0

s
J(s, ⌧)

J(s, t)
r2Aj�1

(s, ⌧)d⌧, j � 1. (4.14)

When a ray of the incident plane wave strikes a planar side of a polygonal scatterer,
we have that J(s, 0) = J(s, t) = 1 (since the sides possess no curvature). Therefore,
only A

0

is non-zero and A
0

(s, t) = A
0

(s, 0) for all t, that is, the ray expansion consists
of only this first term which we call the GO approximation. The rays have straight line
trajectories which may be tracked using the geometrical laws of reflection and refraction.
The amplitude A can also be calculated simply, by using Fresnel’s equations which dictate
how it is affected upon reflection and refraction. These laws are obtained by considering the
canonical problems of the reflection and refraction of a plane wave by an infinite interface.
This chapter shall consider this canonical problem in order to derive these classical laws.
We shall also consider the case when one or both of the media are absorbing. This case
is much less well studied but must be analysed for the numerical algorithm proposed later
in the thesis. The absorptive case leads to the generation of inhomogeneous plane waves
which exhibit more complicated and sometimes counter-intuitive behaviour.

When a ray from the incident wave strikes a corner of the polygon, this gives rise to
diffracted rays shed in all directions. The original ray theory described above does not take
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into account these diffracted rays. However, the ray theory was systematically extended
to incorporate diffracted fields by Joseph Keller in the 1960s in his famous Geometrical
Theory of Diffraction. This theory proposes that the diffracted field is also composed of
rays but of a different asymptotic order to those terms in the expansion (4.2). This shall be
reviewed in §4.7.

4.2 Geometrical optics approximation:
a beam tracing algorithm

In this section we describe the beam tracing algorithm we shall use to calculate the GO
field vgo = (ugo, @ugo/@n) for our problem of the scattering of a plane wave, incident from
the exterior domain ⌦

1

, by a penetrable (and potentially absorbing) obstacle denoted ⌦
2

.
In the GO approximation, a ray from the incident field striking a point on a smooth

portion of the boundary � = @⌦
2

gives rise to a reflected ray propagating back into the
exterior domain ⌦

1

and a refracted ray, propagating into the interior of the polygon ⌦
2

.
Since we assume that ⌦

2

is convex, the reflected ray propagates away to infinity without
re-intersecting the boundary �. The refracted (or transmitted) ray, on the other hand, does
re-intersect �, and if this intersection occurs on a smooth portion of � then further reflec-
tion/refraction occurs, with a refracted ray propagating out of the polygon into the exterior
domain and an internally-reflected ray propagating back into the polygon. This internally-
reflected ray can, in turn, be re-reflected/refracted, and this process continues indefinitely,
giving an infinite number of internally-reflected rays, potentially all propagating in different
directions.

The directions of the reflected/refracted rays and the amplitudes/phases of the fields
propagating along them are governed by the well-known laws of reflection and refraction
for a plane wave incident on an infinite transmission interface (i.e. the Fresnel formulae
and Snell’s Law). However, although these laws are completely classical in the case when
both propagation media are non-absorbing (see, e.g., [19]), the generalisation to the case
where one or more of the media are absorbing seems to have generated a certain amount of
confusion in the literature. Also, there appears to be a phenomenon present which has been
wholly unreported in the literature for the absorbing case. We provide a full derivation
of the reflection/refraction laws in the general case of transmission between two absorb-
ing media in the following section (§4.3) as well as a description of the aforementioned
phenomenon.

A number of numerical algorithms have been presented for computing the GO ap-
proximation for the transmission problem using the Fresnel formulae and Snell’s law (see,
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e.g., [145], where the 2D problem of this paper is considered, and also [16] and [95], where
a 3D analogue is studied). Many such algorithms (in particular, [145] and [95]) adopt a ray-
based approach in which the incident wave is discretised into a large number of rays, each
of which are traced individually as they reflect/refract within the scatterer, with the algo-
rithm stopping after a certain (user-specified) number of internal reflections. This approach
is general, in that it can be applied to smooth scatterers as well as to polygons/polyhedra.
For polygons/polyhedra, however, the fact that the boundary � is composed of straight
sides/faces means that the GO approximation consists of a collection of beams of rays
propagating in the same direction and with the same amplitude. Each beam can be thought
of as a plane wave with an associated propagation direction and amplitude, restricted to a
certain subset of R2 (or R3 in the 3D case). As a result, one does not need to discretise the
incident wave into a large number of rays; rather, one need only compute the propagation
direction and amplitude of the plane wave associated with each beam, and record the posi-
tion of the “limiting rays” which form the edges of the beam. Once the algorithm has been
run once for a given geometry and incident direction, the GO approximation vgo is then
readily computed at any observation point on the boundary, and for any frequency, by sim-
ply summing over the contributions from each of the beams illuminating that observation
point. This is the approach we adopt in this thesis. We note that a similar approach was
proposed in [52], and for the 3D problem in [16, 21].

As an illustration of the beam-tracing procedure, consider the configuration in Fig-
ure 4.1, where a penetrable hexagon is illuminated by a plane wave ui

(x) = eik1di·x in-
cident from the top left. In this case the incident wave strikes three of the sides of the
hexagon, generating three beams of reflected rays, which propagate away to infinity, and
three beams of transmitted waves, which propagate into the scatterer, as shown in Fig-
ure 4.1(a)–(c). Each of these transmitted beams has associated with it a plane wave of the
form Aeik1(Dd+iEe)·x, where the amplitude A, the propagation and decay direction vectors
d 2 R2 and e 2 R2, and the constants D > 0 and E � 0 are determined by the reflec-
tion/refraction laws presented in section 4.3. Each beam is bounded by a pair of limiting
rays, which pass through the endpoints of the side of the polygon which generated the
beam. Our algorithm takes these limiting rays to be parallel to the propagation direction
d, as illustrated in Figure 4.1 (but see the discussion in Remark 4.1 below). The algorithm
then tracks these limiting rays as they propagate across the interior of the scatterer, deter-
mines the points at which they re-intersect the boundary, and generates new transmitted
and internally-reflected beams as appropriate, with associated plane wave directions and
amplitudes again computed using the reflection/refraction laws. If the two re-intersection
points of the limiting rays with the boundary lie on different sides of the polygon then
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Figure 4.1: Beam tracing in a hexagon. (a)-(c) show the primary reflected and transmitted
beams arising from the incidence of ui onto sides �

1

-�
3

respectively. (d)-(f) show the
secondary beams arising from the internal reflection and transmission to the exterior of the
primary transmitted beams in (a)-(c) respectively. Note that in each of (d) and (f) the rays
associated with one of the transmitted beams point along the side - this corresponds to total
internal reflection.

multiple internally-reflected beams will be produced. Figure 4.1(d)–(f) shows the two such
internally-reflected beams arising from the re-reflection of each of the three beams shown
in Figure 4.1(a)–(c). The algorithm continues this process of internal re-reflection until
a (user-specified) stopping criterion is achieved. Some possible stopping criteria are dis-
cussed in §4.4.

Remark 4.1. For a beam with associated plane wave Aeik1(Dd+iEe)·x, our algorithm takes
the limiting rays bounding the beam to be parallel to the propagation direction d. This is
also the choice made in [16], and it certainly seems a natural choice when the plane wave
has no decay (i.e. when E = 0). But in the general case (in particular in an absorbing
medium) it is not immediately obvious how to define the “ray direction”, and hence where
the “edges” of the beam should lie. What we are really asking, of course, is where the
shadow boundaries between transmitted and diffracted waves lie in the related canonical
diffraction problem of diffraction by an infinite absorbing transmission wedge (see sec-
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tion 4.8). Given the lack of an exact (or even asymptotic) solution for this infinite wedge
problem (as discussed in §4.8), we cannot currently make any further comment about this.
But it is interesting to note that for the related (but simpler) problem of diffraction of a
general plane wave in a homogeneous absorbing medium by a sound soft knife edge, for
which an exact solution is available in terms of a Fresnel integral, the correct location of
the shadow boundary (defined to be the Stokes line across which the incident field switches
on/off) is not parallel to the real propagation vector of the plane wave beam. Rather, it is
shifted somewhat in the direction of the imaginary propagation vector [12]. It would be in-
teresting to see whether an analogous adjustment in our beam-tracing algorithm improved
the accuracy of the GO approximation, but we leave further investigation of this for future
work.

4.3 Reflection and refraction at a planar interface

In this section we consider the reflection and refraction of a plane wave at an interface
between two differing media. This is one of the most well-studied problems in physics
and has been understood, to a greater or lesser extent, for well over a thousand years.
The earliest known manuscript on the topic is Ibn Sahl’s treatise On Burning Mirrors and
Lenses of 984 AD [122], in which he alludes to work from earlier Greek texts. The laws of
reflection and refraction were later rediscovered by Willebrord Snellius (1580-1626) and
René Descartes (1596-1650). The laws we refer to, commonly called the law of reflection
and Snell’s law or sometimes the Snell-Descartes law, dictate the directions of the reflected
and refracted plane waves, respectively. The discovery of the formulae for the relation
between the amplitudes of these waves to that of the incident wave is attributed to Augustin-
Jean Fresnel (1788-1827), and hence these formulae are often called the Fresnel equations.

The classical cases, discussed in almost every physics text book (e.g., [19, 76, 130]),
are:

(i) when both media are non-absorbing (the refractive indices of both media are real),

(ii) when the second medium alone is absorbing (the refractive index of the second medium
is complex).

We remark that in both of these cases the incident wave in the first medium is an unbounded
homogeneous (see §4.3.1) plane wave. This is clearly an idealisation. Nevertheless, such a
wave in a non-absorbing medium is often used as the incident field in scattering problems
and can be justified as being a good approximation to the wavefronts produced by a point
source located far from the interface. Also, in both these cases, there is the possibility
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of inhomogeneous (see §4.3.1) plane waves being generated in the second medium. Such
waves possess exponential decay, the direction of which may be chosen such that the wave
decays as it progresses into the second medium.

The cases which have been avoided in the classical physics books are:

(iii) when both media are absorbing,

(iv) when the first medium alone is absorbing.

An issue with these final two cases is that we must now consider unbounded inhomoge-
neous plane waves in the upper medium which, as Clemmow states in [34], “represent a
grosser violation of physical reality [than that of an unbounded homogeneous plane wave],
since their exponential decay in one direction is matched by exponential growth in the
opposite direction; it is unacceptable to allow the latter to develop without limit”.

This “gross violation” of reality has still not prevented many authors from attempting
to solve this problem in cases (iii) and (iv). Papers published on this subject include [32,42,
55,96,116,149]. Many of these are similar in their methodology to Pincherle’s approach in
[116], although few cite his work. Some authors differ in their derived formulae; and none
(to my knowledge) provide experimental verification of their formulae. The differences
result from the physical constraints imposed on the refracted wave. As we shall see in
what is to follow, the refracted wave is, in general, an inhomogeneous plane wave with a
propagation direction dt and a decay direction et. These directions are not defined uniquely
from the formulae since there is a sign choice to be made stemming from a square root.
But once a sign choice is made for one of the vectors dt and et, the other is specified
immediately from the preceding formulae.

Pincherle justifies a particular sign choice for dt (and hence for et) based on energy
flow and Poynting’s vector, however this leads to some peculiar discontinuities in the wave
behaviour as certain parameters of the problem are varied. Dupertuis et al. [42] follow
from Pincherle but extend it to the three-dimensional electromagnetic problem. Here, we
shall also follow Pincherle but in addition perform numerical experiments to test this sign
choice. These experiments entail the computation of “exact” solutions to wave scattering
by absorbing polygons and the comparison of the solution on the boundary to that obtained
using a beam tracing algorithm employing Snell’s Law and the Fresnel equations to be de-
rived. We shall find that Pincherle’s choice leads to poor agreement with the exact solution
when the wave is close to total internal reflection (a phenomenon which cannot completely
occur when absorbing media are involved). In fact, the solution is almost completely out
of phase. When this occurs, we find that making the other, somewhat counterintuitive, sign
choice provides excellent agreement with the exact solution.
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In addition, it should be pointed out that Chang et al. in [32] employ a similar approach
to Pincherle but choose et in such a way that the refracted waves fail to satisfy the governing
equation. This is explained in §4.3.3 in detail. We immediately disregard such an approach
since a wave that does not satisfy the governing equation cannot be the physically correct
solution.

We shall begin by discussing the characterstics of inhomogeneous plane waves in an
absorbing medium. Then we shall analyse the most general problem of the reflection and
refraction of an inhomogeneous plane wave at the interface between two absorbing media.
Finally, we shall look in more detail at the two cases of specific relevance for our problem
of scattering by an absorbing particle embedded in a non-absorbing medium. These are the
cases (ii) and (iv) given earlier.

4.3.1 Plane wave propagation in an absorbing medium

We consider time-harmonic scalar waves modelled by the Helmholtz equation

�u + k2u = 0, (4.15)

with a complex wavenumber k. We shall write

k = k
0

(µ + i⇠),

where k
0

> 0 is a reference real wavenumber, and µ + i⇠ is the refractive index of the
medium. We shall assume throughout that µ > 0 and ⇠ � 0; the case ⇠ = 0 corresponds
to a non-absorbing medium, and the case ⇠ > 0 corresponds to an absorbing medium. We
consider solutions of (4.15) of the form

u(x) = Aeik0V·x, x 2 R2, (4.16)

which represents a plane wave with complex amplitude A and complex propagation vector
V. It is convenient to split V into real and imaginary components, writing

V = Dd + iEe,

where d and e are real unit vectors and D, E are real scalars, after which (4.16) becomes

u(x) = A exp{ik
0

(Dd + iEe) · x}. (4.17)

Note that the vectors d and e are normal to the planes of constant phase and constant
amplitude of u, respectively. Without loss of generality we may assume that d · e � 0. If
d = e, then the wave is called homogeneous, otherwise it is inhomogeneous. In order to
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find the relationship between d, e, D, E and the components µ, ⇠ of the refractive index,
we substitute (4.17) into the Helmholtz equation (4.15), which, after equating the real and
imaginary parts, gives

D2 � E2

= µ2 � ⇠2, (4.18)

(Dd) · (Ee) = µ⇠. (4.19)

We note from (4.18)–(4.19) that we cannot have D = 0; otherwise (4.19) would imply
that ⇠ = 0 (since µ > 0 by assumption), and (4.18) would then give the contradiction
�E2

= µ2. Without loss of generality we may assume that D > 0 (we can multiply both
d and e by minus one if necessary). Now, if ⇠ > 0 then µ⇠ > 0 and (4.19) implies that
d · e > 0 and DE > 0, so that E > 0 too. On the other hand, if ⇠ = 0, then (4.19) reduces
to (Dd) · (Ee) = 0. Since the real component Dd is non-zero, this implies that either
Ee = 0 (i.e. E = 0 and D = µ) or d and e are perpendicular. In the latter case there are
an infinite family of pairs (D, E) which satisfy (4.18). Without loss of generality we can,
in this case, assume that E > 0 (we can multiply e by minus one if necessary).

To summarise, we have shown that if (4.17) is a solution of (4.15) then d, e, D and
E must satisfy (4.18)–(4.19) and without loss of generality we may assume that D > 0,
E � 0, and d ·e � 0. Under these assumptions, the wave (4.16) propagates in the direction
of d, while decaying in the direction e; in fact, we note that D and E are interpreted by
some authors as the real and imaginary parts of an “apparent refractive index” [32, 145].

4.3.2 An interface between two media with arbitrary absorption

We now consider the canonical problem of the reflection/refraction of an incident plane
wave of the general form (4.17) propagating in a medium with refractive index µ

1

+ i⇠
1

at
a planar interface with a second medium with refractive index µ

2

+ i⇠
2

. We assume that
in the first medium the field takes the form u = ui

+ ur, where ui is the incident plane
wave and ur is a reflected plane wave, and that in the second medium the field takes the
form u = ut, where ut is a transmitted plane wave. We also assume that both the total field
u and its normal derivative are continuous across the interface, which implies that, on the
interface,

ui
+ ur

= ut and
@ui

@n
+

@ur

@n
= ↵

@ut

@n
, (4.20)
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where n is a vector normal to the interface. We write the waves ui, ur and ut in the general
form (4.17) as:

ui
= Ai

exp{ik
0

(Did
i
+ iEie

i
) · x},

ur
= Ar

exp{ik
0

(Did
r
+ iEie

r
) · x},

ut
= At

exp{ik
0

(Dtd
t
+ iEte

t
) · x},

(4.21)

where we have assumed a priori the same “apparent refractive index” for the reflected wave
as for the incident wave. Given the parameters Ai, di, ei, Di and Ei describing the incident
wave, we wish to determine the parameters Ar, At, dr, er, dt, et, Dt and Et determining
the reflected and transmitted waves.

The geometry of the problem is illustrated in Figure 4.2. The real and imaginary com-
ponents of the direction vectors have been drawn on separate diagrams for clarity, but it
should be kept in mind that the complex incident direction vector is di

+ iei and that the
reflected and transmitted direction vectors are dr

+ ier and dt
+ iet, respectively.

t

n

di

✓i

dt

✓t
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✓r
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(a) Real components of direction vectors.
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(b) Imaginary components of direction vectors.

Figure 4.2: Refraction and reflection of light at the interface �1

The boundary conditions (4.20) imply that the spatial variation of the incident and re-
flected fields must match at the interface [73, p.217]. This leads directly to the fact that
the that the real and imaginary components of the incident and reflected direction vectors
satisfy the specular reflection law (“angle of reflection equals angle of incidence”), which
can be stated in vector notation as

dr
= di � 2(di · n)n,

er
= ei � 2(ei · n)n,

(4.22)

or, in the notation of Figure 4.2, simply as

✓i = ✓r, �i
= �r.
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The tangential components of the incident and transmitted direction vectors are related via
Snell’s law. The Fresnel formulae relate the amplitudes of the reflected and transmitted
waves to that of the incident wave. To derive these relationships we first substitute the
representations (4.21) into the boundary conditions (4.20). Eliminating dr and er using the
law of reflection (4.22) gives, for any x 2 �1,

�
Ai

+ Ar
exp{�2ik

0

(Did
i · n + Eie

i · n)n · x}
�
exp{ik

0

(Did
i
+ iEie

i
) · x}

= At
exp{ik

0

(Dtd
t
+ iEte

t
) · x},

(4.23)

and

vi
�
Ai � Ar

exp{�2ik
0

(Did
i · n + Eie

i · n)n · x}
�
exp{ik

0

(Did
i
+ iEie

i
) · x}

= ↵vtAt
exp{ik

0

(Dtd
t
+ iEte

t
) · x},
(4.24)

where vi
= Did

i · n + iEie
i · n and vt

= Dtd
t · n + iEte

t · n.
To derive Snell’s law we write x 2 �1 as

x = X + st, (4.25)

where X is an arbitrary reference point on �1, s 2 R and t is the unit tangent vector to
�1 defined as t = (n

2

, �n
1

), where n = (n
1

, n
2

). Substituting (4.25) into (4.23) and
rearranging gives

At
= exp{ik

0

s(Did
i
+ iEie

i � Dtd
t � iEte

t
) · t}⇥

exp{ik
0

(Did
i
+ iEie

i � Dtd
t � iEte

t
) · X}

�
Ai

+ Ar
exp{�2ik

0

(Did
i · n + iEie

i · n)n · X}
�
.

(4.26)

Since this must hold for all x 2 �1, i.e. for all s 2 R, the argument of the first exponential
factor on the right-hand side must be equal to zero, i.e.

Did
i · t + iEie

i · t � Dtd
t · t � iEte

t · t = 0. (4.27)

Comparing real and imaginary components of (4.27) then yields the vector form of Snell’s
Law:

Did
i · t = Dtd

t · t,
Eie

i · t = Ete
t · t,

(4.28)

which can also be written in more classical form in terms of the notation of Figure 4.2 as

Di sin ✓
i
= Dt sin ✓

t, Ei sin�
i
= Et sin�

t.
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To derive the Fresnel formulae, we note that, given the incident amplitude Ai, equations
(4.23) and (4.24) are simultaneous equations in Ar and At which can be solved to give the
reflection and transmission coefficients

R :=

Ar

Ai
=

vi � ↵vt
vi + ↵vt

exp{2ik
0

(Did
i · n + iEie

i · n)n · X}, (4.29)

T :=

At

Ai
=

2vi
vi + ↵vt

exp{ik
0

(Did
i
+ iEie

i � Dtd
t � iEte

t
) · X}, (4.30)

respectively, where, as above, X is an arbitrary reference point on �1. If the origin of our
coordinate system lies on �1 then we may take X = 0, giving

R =

vi � ↵vt
vi + ↵vt

, T =

2vi
vi + ↵vt

, (4.31)

along with the classical relationship 1 + R = T .
We recall from §4.3.1 that Dt and Et must satisfy the equations

D2

t � E2

t = µ2

2

� ⇠2
2

, (4.32)

DtEtd
t · et

= µ
2

⇠
2

. (4.33)

Equation (4.33) can be written in terms of tangential and normal components as

DtEt[(d
t · t)(et · t) + (dt · n)(et · n)] = µ

2

⇠
2

. (4.34)

After rearranging (4.34), squaring, and writing the normal components in terms of the
tangential components (using the fact that (dt · t)2 + (dt · n)2 = (et · t)2 + (et · n)2 = 1),
Snell’s law implies that

(D2

t � ˜D2

i )(E
2

t � ˜E2

i ) = (µ
2

⇠
2

� ˜Di
˜Ei)

2,

where ˜Di := Did
i · t and ˜Ei := Eie

i · t. Finally, using (4.32) to eliminate Et, we arrive at
a quadratic equation satisfied by D2

t ,

D4

t + D2

t [⇠
2

2

� µ2

2

� ˜E2

i � ˜D2

i ] +
˜D2

i (µ
2

2

� ⇠2
2

) � (µ
2

⇠
2

)

2

+ 2µ
2

⇠
2

˜Di
˜Ei = 0, (4.35)

and the quadratic formula yields the solutions of (4.35) as

D2

t =
1

2

✓
µ2

2

� ⇠2
2

+

˜D2

i +
˜E2

i ±
q

(µ2

2

� ⇠2
2

� ˜D2

i +
˜E2

i )
2

+ 4(

˜Di
˜Ei � µ

2

⇠
2

)

2

◆
. (4.36)

Similar equations have been derived in [32] and [145]; however, the correct sign to choose
in (4.36) is not discussed in these references. We claim that the positive square root should
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be taken in (4.36) for consistency with Snell’s law. To justify this statement, we note that
Snell’s law trivially implies the inequalities

D2

t � ˜D2

i , (4.37)

E2

t � ˜E2

i . (4.38)

We can rearrange (4.36) to give

D2

t � ˜D2

i =
1

2

(a ±
p

a2

+ b2), (4.39)

E2

t � ˜E2

i =

1

2

(�a ±
p

a2

+ b2), (4.40)

where a := µ2

2

� ⇠2
2

� ˜D2

i +
˜E2

i and b := 2(

˜Di
˜Ei � µ

2

⇠
2

). Then if a < 0, it is clear from
(4.39) that we must take the positive square root in order to satisfy (4.37). If a > 0, it is
clear from (4.40) that we must take the positive square root in order to satisfy (4.38). If
a = 0, then we must take the positive square root in order to satisfy both (4.37) and (4.38),
unless of course b = 0 too, in which case the sign choice is immaterial.

Having justitifed the choice of the positive square root in (4.36), we can state the for-
mulae for Dt and Et:

Dt =

s
1

2

✓
µ2

2

� ⇠2
2

+

˜D2

i +
˜E2

i +

q
(µ2

2

� ⇠2
2

� ˜D2

i +
˜E2

i )
2

+ 4(

˜Di
˜Ei � µ

2

⇠
2

)

2

◆
,

Et =

q
D2

t + ⇠2
2

� µ2

2

,

(4.41)

where the non-negative square root is taken in both equations. Snell’s law provides a for-
mula for the tangential components of the transmitted direction vectors dt and et. The fact
that dt and et are unit vectors allows us to write

dt
= (dt · t)t + (dt · n)n = (dt · t)t ±

p
1 � (dt · t)2n, (4.42)

et
= (et · t)t + (et · n)n = (et · t)t ±

p
1 � (et · t)2n, (4.43)

so that the normal components are specified up to sign. The need to make a sign choice
in (4.42) and (4.43) is alluded to in [42, p. 1163], but a clear prescription of which sign
to take is not provided there. In fact, this sign choice is the pivotal part in a succesful ray
tracing routine which has so far (to the author’s knowledge) not been properly discussed
and tested. Here we shall provide two plausible physical arguments to justify particular
sign choices. In certain situations the two arguments are incompatible in that they produce
different sign choices. We shall test each sign choice in numerical experiments in order
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to heuristically establish which sign choice should be employed. In fact, we shall see that
there exist two different regimes, within each of which it is appropriate to make a different
sign choice.

The two physical arguments are as follows. Firstly, one can argue that the average flow
of energy must be directed from the first medium into the second (as in [116] for the EM
case). Secondly, one can argue that the transmitted wave must decay as y ! �1 in the
second medium. (The latter argument is often used to decide et in the case of total internal
reflection in physics textbooks when two non-absorbing media are considered.) Having
described the two arguments in detail, we shall then perform numerical experiments in
which the two different arguments are implemented in a beam tracing algorithm and the
solution of the boundary compared to that obtained with a BEM. We shall find that each
physical argument appears to have its regime of validity which depends on the incident
angle. It is at present not clear why the transition between these two regimes should occur.

4.3.3 Sign choice

The multi-valuedness of equations (4.42)–(4.43) indicates that a sign choice must be made.
We are required only to choose the sign in one of (4.42) and (4.43) since the correct sign in
the other equation follows immediately from (4.34). We state the two different sign choices
and the resulting equations for dt and et, and then we provide a physical argument to justify
each choice and derive the given formulae. The two choices, which we refer to as GO1 and
GO2, are as follows.

GO1. Force dt to point into the second medium, i.e., force sgn(dt · n) = sgn(di · n). This
leads to the following equations for dt and et.

dt
=

Di

Dt
(di · t)t + sgn(di · n)

s

1 �
✓

Di

Dt

◆
2

(di · t)2n, (4.44)

et
=

Ei

Et
(ei · t)t + 1

DtEtdt · n
�
µ
2

⇠
2

� DiEi(d
i · t)(ei · t)

�
n, Etd

t · n 6= 0.

(4.45)

When Et = 0, we may choose et arbitrarily (et
= dt, for example). When dt ·n = 0,

replace (4.45) with

et
=

Ei

Et
(ei · t)t + sgn(di · n)

s

1 �
✓

Ei

Et

◆
2

(ei · t)2n. (4.46)
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GO2. Force et to point into the second medium, i.e., force sgn(et · n) = sgn(di · n). This
leads to the following equations for dt and et.

et
=

Ei

Et
(ei · t)t + sgn(di · n)

s

1 �
✓

Ei

Et

◆
2

(ei · t)2n, (4.47)

dt
=

Di

Dt
(di · t)t + 1

DtEtet · n
�
µ
2

⇠
2

� DiEi(d
i · t)(ei · t)

�
n, Ete

t · n 6= 0,

(4.48)

When Et = 0, replace (4.48) with (4.44), and we may assign et arbitrarily, hence
(4.47) is redundant. If et · n = 0, then replace (4.48) with (4.44).

GO1 - energy flow argument

The time-averaged intensity of a time-harmonic wave associated with a solution u of the
Helmholtz equation 4.15 is given by hIi = CImuru, where C is a positive constant de-
pending on the frequency (see, e.g., [60, §3.4.2]). When u is a plane wave of the form
(4.17) this gives hIi = C|A|2k

0

Dd, so that the energy flow is purely in the real propaga-
tion direction d.

We stipulate that the time-averaged intensities hIii and hIti associated with the incident
and transmitted waves should satisfy

sgn(hIii · n) = sgn(hIti · n),

to ensure that the transmission process preserves the direction of energy flow relative to the
boundary. By the above discussion this means that we require

sgn(dt · n) = sgn(di · n),

so that (4.42) becomes, after applying Snell’s law,

dt
=

Di

Dt
(di · t)t + sgn(di · n)

s

1 �
✓

Di

Dt

◆
2

(di · t)2n. (4.49)

This formula implies that the transmitted wave is always propagating into the second
medium, except for the case of total internal reflection (TIR), i.e., when dt · n = 0 and
there is no sign choice to be made. The energy flow in the second medium in this case is
parallel to the interface.
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We now turn to et. It turns out that, having specified the sign choice in (4.42), the sign
choice in (4.43) follows immediately. Indeed, provided that Etd

t · n 6= 0, et · n is now
completely determined by (4.34), with

et · n =

1

DtEtdt · n
�
µ
2

⇠
2

� DiEi(d
i · t)(ei · t)

�
, Etd

t · n 6= 0.

Thus

et
=

Ei

Et
(ei · t)t + 1

DtEtdt · n
�
µ
2

⇠
2

� DiEi(d
i · t)(ei · t)

�
n, Etd

t · n 6= 0. (4.50)

This equation predicts that the vector et sometimes points back into the first (incident)
medium. This somewhat counterintuitive behaviour was noted in [116]; however, some
subsequent authors (in particular, [32]), seemingly unaware of Pincherle’s work, artifically
force et to point into the second medium, despite the fact that this may lead to a violation
of the Helmholtz equation. We remark that a similar, artificial modification to the laws of
reflection/refraction is made in [16] and [148], where the transmitted wave is spuriously
forced to be homogeneous, when in practice it could be inhomogeneous as outlined above.

When Et = 0 or dt · n = 0 the formula (4.50) cannot be applied. The former case is
easily dealt with: since Et and et appear in a product in the formula 4.17, the choice of et

is irrelevant when Et = 0, and we may arbitrarily assign et
= dt, for example. The latter

case dt · n = 0 corresponds to TIR, and in this case we argue that the transmitted wave
should decay (not grow) with increasing distance from the interface, so that we require
sgn(et · n) = sgn(di · n), giving

et
=

Ei

Et
(ei · t)t + sgn(di · n)

s

1 �
✓

Ei

Et

◆
2

(ei · t)2n, dt · n = 0. (4.51)

GO2 - decay argument

In the zero absorption case, inhomogeneous waves arise when total internal reflection oc-
curs. In this event, the transmitted wave propagates along the boundary and is attenuating
perpendicular to this direction. There is a choice of two possible attenuation directions.
The physics textbooks [19, 76, 130] choose et to be directed into the second medium to
ensure that the wave decays as y ! 1. Here, we shall make the same argument for the
absorption case. To ensure this, we enforce the condition

sgn(et · n) = sgn(di · n)
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and hence equation (4.43) becomes, after applying Snell’s Law,

et
=

Ei

Et
(ei · t)t + sgn(di · n)

s

1 �
✓

Ei

Et

◆
2

(ei · t)2n. (4.52)

Now we have specified et, the direction dt is determined uniquely by equation (4.34) as

dt
=

Di

Dt
(di · t)t+ 1

DtEtet · n
�
µ
2

⇠
2

� DiEi(d
i · t)(ei · t)

�
n, Ete

t · n 6= 0. (4.53)

This argument leads to a propagation direction that may point back into the incident medium
which seems counterintuitive, however we shall let experimental evidence dictate which is
the correct direction to take.

When Et = 0 or et · n = 0 the formula (4.53) cannot be applied. The former case is
dealt with as before, that is, since Et and et appear in a product in the formula 4.17, the
choice of et is irrelevant when Et = 0, and we may arbitrarily assign et

= dt, for example.
In the latter case et ·n = 0 we see that the vector et is parallel to the interface and therefore
our decay argument cannot be applied. In this case, it makes sense to calculate dt as in
GO1, i.e.,

dt
=

Di

Dt
(di · t)t + sgn(di · n)

s

1 �
✓

Di

Dt

◆
2

(di · t)2n. (4.54)

The Air/Ice and Ice/Air interface problems

As mentioned in the beginning of §4.3, we are interested mainly in the cases (ii) and (iv),
that is,

• an interface between a non-absorbing medium and an absorbing medium - an “air/ice”
interface (when light enters the crystal),

• an interface between an absorbing and non-absorbing medium - an “ice/air” interface
(when light exits the crystal).

These are special cases of the general interface problem between two absorbing media con-
sidered until now. The application of the above derived formulae to these special cases is
simple and so we do not provide versions of the formulae for these specific cases. How-
ever, we would like to comment on the applicability of GO1 and GO2 in these cases, and
whether they ever coincide.

Air/Ice interface. At this interface, the upper medium is non-absorbing and the lower
medium is absorbing. The incident wave is the incident homogeneous plane wave of our
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scattering problem and hence Ei = 0. It can be seen from equations (4.45) and (4.48) that
the vector et

= sgn(di · n)n and so for this case GO1 and GO2 coincide.
We remark that this case is covered in textbooks such as [19] and that their given for-

mulae agree with those derived here.
Ice/Air interface. At this interface, the upper medium is absorbing and the lower

medium is non-absorbing. The incident wave is an inhomogeneous plane wave and hence
Ei 6= 0. For this interface, GO1 and GO2 are always distinct with one exception: when
ei · t = 0. When ei · t = 0 it can be shown from (4.41) that Et = 0 and so the choice of et

is irrelevant and we choose dt to point into the lower medium.
We remark that this case has only been covered in textbooks when ei · t = 0 (which

arises when analysing absorbing layers, see [19]) and their given formulae agree with these
derived here for this case.

4.3.4 Sign choice experiment

We have discussed two plausible physical arguments for specifying dt and et. In this
section we present the results of a numerical experiment in which we compare the boundary
data ugo and @u

go

@n computed using the two different choices GO1 and GO2 with the “exact”
solution computed using the conventional BEM outlined in §3. We consider scattering by
the quadrilateral shown in Figure 4.3 in which sides �

1

and �
4

have length 2⇡, �
2

has
length ⇡ and �

3

has length
p
3⇡. We shall consider 100 different incident plane waves with

incident angles ✓i spaced evenly between ⇡/6 and ⇡/2, inclusive, as shown in the figure.
We also take ↵ = 1 throughout.

This particular shape has been chosen to isolate some behaviour from the equilateral
triangle example considered in §3.2.4, which shall be the main example in §5. We see that
sides �

1

and �
4

are related to each other in the same way as �
1

and �
3

are in the triangle case
(see Figure 3.4). The other sides have been chosen such that the beams refracted through
them do not impinge on the red portion of �

4

, which we shall denote �R. Our aim is to
isolate the single beam which refracts through �

1

and then through �R. To help achieve this
we choose the imaginary part of the refractive index large enough so that the interior waves
decay sufficiently rapidly to make re-reflections negligibly small. In particular, we choose
nI such that k

1

nI = 1 so that the largest amplitude of an interior reflected beam impinging
on �R is 1.1 ⇥ 10

�3 which is approximately 1000 times smaller than the magnitude of
the aforementioned single beam we have endeavoured to isolate. We are here interested in
the beam propagating out of �R since this represents the “difficult” interface problem of
absorbing to non-absorbing.
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Figure 4.3: Setup used in numerical experiments.

We begin by taking the frequency of the incident wave to be k
1

= 20, so that nI = 0.05.
The real part of the refractive index we shall take throughout to be nR = 1.5. In Figure 4.4
we present the relative L2 errors for ugo and @u

go

@n on �R, as well as the dot product of the
transmitted vector dt with the tangent vector to �R, and its derivative with respect to the
incident angle ✓i.
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Figure 4.4: Top two plots show a comparison of the relative L2 errors in u and @u/@n on
the red segment �R for the two different beam tracing methods. Bottom two plots display
dt · t and its derivative with respect to ✓i. Problem parameters: k

1

= 20, n = 1.5 + 0.05i.
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There are two distinct regimes to be seen in the plots. The first is located at ✓i < 0.98 rad
where GO2 provides the more accurate approximation. In this ✓i region we notice that dt ·t
is very close to �1, i.e., the wave is close to total internal reflection, and its ✓i derivative
is close to 0. More precisely, we have that dt · t < �0.99. The second regime is located
at ✓i > 0.98 rad where GO1 provides the more accurate approximation. In this region,
d · t is moving away from -1 and towards 0 at an approximately linear rate. It should be
noted that in a neighbourhood of this cross-over point, the GO approximation for @u/@n

has approximately 100% error with either sign choice, indicating that in this range of ✓i,
GO appears to be completely invalid.

Let us repeat the experiment but this time with larger k
1

. We shall consider k
1

= 40 and
k
1

= 80 in order to see how the behaviour exhibited in Figure 4.4 changes as the frequency
increases. In order to maintain the same strength of the field on �R, we shall decrease the
imaginary component of the refractive index in order to maintain the relationship k

1

nI = 1.
That is, for k

1

= 40 we have n = 1.5 + 0.025i and for k
1

= 80, n = 1.5 + 0.0125i.
The corresponding versions of Figure 4.4 are shown below in Figure 4.7 and Figure 4.8.

Similar behaviour is noted with the addition that the neighbourhood of the cross-over point
in which GO appears invalid becomes narrower as k

1

increases. We also observe that the
cross-over point shifts slightly towards larger ✓i, but this is merely due to the change of the
imaginary part of the refractive index. This affects the effective refractive index, with real
and imaginary parts denoted D and E in §4.3.2 which are functions of nR and nI , and hence
the critical angle (corresponding to TIR) will be altered. Finally, we note the accuracy of the
GO approximation improving as a whole from Figure 4.4 through Figure 4.5 to Figure 4.6,
as is to be expected from an asymptotic approximation valid in the limit k

1

! 1.
To further illustrate the behaviour of the two GO approximations in the different ✓i

regions, we present two figures below. They show the exact solution and the GO approxi-
mation on the red portion of �

4

for a value of ✓i in each of the three different regions. We
see in Figure 4.7 that GO 1 is out of phase in the first region, approximates the amplitude
poorly in the transition region and performs excellently in approximating the phase and
amplitude in the final region. To contrast, we see in Figure 4.8 that GO 1 approximates
the phase and amplitude well in the first region, matches the phase but approximates the
amplitude with some error in the transition region, and approximates the amplitude as far
too large in the final region. These observations are consistent with what we saw earlier,
namely that, GO 1 is accurate in the final region, GO 2 is accurate in the first region, and
both appear to perform badly near the cross-over point at dt · t ⇡ �0.99.

On the basis of these numerical experiments we can propose a simple rule of thumb
to decide when to switch from one sign choice to the other. This would ideally be at the
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Figure 4.5: As Figure 4.4 but with k
1

= 40, µ = 1.5 + 0.025i.
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Figure 4.6: As Figure 4.4 but with k
1

= 80, µ = 1.5 + 0.0125i.

observed cross-over point. The value of dt · t at this point is typically between �1 and
�0.98. A sensible ad hoc rule that we may establish for switching could be: if dt · t <

�0.99, use GO 2, else use GO 1. Or, more generally,

if |dt · t| > 0.99, use GO 2, else use GO 1. (4.55)
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4.4 Convergence of beam tracing algorithm

As depicted in Figure 4.1 and described in §4.2, the GO approximation as constructed via
a BTA is composed of numerical beams arising from internal reflections of the “primary”
transmitted beams. By primary, we refer to the beams transmitted into the shape as the
incident plane wave strikes the illuminated sides. Suppose we were to terminate the beam
tracing algorithm here. Then the GO field would be given by

vgo(x) =

N1X

l=1

✓
ut
1l(x, k

2

),↵
@ut

1l

@n
(x, k

2

)

◆
, x 2 �, (4.56)

where N
1

is the number of sides illuminated by the incident wave, and hence the number of
beams. For each beam, the superscript t denotes the transmitted field, and the subscript 1
signifies that these are the primary beams. Owing to the transmission conditions, we could
alternatively write this field as

vgo(x) =

✓
ui
(x, k

1

),
@ui

@n
(x, k
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)
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✓
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@ur

1l

@n
(x, k

1

)

◆
, x 2 �, (4.57)

where the superscript denotes the corresponding reflected beams. Also, we note that
vi

=

⇣
ui
(x, k

1

), @u
i

@n (x, k
1

)

⌘
is only supported on the illuminated sides. We shall choose

the representation (4.56) for sake of brevity.
Now suppose that we continue to track the transmitted beams to their next reflec-

tion/refraction, and then calculate the GO field. Then we have

vgo(x) =

N1X
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where N
2

is the number of “secondary” transmitted beams, and (ut
2l, @u

t
2l/@n), l = 1, . . . , N

2

correspond to the beams transmitted out of the shape at this reflection/refraction event.
There are also reflected beams generated which propagate back into the shape leading to
higher order reflected/refracted beams.

Say we consider M reflections in total in the calculation of the GO field, so that

vgo(x) =

N1X
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. (4.59)

A natural question to ask is how large a value of M should we take? This is the topic of this
section. We would like to determine the number of reflections M required in our algorithm
for the solution to converge to a given tolerance.
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This question was analysed in [52] for the same beam tracing algorithm as that em-
ployed here, however there the scatterers considered were all non-absorbing. It was shown
that as many as 40 reflections were sometimes required (for some non-absorbing scatterers)
before the relative error in the BTA reduced to approximately machine precision. In that
study, as we shall do here, the reference boundary solution Uref was taken as that calculated
by the BTA with M = 50. The error studied was the relative L2 error. That is, the error in
the solution uM , which is that calculated by the BTA with M = m, was defined as

e(M) =

||Uref � uM ||L2
(�)

||Uref ||L2
(�)

. (4.60)

We shall also use this error in the study here. However, since the error of the GO
approximation is typically a few percent (as we shall see later in this section, and in §4.5),
it is not necessary to take M large enough to ensure e(M) ⇡ "machine. In fact, it is beneficial
to have M as small as possible for when we employ the HNA algorithm later since this will
reduce the number of integrals to be evaluated (see §6). Therefore, here we shall have a
different aim to that in [52]. That is, the aim of obtaining a practical rule for truncating the
series (4.59) at as small an M as possible without allowing the accuracy of the GO to be
compromised.

In order to ascertain such a rule, we consider some examples in which we calculate M

to achieve two different tolerances for e(M): machine precision (as was done in [52]) and
our specified tolerance of tol = 10

�3. The first tolerance value will lead us to the value of
M at which taking any further terms would have no effect upon the solution. We denote
this M". The second tolerance value was chosen in order to produce a smaller M , which we
denote Mtol, more practical for computations. The value of tol = 10

�3 is chosen because
the relative error of the GO approximation is never below 3⇥10

�2 for any of our examples
(as we shall see in §4.5 and §5), so including beams with amplitudes smaller than this
tolerance will have an almost negligible effect on the accuracy of the GO approximation.

For each example, we shall also consider the amplitudes of the beams of orders Mtol and
Mtol +1. Denote the amplitude of each beam of order Mtol by AM

tol

,l for l = 1, . . . , NM
tol

.
Then we shall record the maximum of these amplitudes and denote it as ||AM

tol

||1. We
shall also do the same for AM

tol

+1,l. This will allow us to derive a rule to terminate the
BTA by analysing the amplitudes of the beams. Finally, for each example, we provide
the relative error in the GO approximation (compared against an exact solution computed
using the 2D BEM of §3) calculated with M = M" and M = Mtol to demonstrate that little
or no accuracy is lost in the GO approximation by truncating at M = Mtol rather than at
M = M".

90



The first example we consider is scattering by the triangle in Figure 3.4 with an incident
direction specified by Angle 2. We choose three different refractive indices for this exam-
ple: n = 1.5+0i, n = 1.5+0.025i and n = 1.31+0i. The results are shown in Tables 4.9,
4.10 and 4.11. We can immediately see from the tables that Mtol is always considerably

k
1

M"
||u�uM

"

go

||
||u|| Mtol

||u�u
M

tol

go

||
||u|| ||AM

tol

||1 ||AM
tol

+1

||1
10 36 2.49e-1 7 2.49e-1 7.02e-3 2.64e-3
40 36 1.62e-1 7 1.62e-1 7.02e-3 2.64e-3

160 36 1.10e-1 7 1.10e-1 7.02e-3 2.64e-3

Table 4.9: Convergence details for the BTA for scattering of a plane wave at Angle 2 by a
triangle with n = 1.5 + 0i.

k
1

M"
||u�uM

"

go

||
||u|| Mtol

||u�u
M

tol

go

||
||u|| ||AM

tol

||1 ||AM
tol

+1

||1
10 21 1.70e-1 5 1.70e-1 1.20e-2 1.20e-3
40 12 9.11e-2 3 9.11e-2 3.98e-2 5.21e-4

160 5 4.77e-2 2 4.86e-2 7.38e-1 3.98e-2

Table 4.10: As per Table 4.9 but with n = 1.5 + 0.025i.

k
1

M"
||u�uM

"

go

||
||u|| Mtol

||u�u
M

tol

go

||
||u|| ||AM

tol

||1 ||AM
tol

+1

||1
10 28 2.15e-1 6 2.15e-1 6.09e-3 1.08e-3
40 28 1.51e-1 6 1.51e-1 6.09e-3 1.08e-3

160 28 1.04e-1 6 1.04e-1 6.09e-3 1.08e-3

Table 4.11: As per Table 4.9 with n = 1.31 + 0i.

smaller than M" and that only in one case (k
1

= 160 in Table 4.10) is the accuracy of ugo

affected (to three significant figures) by taking M = Mtol. In this case, the accuracy of ugo

diminishes by 0.11% which is small when compared to the accuracy of ugo itself, which is
approximately 5%.

From looking at the values in the ||AM
tol

||1 and ||AM
tol

+1

||1 columns, we can see that
the maximum amplitude of the order M beams is always greater than 5 ⇥ 10

�3 and that
the maximum amplitude of the order M + 1 beams which is often less than 5⇥ 10

�3 (note
there is only one instance in the examples considered in tables 4.9–4.11 where this value
exceeds 5⇥10

�3, namely for n = 1.5+0.025i and k
1

= 160). Therefore, it appears that, to
ensure e(M) < tol, we can terminate the BTA at M once the amplitudes of all the beams
of the (M + 1)st iteration have a magnitude less than 5 ⇥ 10

�3 (for the exceptional case,
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this will lead to us including quite a few more beams than necessary which will lead to a
higher computational expense but will not deteriorate the accuracy).

Based on the above, we shall impose the following truncation rule in our BTA:

In order to achieve
e(m) < 10

�3

we shall terminate the algorithm at m = M when

||AM+1

||1 < 5 ⇥ 10

�3. (4.61)

To reiterate this rule in words: in order to achieve our imposed tolerance of e(m) <

10

�3, at each iteration M we check the value of AM+1

(the amplitudes of the beams from
the next iteration) for every beam of order M + 1. If every beam of order M + 1 satisfies
the criterion |AM+1

| < 5 ⇥ 10

�3, then we terminate the BTA at M iterations, if not then
we proceed to the next iteration.

It may seem surprising that we can include beams of amplitude larger than 10

�3 in
order to achieve e(m) < 10

�3. However this apparent inconsistency is due to the fact
that the support of each beam is substantially smaller than the whole of �. Therefore, the
magnitude of the contribution of each beam to the total ugo approximation is proportional
to that beam’s amplitude multiplied by the ratio of the length of its support to the length
of �.

In this section we have presented some results illustrating the accuracy of the GO ap-
proximation on the boundary of the scatterer for a small selection of examples. In the
following section we shall provide more complete results displaying how the accuracy
changes with increasing k

1

and increasing absorption. We also provide results illustrat-
ing the accuracy of the Kirchhoff approximation (based on this GO approximation) in the
domain and far-field.

4.5 Accuracy of the GO approximation

The accuracy of high-frequency asymptotic approximations for wave problems typically
improve with increasing k

1

with a cost fixed independently of k
1

. For a fixed k
1

, however,
it is not in general possible to improve the accuracy of the approximation to any desired
tolerance. In this section, we shall examine the accuracy of the GO approximation com-
puted by the BTA developed in previous sections. The BTA shall be applied in detail to the
triangular scatterer in Figure 3.4 at five different levels of absorption and for incident waves
of wavenumber k

1

= 10, 20, 40, 80, 160. We shall see that as k
1

increases, the accuracy of
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the GO approximation improves. However, the GO approximation on the boundary is only
ever (for the range of k

1

considered) accurate to at best a few percent, and for low k
1

, the
accuracy is poor (as is to be expected).

Upon substituting the GO approximation for the boundary data (u, @u/@n) into the
Green’s representation formula (2.78) or its far-field version (2.127), we obtain the so-
called “Kirchhoff approximation” (KA) or “Physical Optics approximation” . This is a
commonly used technique for simulating wave scattering by ice crystals as well as other
applications [108, 147] owing to its relative simplicity and low computational cost. As we
saw in §3.2.4, it is to be expected that the relative error is smaller in the domain and far-field
than on the boundary. We also present results of the KA for the aforementioned examples.
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Figure 4.12: Boundary solution compared to GO approximation for scattering setup 2 (inc
⇡/2) of Figure 3.4 with refractive index 1.5 + 0.00625i.

The results presented shall demonstrate that diffraction accounts for a significant por-
tion of the field and must be taken into account if accurate approximations are required.
The sections to follow are dedicated to developing an understanding of the diffracted field.

Presently, we consider scattering by the triangle mentioned above. We fix the real part
of the refractive index at nR = 1.5 and vary nI to investigate the effect absorption has on
the accuracy of the GO approximation. Figure 4.12 shows the real part of u and its GO
approximation on the boundary for this example with nI = 1/160. Also plotted is the
difference between u and ugo which we identify with the diffracted field. At first glance
we see that for k

1

= 10 the GO approximation reproduces qualitatively the correct solu-
tion, however further inspection of the difference u � ugo reveals that there is a significant
diffracted field which remains to be approximated. As k

1

is increased (to k
1

= 40 in the
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figure), it is apparent that the GO solution improves significantly with the diffracted field
becoming ever more confined close to the corners.

Figure 4.13 shows the relative L2 errors of ugo and @ugo/@n on the boundary of the
scatterer. It is clear that for all values of nI considered, the accuracy of the GO approxi-
mation improves with increasing k

1

. Also, for scatterers possessing absorption (nI > 0),
the GO approximation is better than that for the scatterer with no absorption. This is to
be expected since for absorbing scatterers, the waves propagating within the shape are
exponentially decaying and so the diffracted waves propagating within the scatterer are
considerably weaker. However, upon more detailed inspection, Figure 4.13 shows that it is
not necessarily the case that, the stronger the absorption, the better the GO approximation.
This is explained by the fact that, as k

1

nI increases, the transmission problem becomes
increasingly better approximated by an impenetrable scattering problem. For such a prob-
lem, the solution is in fact singular at the corners. Therefore, as k

1

nI increases, the solution
becomes increasingly peaked at the corners. This corner behaviour is not captured by the
GO and hence its accuracy deteriorates as k

1

nI increases.
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Figure 4.13: Accuracy of the GO approximation to u and @u/@n on � for scattering of
an incident wave with direction di

= (cos(⇡/6), � sin(⇡/6)) by the triangle in Figure 3.4
with n = 1.5 + nI i.

4.6 Kirchhoff approximation

Now we shall consider the “Kirchhoff approximation” (KA), obtained by substituting the
GO solution on the boundary into Green’s representation formulae (2.74)–(2.75) or their
far-field form. We briefly study the accuracy of the Kirchhoff approximation for the exam-
ple considered in §4.5. Figure 4.14 shows the absolute value of the total field on a circle
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of radius 3⇡/
p
3 (3/2 times the radius of smallest circle which enscribes the triangle) sur-

rounding the triangle, with t/(2⇡) = 0 corresponding to the positive x-direction. The red
line is the exact solution and the dashed black line is the Kirchhoff approximation. For
k
1

= 10 the KA performs well and reproduces the key features of the field, particularly in
the direct forward scattering direction and the two regions corresponding to specular reflec-
tion from the sides �

1

and �
2

. For k
1

= 40 these specular reflection regions, as well as the
region in shadow, are even more distinct, and we notice that the KA approximation is vir-
tually indistinguishable from the exact solution to the naked eye. However, as Figure 4.15
shows, the relative L2 error of the KA on this circle is still quite large: approximately 10%
for k

1

= 10 and 5% for k
1

= 40.
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Figure 4.14: Total field (u) on a circle of radius 3/2⇡ surrounding the triangular scatterer
in Figure 3.4 with µ = 1.5 + 1

160

i. The incident wave direction is di
= (0, �1).

Finally, in Figure 4.16 we display the errors of the KA in the far-field for the same
scattering problem as was the subject of Figure 4.13. Here we see a similar pattern to the
boundary errors displayed in Figure 4.13, however, in this case we have that the greater
the absorption, the better the accuracy. Also, as is to be expected from an asymptotic
approximation, the error decreases with increasing k

1

. We see that accuracy is never better
than 3% for all the levels of absorption and wavenumbers considered.

The results demonstrate that while the largest contribution to the scattered field comes
from the geometrical optics, the remainder, which we identify with the diffracted field,
also makes a significant contribution. It is the accurate approximation of this diffracted
field which we shall consider in the remainder of the thesis. The goal is to determine
the phases associated with the diffracted field in order to derive an appropriate hybrid
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Figure 4.16: Left: Relative L2 errors of the KA in the far-field for scattering by the triangle
in Figure 3.4 with refractive index n = 1.5 + nI i. The incident wave has direction di

=

(cos(⇡/6), � sin(⇡/6)). Right: Number M of reflections in the GO approximation.

numerical-asymptotic approximation space for the transmission problem. To do so, we
first review the basic ideas of the GTD.

4.7 Geometrical Theory of Diffraction

The Geometrical Theory of Diffraction was developed by Joseph Keller [79] as a high-
frequency approach to approximate diffracted wave-fields. His theory was applicable to 2D
and 3D problems of diffraction by corners, vertices, edges and smooth surfaces of positive
curvature. Here we shall concentrate on those aspects of the GTD which are relevant to 2D
diffraction by corners since we are interested in polygonal scatterers. For a more detailed
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exposition of the GTD see, e.g., [20, 74, 79].
As we saw in earlier sections, at high frequencies the scattered field is often well-

approximated by the reflected and refracted rays of geometrical optics. However, these rays
do not include those arising from the phenomenon of diffraction. The main postulate of the
GTD is that diffracted fields are generated by the rays from the incident field which strike
the corners of the scattering surface. More precisely, when a ray from the incident field
strikes a corner, infinitely many diffracted waves are generated travelling in all directions
away from that corner, i.e., a cylindrical wave is created.

In this section we shall review some of the material for 2D GTD for impenetrable
scatterers for which it has been well developed. Later we shall heuristically extend the
principles of GTD for impenetrable scatterers to the penetrable case for use in the problem
of interest in this thesis.

The GTD postulates that the diffracted field generated by a corner is related to the
incident field as

ud =
eikrp
kr

D(✓, ✓
0

, k)ui, (4.62)

where ✓
0

is the angle of incidence of a plane wave; (r, ✓) are the polar coordinates of
the observation point; and D is the diffraction coefficient. The diffraction coefficient is
calculated from the exact solution of the canonical problem of scattering by an infinite
wedge which we shall briefly review here.

4.7.1 Sommerfeld problem

Consider an incident plane wave ui
= e�ikr cos(✓�↵) impinging on the semi-infinite line

y < 0 where (r, ✓) are polar coordinates centred at the origin. We impose the Dirichlet
boundary condition on the half-line. Therefore we wish to solve

(r2

+ k2

)u = 0, (4.63)

u = 0, x > 0, y = 0, (4.64)

along with a suitable outgoing radiation condition for the scattered field.
This problem was first solved by Sommerfeld in 1896 using a generalisation of the

method of images to a two-sheeted Riemann surface [126]. Other possible solution meth-
ods include the Wiener-Hopf technique (see, e.g., [17]) and the Kontorovich-Lebedev trans-
form (see, e.g., [113]). All of these approaches lead to the classical result

u =

eikr�i⇡/4

p
⇡

✓
�Fr

✓p
2kr cos

✓
✓ � ↵

2

◆◆
+ Fr

✓
�

p
2kr cos

✓
✓ + ↵

2

◆◆◆
, (4.65)
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Figure 4.17: Scattering of a plane wave by a sound soft half line, also known as the Som-
merfeld problem.

where
Fr(z) = e�iz2

Z 1

z

eis
2
ds (4.66)

is the Fresnel integral.
The behaviour of the solution for kr � 1 can be obtained via the large argument

expansions of the Fresnel integral:

Fr(z) ⇠ i

2z
+ O

✓
1

|z|2
◆

, Re(z) > 0, (4.67)

Fr(z) ⇠
p
⇡ei⇡/4e�iz2

+

i

2z
+ O

✓
1

|z|2
◆

, Re(z) < 0, (4.68)

giving

u ⇠

8
><

>:

e�ikr cos(✓�↵)
+ e�ikr cos(✓+↵)

+ D(✓)eikr
p
kr

, 0 < ✓ < ⇡ � ↵,

eikr cos(✓�↵) + D(✓)eikr
p
kr

, ⇡ � ↵ < ✓ < ⇡ + ↵,

D(✓)eikr
p
kr

, ⇡ + ↵ < ✓ < 2⇡.

(4.69)

Here the diffraction coefficient is

D(✓) = � ei⇡/4

2

p
2⇡

 
1

cos(

✓+↵
2

)

+

1

cos(

✓�↵
2

)

!
. (4.70)

We notice that the field is split into three distinct regions, as shown in Figure 4.17. Region I
contains the incident field e�ikr cos(✓�↵), reflected field e�ikr cos(✓+↵), and diffracted field
D(✓) 1p

kr
eikr. Region II contains the incident and diffracted fields. Region III contains the

diffracted field alone. The diffracted field D(✓) 1p
kr

eikr has the form of a cylindrical wave

98



emanating from the edge tip with amplitude governed by the diffracted coefficient D(✓), as
postulated by the GTD.

It is clear to see that the asymptotic approximation (4.69) is not uniform in ✓, with a
breakdown occuring in neigbourhoods of the shadow boundaries ✓ = ⇡ ± ↵. In fact, this
expansion is only valid when

p
kr| cos(✓ ± ✓

0

)| >> 1. However we note that as kr ! 1,
these neighbourhoods become vanishingly small and the asymptotic approximation is valid
over an ever increasing range of ✓. Uniform asymptotic expressions for the diffraction
coefficient D(✓) exist and hence this shortcoming of the GTD can be overcome. We direct
the reader towards works on the Uniform Theory of Diffraction which was introduced in
1974 by Kouyoumjian and Pathak, see e.g. [86].

4.7.2 Diffraction by an impenetrable wedge

We now consider the diffraction of a time-harmonic plane wave ui
= e�ikr cos(✓�↵) by a

wedge of exterior angle � with infinite planar faces. We wish to determine the field outside
the wedge (0 < ✓ < �) satisfying the Helmholtz equation and subject to the Dirichlet
boundary condition u = 0 on �. The setup is shown in Figure 4.18. This problem was

✓ = 0

✓ = �

ui
= e�ikr cos(✓�↵)

y

x↵

III

II

I

Figure 4.18: Scattering of a plane wave by a sound-soft infinite wedge.

first solved by Macdonald in 1902 [93] via the method of separation of variables. This was
following the work of Sommerfeld in 1896 who first solved the problem of diffraction by
a knife edge discussed in §4.7.1. Macdonald’s solution was given as an infinite sum over
Bessel functions which may then be converted to Sommerfeld integrals (see, e.g., [136])
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convenient for asymptotic (large kr) analysis. We quote the final large kr result for the
principal diffracted term from [136] as

ud ⇠ D(✓,↵, �)
ei(kr+⇡/4)p

2⇡kr
, (4.71)

where

D(✓,↵, �) =
sin

⇡
n

n

 
1

cos

⇡
n � cos

✓�✓0
n

� 1

cos

⇡
n � cos

✓+✓0
n

!
(4.72)

and n = �/⇡. Here we can identify D(✓,↵, �) as the diffraction coefficient and we see that
the diffracted field has the phase eikr as postulated by the GTD. We note that in the case
with Neumann boundary conditions, the diffraction coefficient is simply modified from
(4.72) by replacing the subtraction of the two terms in parentheses by addition.

As we have seen in this section, there is a great deal of knowledge about the diffraction
behaviour in the impenetrable case. In contrast, for the case of the penetrable wedge no
such classical theory exists and diffraction coefficients are not known. There has, however,
been some work into the asymptotic solution for the problem of diffraction by a penetrable
wedge which we shall briefly discuss in the following section. Thereafter we shall consider
the analogous problem in the time-domain in order to gain a better understanding of the
structure of the diffracted field. Finally we shall use the findings from this to justify a
heuristic extension of the GTD framework to the penetrable case. We shall also draw
analogies to the problem of a point source above an interface between two different media.

4.8 Diffraction by a penetrable wedge

The canonical problem under consideration is now the diffraction of a time-harmonic plane
wave propagating in a medium of wavenumber k

1

by an infinite wedge of a second medium
of wavenumber k

2

6= k
1

, with the total field and its normal derivative being continuous
across the interface between the two media. For simplicity of exposition, we restrict atten-
tion to the case k

1

, k
2

> 0, and in particular to the case 0 < k
1

< k
2

(although the case
0 < k

2

< k
1

can be dealt with similarly).
This problem has proven to be intractable to date with no known exact closed-form or

asymptotic solution. Nevertheless, many attempts have been made to obtain a solution,
for a review of which the reader is referred to [90, 120]. Most of these have relied on
using the Kontorovich-Lebedev technique [121], Maliuzhinets technique [24, 97], or the
Wiener-Hopf technique [117]. These approaches have so far not led to exact closed-form
solutions. Instead, many authors have sought approximate (i.e., not derived from the exact
solution) asymptotic solutions valid for large kr, i.e., in the far-field. These approximations
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Figure 4.19: Scattering of a plane wave by an infinite penetrable wedge.

have been derived via approaches based on extensions of the GTD or Uniform Theory of
Diffraction to the penetrable case [49, 77, 86, 121] and have been verified via comparisons
to solutions obtained via numerical methods.

This extension to the penetrable case is to assume that the diffracted field emanating
from the corner in Figure 4.19 comprises two partial cylindrical waves. The first radiates
in the exterior region and takes the form

u(1)

d =

eik1rp
k
1

r
D

1

(✓, k
1

)ui,

and the second radiates in the interior region and takes the form

u(2)

d =

eik2rp
k
2

r
D

2

(✓, k
2

)ui.

This is the assumption we shall also make in this thesis. However, we expect non-uniformity
in the diffraction coefficients D

1

and D
2

across shadow boundaries introduced by the GO.
Further, we expect the presence of higher order terms (head waves), analogous to those
observed in the problem of a point source above an interface between two different media
(see §4.8.2). We now provide some justification of these statements by considering the
associated time-domain problem.

4.8.1 Time-domain problem

As we have seen, little is known about the scattering of time-harmonic waves by a pene-
trable wedge, and indeed the same is true for time-dependent waves. However, if it is only

101



the phase structure of the field that we are interested in, we may appeal to the time-domain
problem to glean some information, since here it is easier to use our intuition (and Huy-
gen’s principle) to better understand the behaviour of the scattered field. Moreover, there is
a well-known correspondence (see, e.g., [20, pp. 349–355]) between the singularities of so-
lutions of the time-dependent wave equation and the high frequency asymptotic behaviour
of solutions of the Helmholtz equation. We summarise this correspondence as elucidated
in [20] before analysing the scattering of a pulse by a penetrable wedge.

In the time domain, we seek a solution U(x, t) to the time-dependent wave equation

@2U(x, t)

@t2
� c2r2U(x, t) = 0, (4.73)

where c is the speed of sound in the fluid and t is time. U(x, t) is related to a solution of
Helmholtz’ equation via the Fourier transform with respect to time,

u(x, k) :=

Z 1

�1
U(x, t)eiktdt. (4.74)

The asymptotic behaviour of u(x, k) as k ! 1 is governed by the singularities of U(x, t).
We suppose that a wavefield U(x, t) is the sum of waves Um(x, t), each possessing a

surface of discontinuity t = ⌧m(x), which is a wavefront propagating with velocity c. For
t < ⌧m(x) we are ahead of the wavefront and we assume that Um = 0, whereas close
behind the wavefront, for t > ⌧m(x) and (t � ⌧m) ⌧ 1, we assume that the wave may be
expanded as the series

Um(x, t) ⇠
1X

n=0

(t � ⌧m(x))
�
m

+nH(t � ⌧m(x))A
(m)

n (x), (4.75)

where

H(t � ⌧) =

(
1, t > ⌧

0, t < ⌧

is the Heaviside function and �m is a real constant which determines the smoothness in
the vicinity of the wavefront. Then by formally taking a termwise Fourier transform of the
expansion (4.75), we observe that each singularity t = ⌧m(x) makes a contribution

1X

n=0

an

✓
i

k

◆�
m

+n

A(m)

n (x)eik⌧m(x)

to the asymptotic (large k) behaviour of u(x, k), for the appropriate constants an. This
series is of the form of a ray expansion with ⌧m satisfying the eikonal equation and A(m)

n
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satisfying the transport equations. This formal correspondence between singularities sup-
ported on wavefronts in the time-domain and high-frequency phase components in the fre-
quency domain allows us to make qualitative predictions about the high-frequency wave
behaviour for the penetrable wedge problem. To do so, we must consider the time-domain
problem of diffraction of an incident plane pulse in a medium of wave speed c

1

by a wedge
of wave speed c

2

, with 0 < c
2

< c
1

. Here one can determine the position of the leading
wavefronts associated with each of the components of the scattered field by appealing to
Huygen’s principle.
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Figure 4.20: Wavefront diagrams for time-domain diffraction by a penetrable wedge, in the
case where c

2

< c
1

and ↵ > cos

�1

(c
2

/c
1

). The incident wavefront is assumed not to be
in contact with the wedge for t < 0 and to arrive at the point O at time t = 0. The dotted
lines in (b) indicate shadow boundaries, and the thick dashed arrow represents a ray path
associated with the lateral wavefront PT .

An illustration of the resulting wavefront diagrams for one particular scattering config-
uration is shown in Figure 4.20. Here we have assumed that the incident wavefront is not in
contact with the wedge before it reaches the diffracting corner (see Figure 4.20(a)). After it
reaches the corner, the wavefront structure shown in Figure 4.20(b) emerges. The incident
wavefront now has two components (intersecting the wedge at N and X in Figure 4.20(b)),
and there exist two planar reflected wavefronts (NZ and XY ) and two planar transmitted
wavefronts (NU and XR). The diffracted wavefronts in the exterior and interior are seg-
ments of the circles centered at O of radius c

1

t (PZY W ) and c
2

t (QRSTUV ) respectively
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(at time t > 0). In addition, Huygen’s principle predicts the existence of so-called head
waves (sometimes known as lateral waves or bow waves), with associated planar wave-
fronts (PT and WS). These waves can be associated with diffracted rays propagating
along the exterior surface of the wedge at speed c

1

, which shed new rays propagating into
the interior medium. A typical ray path is shown as a thick dashed arrow in Figure 4.20(b).
Similar waves also appear in the scattering of the field due to a point source by a planar in-
terface (see, e.g., [22] and [76]). We note that Figure 4.20 shows only the simplest possible
case, and more complicated wavefront configurations are possible. For example, for small
enough wedge angles ↵ the transmitted and head waves generated by one face of the wedge
can be internally reflected by the other face, generating additional wavefronts. A sufficient
and necessary condition for there to be no such internal reflection of the head waves is that
↵ > cos

�1

(c
2

/c
1

).
In the original frequency domain wedge problem, we expect the structure of the field far

from the corner to be analogous to that described above. That is, in the exterior we expect:
an incident plane wave; two reflected plane wave beams, one bounded by the radial lines
extending ON and OZ, and another bounded by the radial lines extending OX and OY ;
a diffracted wave with phase function eik1r, where r represents radial distance from the
corner O. In the interior we expect: two transmitted plane wave beams; a diffracted wave
with phase function eik2r; head waves with the phase functions eik2l·x and eik2l0·x, where l, l0

are the direction vectors shown in Figure 4.20(b).
Although we have obtained some qualitative phase information of the wavefield through

this approach, we do not know the nature of the singularities �m on each wavefront. Hence
we do not know the relative magnitudes of the head waves to the diffracted circular waves.
In order to gain some clues about the size of the head wave in relation to the diffracted
waves, we look to a final related canonical problem: a point source at a plane interface
between two media. This problem is of course quite different to the wedge problem, how-
ever it shares some important features, namely the head wave, and circular reflected and
refracted waves which we may liken to the diffracted waves for the wedge.

4.8.2 Point source at an interface in the frequency domain

We consider the 3D problem of the scattering of a time-harmonic spherical wave from a
planar boundary separating two different media with characteristic wavenumbers k

1

, k
2

.
We shall take the planar boundary to be the plane y = 0 and also we shall only focus on
the fields in the (x, y)-plane. Suppose the source of the spherical wave and the receiver are
located in the upper medium (y > 0) with associated wavenumber k

2

. The lower medium
has the associated wavenumber k

1

. We consider the specific case k
1

< k
2

(corresponding
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to c
1

> c
2

in the time domain). This is the case for which the head wave will occur and
be detected at the receiver. Across the interface, we impose the condition that the total
field and its normal derivative are continuous. The reason for considering the 3D version
is because that is the problem which has been covered in the literature (see, e.g., [38, §4]).
The 2D problem should be amenable to the same treatment and should yield qualitatively
similar results with the rates of decay suitably adjusted, although we shall not give details
here.

(x
0

, y
0

)

Source

(x, y)
Receiver

(x
0

, �y
0

)

Image source

y

x

L

d

y
0

tan(✓c) y tan(✓c)

✓c ✓c

k
2

k
1

Figure 4.21: The propagation of a head wave due to total internal reflection.

Consider a point source

ui
(x, k

2

) =

eik2r

4⇡r
; r =

p
(x � x

0

)

2

+ (y � y
0

)

2,

located at the point x
0

= (x
0

, y
0

) in the upper medium and a receiver located at x = (x, y).
This setup is displayed in Figure 4.21. Note that the source and receiver are located in the
z = 0 plane, therefore we may neglect the z-direction in what is to follow. The total field
received at x = (x, y) is

u(x) ⇡ ui
(x) + ur

(x) + uh
(x)

where ur
(x) is the expected reflected spherical wave (from the method of images) and

uh
(x) is the head wave. ur

(x) is given simply as

ur
(x) = Ar eik2R

4⇡R
eik2R,
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where Ar is the reflection coefficient and R =

p
(x � x

0

)

2

+ (y + y
0

)

2 is the distance from
the image source to the receiver.

The head wave is found to have the asymptotic form [38, p.126]

uh
(x) ⇠ i

2⇡

1

(k
2

/k
1

)

2 � 1

ei[k1L+k2(y0+y) sec ✓
c

]

k
1

d1/2L3/2
, as k

2

d ! 1

where d = x � x
0

, L = d � (y
0

+ y) tan ✓c, and ✓�1

c = sin

�1

(k
1

/k
2

) is the critical angle
related to total internal reflection. Thus, assuming k

2

/k
1

is fixed,
����
uh

ur

���� = O
✓

1

k
2

d

◆
, as k

2

d ! 1,

assuming d/L and R/r are both O(1). Hence, the magnitude of the head wave is O(1/(k
2

d))

smaller than that of the incident wave.
In order to gain a better physical understanding of the origin of the head wave, it is

instructive to pictorially consider the time domain version of the problem. This is shown in
Figure 4.22 where we consider the slice through the (x, y)-plane containing the source. We
see that the wavenumbers k

1

and k
2

have been replaced by their corresponding wavespeeds
c
1

and c
2

where here c
1

> c
2

, i.e., the waves propagate faster in the lower medium with
speed c

1

. The head wave can be seen as being composed of those rays that strike the inter-

Figure 4.22: The propagation of a head wave due to total internal reflection.

face at an angle greater than the critical angle ✓c (corresponding to total internal reflection)
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propagate along the boundary for a distance and are then shed at the angle ✓c back into the
more optically dense medium. Hence the head wave is a plane wave travelling in direction
(sin ✓c, cos ✓c) with a phase lag corresponding to the distance L. In the time domain prob-
lem, the head wave connects the two wavefronts corresponding to the incident and refracted
waves.
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Chapter 5

Hybrid Numerical-Asymptotic
approximation

In this chapter we develop our HNA approximation space for the problem of high-frequency
scattering by a penetrable convex polygon. The starting point will be to decompose the un-
known v = (u, @u/@n) in our integral equation formulation as

v(x) = vgo(x) + vd(x), x 2 �,

where vgo = (ugo, @ugo/@n) is the GO approximation to v, and the remainder
vd = (ud, @ud/@n) is interpreted as the diffracted field. The GO approximation vgo repre-
sents the leading-order behaviour at high frequencies and its calculation is performed via
the beam tracing algorithm detailed in the previous chapter. We aim to approximate the
diffracted field using an ansatz of the form

vd(x) ⇡
M1X

m=1

v
1,m(x, k

1

) exp(ik
1

 
1,m(x)) +

M2X

m=1

v
2,m(x, k

2

) exp(ik
2

 
2,m(x)), (5.1)

which generalises the standard HNA ansatz (1.1) to the case where two different wavenum-
bers are present. This chapter focuses on the choice of suitable phases  j,m based on the
qualitative analysis of the penetrable wedge diffraction problem presented in §4.8. In prin-
ciple, in order to completely capture the oscillatory behaviour we would have to take into
account

(i) the diffracted and head waves emanating from each corner of the polygon,

(ii) the (infinitely many) internal re-reflections of these waves.

In order to achieve a highly accurate solution we would need to include a large number
of these phases in the ansatz (5.1). However, this would lead to a potentially high compu-
tational cost and a complicated implementation. Instead, our approach will be to include
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only a small number of the most important phases so as to obtain a computationally cheap
method which may be implemented relatively simply. More precisely,

we aim to achieve “engineering accuracy” (as defined in §1.4) or better with a small
number of degrees of freedom fixed independent of the frequency.

The phrase “engineering accuracy” was discussed in §1.4, and is defined here as ap-
proximately 1% relative error in the solution in either scattering domain ⌦

1

or ⌦
2

or in the
far-field. To obtain such an accuracy in these regions, experience suggests that an accuracy
of 2% relative error or better on the boundary should be sufficient.

We emphasise that this is a chosen error tolerance which leads to the specific HNA
approximation space developed in this thesis. In principle, as we discuss in §5.4 and §5.5,
a higher accuracy of approximation could be achieved by modifying our approximation
space to include further phase functions, at the expense of increased computational cost
and implementation complexity. However, certain tolerances (to be described later) which
dictate aspects of the meshing and inclusion of certain basis functions would have to be
adjusted accordingly. These tolerances will be highlighted as we come to them.

In order to construct our HNA approximation, we begin by proposing in §5.2 two simple
ansatzes of the form (5.1) which aim to capture the leading order behaviour of vd. Both
ansatzes incorporate phases relating to the diffracted waves emanating from each of the
corners of the polygon. Phases associated with the head waves and multiple re-reflections
of diffracted and head waves are not included.

The efficacy of approximation spaces based on these ansatzes will be tested via a best
fitting procedure to be described in §5.3.1. The results obtained through this process will
inform the construction of a final ansatz which is a combination of the initial two proposed.
A Galerkin BEM implementation based on an approximation space derived from this final
ansatz will be described in §6.

To provide some context for what follows, we begin by reviewing the approach taken
in [30, 63] for the analogous impenetrable problem of scattering by a sound-soft convex
polygon.

5.1 The sound-soft case

The sound-soft scattering problem is characterised by the Dirichlet boundary condition
u = 0 on the scatterer’s boundary �. Here the unknown boundary data is @u/@n alone
since u is specified by the boundary condition. When the scatterer is a convex polygon, the
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HNA ansatz (1.1) (which involves only one wavenumber, call it k) contains just two terms
in the summation, so that we have on a typical side �j of length Lj

@u

@n
(x(s)) =

@ugo

@n
(x(s)) + v+

(s)eiks + v�
(Lj � s)e�iks, s 2 [0, Lj], (5.2)

i.e., with phases  ±
(x(s)) = ±s, where s is arc length measured anti-clockwise around �.

The geometrical optics term here is simply given by

@ugo

@n
(x(s)) =

(
2

@ui

@n , if di · n < 0 ( i.e., if �j is illuminated by the incident wave),
0, otherwise (i.e., if �j is in shadow).

(5.3)
The phases  +

= s and  �
(s) = �s correspond respectively to diffracted waves travelling

anticlockwise and clockwise around the boundary. It is proven rigorously in [63] that
the amplitudes v± are analytic in the right half-plane Re(s) > 0, where they satisfy the
following bounds, which we quote from [61] where they are expressed in a simpler (albeit
slightly weaker) form than in [63]:

|v±
(s)| 

(
Ck2|ks|��±j , 0 < |s|  1/k,

Ck2|ks|�1/2, |s| > 1/k.
(5.4)

Here �±j 2 (0, 1/2) and C depend only the corner angles. As explained in [62, Remark
4.2], the bounds (5.4) imply that v±

(s) are non-oscillatory since, by the Cauchy integral
formula, it may be shown that the derivatives of these functions grow no faster than the
functions themselves with respect to increasing k. Therefore, the functions v±

(s) may
be efficiently approximated by low-order piecewise polynomials on meshes appropriately
graded towards the singularities at the corners. The main result of [63] demonstrates that, in
order to maintain a prescribed accuracy as k increases, the number of degrees of freedom
in the approximation space must increase at most at a rate of log

2

(k). Accompanying
numerical results suggest that, in fact, the number of degrees of freedom may be kept fixed.
Similar results have been obtained for scattering by screens and apertures [62] and a class
of non-convex polygons [29].

The remarkable success of the HNA methodology in the impenetrable case is due to two
factors. Firstly, the high frequency asymptotic behaviour of the solution to the canonical
problem of diffraction by an infinite impenetrable wedge is known - in fact there is an
exact closed-form solution available which was reviewed in §4.7.2. This allows one to
pick out the phases required to capture the primary diffracted waves. Secondly, the only
multiple scattering effects in this case are the multiply-diffracted waves propagating around
the boundary of the polygon. But each of these waves has one of the same two phases  ±
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already included in the approximation space, so their contribution can be captured in the
amplitudes v±.

By contrast (as discussed in §4), no exact (or even asymptotic) solution has yet been
derived for the analogous canonical problem of diffraction by a penetrable wedge. Fur-
thermore, for the penetrable case the multiply-scattered field is extremely complicated,
featuring multiple reflections/refractions of the incident and diffracted fields, with poten-
tially infinitely many different phases to consider in the approximation of vd. But using the
intuition gained from the study of the time domain wedge problem in §4.8, we now show
how we can develop some simple generalisations of the ansatz (1.1) to the penetrable case.

5.2 Hybrid numerical-asymptotic approximation space

In this section we describe perhaps the two simplest generalisations of the ansatz (1.1) to
the penetrable case. The first contains the same two phases as in (1.1) but now with the
addition of the interior wavenumber’s counterparts so that in total, we have four phase
functions. The second generalisation adds to this by also including waves diffracted from
each corner that traverse the interior of the polygon and impinge on sides non-adjacent to
that corner. We shall term the two approximation spaces generated from these ansatzes as
“Approximation Space 1” (AS1) and “Approximation Space 2” (AS2).

The same two approximation spaces were presented by Groth et al. in [54] except for
some small differences concerning the graded meshes and polynomial degrees employed.
The methodology presented here stems from that paper however represents a significant
improvement as the results later in the chapter shall demonstrate. We shall highlight the
differences to the work in [54] as they become relevant and we take care to emphasise the
important extensions to that work which have been incorporated in the present algorithm.

5.2.1 Approximation Space 1:
including diffraction from adjacent corners

On each side of the polygon we include phases corresponding to diffracted waves emanat-
ing from the corners adjacent to that side. That is, in the ansatz (5.1) consists of only the
four phases

 
1,1 = s,  

1,2 = �s,

 
2,1 = s,  

2,2 = �s.
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More explicitly, this ansatz has the form on a typical side �j of length Lj

vd(x(s)) ⇡ v
1,1(s)eik1s + v

1,2(s)e�ik1s
+ v

2,1(s)eik2s + v
2,2(s)e�ik2s, x 2 �j. (5.5)

Here v
1,1, v

1,2, v
2,1, v

2,2 are amplitude functions which will be approximated by piecewise
polynomials supported on overlapping graded meshes, designed to capture the expected
singular behaviour at the corners of the polygon. More precisely, the meshes for v

1,1 and
v
2,1 are graded towards s = 0, and the meshes for v

1,2 and v
2,2 are graded towards s = Lj

as depicted in Figure 5.1. Hence the approximation space is the set of functions

{Pi(s)eik1s, Pi(s)e�ik1s, Pi(s)eik2s, Pi(s)e�ik2s}, for i = 0, . . . , n,

where Pi are the aforementioned piecewise polynomials and n is the highest degree we
wish to include.

To describe the graded meshes we employ, we consider the case of a geometric mesh on
the interval [0, L], L > 0, refined towards 0. The meshes for approximating v

1,1, v
1,2, v

2,1, v
2,2

on each side of the polygon are constructed from this basic building block by straightfor-
ward coordinate transformations. Given n � 1 (the number of layers in the mesh) we let
Gn(0, L) denote the set of meshpoints {xi}n

i=0

defined by

x
0

:= 0, xi := �n�iL, i = 1, 2, . . . , n,

where 0 < � < 1 is a grading parameter. A smaller grading parameter represents a more
severe grading. Here, based on numerical experimentation, we choose a grading parameter
of �

1

= 0.2 to approximate v
1,1, v

1,2 and a grading parameter of �
2

= 0.19 to approxi-
mate v

2,1, v
2,2. We note that many other choices give good approximations, for example,

in [54] by Groth et al., the choice �
1

= �
2

= 0.15 is made yielding good results. It was
found, however, in performing the boundary element implementation of the proposed ap-
proximation spaces (the topic of §6), that shifting the graded meshes by choosing �

1

6= �
2

was beneficial in terms of conditioning. The precise values �
1

= 0.2, �
2

= 0.19 were
chosen after some numerical experiments but yielded only marginally better results than
other choices such as �

1

= 0.17, �
2

= 0.15, for example. We shall postpone briefly the
discussion of the reason for the occurrence of poor conditioning for �

1

= �
2

until the end
of this subsection and first define the meshes we shall use.

Given a vector p 2 (N
0

)

n, we let Pp,n(0, L) denote the space of piecewise polynomials
on the mesh Gn(0, L) with the degree vector p, i.e.,

Pp,n(0, L) := {⇢ : [0, L] ! C :

⇢|
(x

i�1,xi

)

is a polynomial of degree less than or equal to (p)i, i = 1, . . . , n
 

.
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For reasons of efficiency and conditioning it is common to decrease the order of the ap-
proximating polynomials towards the singularity. Specifically, in all of our experiments we
use a “linear slope” degree vector p with

(p)i :=

(
p �

j
(n+1�i)

n p
k

, 1  i  n � 1,

p, i = n,

where the integer p � 0 is the highest polynomial degree on the mesh. The b·c symbol
denotes the floor function which is defined for a real number x as

bxc = max{m 2 Z : m  x}.

For simplicity we assume the same number of layers, n, in each of the graded meshes
on the polygon. We adopt an “hp” refinement approach (as in [63]) in which the number
of degrees of freedom is increased by increasing the polynomial degree p, while simulta-
neously refining the meshes. Specifically, in all our experiments we take

n = dC(p + 1)e (5.6)

with C = 3/2. The d·e symbol denotes the ceiling function which is defined for a real
number x as

dxe = min{m 2 Z : m � x}.

In [54] this constant was taken to be C = 1, however it was later found by the author that
C = 3/2 yields marginally better results.

v
1,1(s)eik1s

v
2,1(s)eik2s

v
1,2(s)e�ik1s

v
2,2(s)e�ik2s

PjPj+1

s

�j

Figure 5.1: Illustration of overlapping geometrically graded meshes used to approximate
the amplitudes v

1,1, v
1,2, v

2,1, v
2,2 associated with the phase functions on a typical side �j .

Conditioning problems for the choice �
1

= �
2

It was mentioned that the above described system of overlapping meshes may lead to
ill-conditioning in the boundary element implementation when choosing �

1

= �
2

, i.e.,
when exactly the same mesh is used for the k

1

and k
2

basis functions. Ill-conditioning
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arises when the wavelengths �
1

= 2⇡/k
1

and �
2

= 2⇡/k
2

are of a comparable length to
some of the elements. On these small elements, the polynomials multiplying the oscillatory
functions eik1s and eik2s (or e�ik1s and e�ik2s) may be of a high enough degree to resolve the
difference in oscillation between these two functions. Hence, some of the basis functions
become redundant and the linear system ill-conditioned.

A systematic way to avoid redundancy would be to stop increasing p for one of eik1s

and eik2s once ill-conditioning starts to arise. Specifically, on an element of length h, one
might stop increasing p for eik2s (for example) once the quantity

4⇡(p + 1)

h(k
2

� k
1

)

,

which represents the #DOF on the element divided by the wavelength of the wave ei(k2�k1)s,
exceeds a certain tolerance. Of course if k

2

is complex, we replace k
2

in the above with
Rek

2

. However, this is not the approach implemented in this thesis. Instead, it was found
that adopting the less systematic, but simpler, remedy of taking �

1

6= �
2

was sufficient to
avoid the conditioning problems described above, and hence this latter approach is the one
implemented here.

5.2.2 Approximation Space 2:
including diffraction from non-adjacent corners

The second ansatz we propose builds on the first by including extra phases corresponding
to the diffracted waves which traverse the interior of the scatterer up to their first reflection.
This equates to an ansatz with phases

 
1,1 = s,  

1,2 = �s,

 
2,1 = s,  

2,2 = �s,

 
2,3 = r

1

,  
2,4 = r

2

, . . . , 
2,n

s

= rn
s

�2

,

where ri, i = 1, . . . ns � 2 are the radial distances from the corners non-adjacent to the side
in question (there are ns � 2 such corners since the polygon is convex). Written explicitly,
the ansatz on the side in question has the form

vd(x) ⇡v
1,1(s(x))eik1s(x) + v

1,2(s(x))e�ik1s(x)
+ v

2,1(s(x))eik2s(x) + v
2,2(s(x))e�ik2s(x)

+

+ v
2,3(r1(x))eik2r1(x) + v

2,4(r2(x))eik2r2(x) + . . . + v
2,n

s

(rn
s

�2

(x))eik2rns

�2(x),
(5.7)

where the additional amplitude functions v
2,i+2

, i = 1, . . . , ns � 2 are approximated nu-
merically by piecewise polynomials.
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Figure 5.2: Shadow boundaries in an equilateral triangle for di
= (0, �1). Determining

the mesh on �
3

associated with the approximation of v
2,3. Mesh points are introduced on

�

3

at the locations of the shadow boundaries associated with the primary transmitted waves
from sides �

1

and �
2

. The resulting mesh has three elements

We expect the amplitudes v
2,i+2

to have a (possibly large) number of discontinuities to
compensate for the discontinuities inherent in the GO approximation (where we cut off the
plane wave beams sharply across the beam boundaries, see §4.2). In principle, one should
therefore approximate each v

2,i+2

on a mesh refined towards each of these discontinuities,
as discussed in [61]. However, for simplicity we shall (to begin with) take into account
only those discontinuities arising from the lowest order GO terms, i.e., primary transmitted
waves (later, in §5.3.3, we will discuss the treatment of shadow boundaries associated with
higher order GO terms). At these discontinuities we introduce a single mesh point rather
than introducing a multiple element refined mesh, again for simplicity. Let us consider an
example to make clear precisely which shadow boundaries we take into account in AS2.
Consider the scattering of a plane wave with di

= (0, �1) by an equilateral triangle as
shown in Figure 3.4. Figure 5.2 shows the locations of the shadow boundaries on �

3

arising
from the primary transmitted beams from sides �

1

and �
2

. For the approximation of v
2,3

on this side we place a mesh point at each of these locations here producing a mesh with
three elements. The resulting meshes on side �

3

for this problem are shown in Figure 5.3.
The triangle example is the simplest since, for each side, we have only a single basis

function of the form eik2r. For a general, ns-sided polygon, we will have ns � 2 such basis
functions on each side. In this more general case, we shall accommodate all of these basis
functions on a single mesh which is constructed in the following way. We begin with a
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v
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v
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Figure 5.3: Illustration of overlapping meshes used to approximate the amplitudes
v
1,1, v

2,1, v
1,2, v

2,2, v
2,1 and v

2,3 associated with the phase functions on side �
3

for the
triangle example considered in Figure 5.2.

v
1,1(s)eik1s

v
2,1(s)eik2s

v
1,2(s)e�ik1s

v
2,2(s)e�ik2s

v2,3(r1)eik2r1 , v2,4(r2)eik2r2 , . . . , v2,ns(rns�2)eik2rns�2

PjPj+1

s

�j

Figure 5.4: Illustration of overlapping geometrically graded meshes used to approximate
the amplitudes v

1,1, v
2,1, v

1,2, v
2,2, v

2,1 and v
2,3, . . . , v2,n

s

associated with the phase func-
tions on the side �j for an ns-sided convex polygon.

single element spanning the whole side �j . Then if (during the beam tracing algorithm for
computing the GO term) any shadow boundaries from primary transmitted beams intersect
the side �j , we insert new mesh points at the locations of these intersections. The resulting
sequence of meshes for a polygon with ns sides is shown in Figure 5.4. On each of these
resulting elements we approximate each of v

2,i, i = 3, . . . , ns, by a single polynomial
of degree p, where p is the same as for the AS1 amplitudes. This process adds at most
(2ns � 3)(p + 1) degrees of freedom on the side �j; extending this procedure to all of the
other sides results in at most ns(2ns � 3)(p+ 1) degrees of freedom begin added when we
go from AS1 to AS2.

We remark that it may be more natural to approximate (on a side �j) each of the ampli-
tudes on its own mesh leading to a large sequence of overlapping meshes. However, here
the single mesh approach was chosen for its relative ease of implementation, and a study
of this method with overlapping meshes is left to future work.

116



5.2.3 Including other phase functions

We expect that even more accurate approximations could be obtained by including the ef-
fects of higher order terms in the asymptotic approximation. Firstly, one could include
phases associated with the head waves associated with each corner of the polygon. Sec-
ondly, one could include phases associated with the (multiple) internal reflection of (i) the
diffracted waves and (ii) the head waves. The phases for (i) could be computed using an
image method (i.e. introducing “image corners” in a non-physical image domain outside
the scatterer). The phases for (ii) could be determined using a simple modification of the
beam-tracing algorithm described in §4.2. However, we do not consider these generalisa-
tions any further here since, as we shall demonstrate shortly, for the range of problems we
consider, the approximation spaces 1 and 2 are sufficient to achieve our goal of engineering
accuracy with a fixed number of DOF.

5.3 Testing the HNA approximation spaces 1 and 2

In the previous section, two approximation spaces (“Approximation Space 1”, defined in
§5.2.1, and “Approximation Space 2”, defined in §5.2.2) were proposed for the approxi-
mation of vd. In this section, we assess, via numerous numerical examples, the efficacy of
AS1 and AS2 to accurately approximate v using just a small number of degrees of free-
dom. This is done by best fitting each approximation space to a reference solution obtained
using the conventional hp-BEM described in Chapter 3 and hence obtaining the numeri-
cal “best approximation” possible from each approximation space. This will validate the
phase choices made in the previous section and identify for which problem parameters (ab-
sorption, incident wave direction etc.) the approximation spaces are effective. For each
example considered below, we first obtain the reference solution vref ⇡ v by solving our
system of BIEs (2.98) using the conventional hp-BEM with a sufficient number of degrees
of freedom to ensure that the relative error

kv � vrefkL2
(�)

/kvkL2
(�)

is 5 ⇥ 10

�5 or less. Henceforth, for ease of presentation we shall denote this reference
solution vref simply as v. Next, we compute an approximation to vgo = (ugo, @ugo/@n)

using the BTA described in §4 with our “rules of thumb” (4.55) and (4.61). Finally, a least
squares approach is employed to find the best fit from each of AS1 and AS2 to vd = v�vgo

in the L2

(�) norm. This is carried out by discretising the L2

(�) norm to be minimised using
a large number of equally spaced quadrature points on each side, and solving the resulting
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discrete least squares problem as described in §5.3.1 below. We denote the approximation
to v = (u, @u/@n) achieved via this procedure using Approximation Space j by Vj =

(Uj, Wj), j = 1, 2.
The least squares procedure is also useful for tuning certain parameters which define

the approximation space, such as the mesh grading parameters (�
1

and �
2

), maximum
polynomial degree (p) and polynomial degree variation across the meshes (C). Much of
the tuning in these parameters we shall omit to describe for sake of brevity. However, it
should be noted that there are many different choices available which lead to good approx-
imations. The particular choices made here result from extensive numerical experiments
and the experience of the author. The parameter choice which we shall discuss in detail is
that of the maximum polynomial degree p. The maximum polynomial degree p is taken as
3 initially (based on preliminary experiments) but we shall examine the convergence of the
method in p in §5.7 where it becomes evident that high p (> 3) provides little improvement
over p = 2 or p = 3 for many problems (except for those of high absorption).

5.3.1 Best approximation via least squares

Least squares data fitting is a well-known tool, nevertheless we describe it here briefly
before presenting results based on the two approximation spaces. We commence by stating
the least squares problem in general terms before stating it more specifically for the problem
at hand. The (linear) least squares problem is the following [134]:

Given A 2 Cm⇥n, m � n,b 2 Cm,

find x 2 Cn such that ||b � Ax||
2

is minimised,
(5.8)

where || · ||
2

denotes the 2-norm, that is, the discrete version of the L2-norm. The 2-norm

corresponds to the Euclidean distance, so we can interpret this statement geometrically. We
seek a vector x 2 Cn such that Ax 2 Cm is the closest point in range(A) to b.

In the specific problem of interest here, each of the n columns of A corresponds to
one of the n basis functions in our approximation space. The m rows correspond to m

points {si}n
i=1

around the boundary � at which each basis function is evaluated. The points
{si}n

i=1

should be chosen such that the 2-norm approximates the L2-norm on � accurately.
It was found that choosing si evenly spaced with m = 60Re(k

2

)n

s

, i.e., 60 evaluation
points per wavelength �

2

= 2⇡/Re(k
2

), is sufficient to achieve close to machine precision
in this approximation. We note that m > n always and hence the system Ax = b is
overdetermined. The vector b is vd evaluated at {si}n

i=1

.
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Our least squares problem (5.8) may now be solved to find x 2 Cn. There are numerous
possible approaches for this task. Here we solve the least squares problem by simply typing
x=A\b in Matlab which employs QR factorisation.

5.3.2 Numerical examples

We shall test and develop the approximation spaces 1 and 2 mainly by considering the ex-
ample of scattering by an equilateral triangle with side length 2⇡. This is done for two main
reasons. Firstly, the triangle is the polygon with the fewest corners and so offers the best
chance of isolating the leading order diffraction terms we are trying to study. Secondly,
the 3D counterpart, the trigonal polyhedron, is of interest to the application of scattering
by atmospheric ice crystals as discussed in Chapter 1 and [110]. By testing on the simple
triangle case, we aim to determine the regimes of k

1

and nI for which each approximation
space is valid, and also to alter any aspects of the spaces which are leading to poor approx-
imation. It shall be seen that the main cause of error is the presence of the discontinuities
introduced by subtracting off vgo which is discontinuous across shadow boundaries. Using
experiments, we determine parameter-based rules which introduce additional mesh points
at these shadow boundaries provided certain tolerances are exceeded. Finally, we develop a
finalised approximation space, called Approximation Space 3, which incorporates Approx-
imation Space 1 and Approximation Space 2, and the additional shadow boundary rules.

We shall consider two different incident angles, as shown in Figure 3.4 and Figure 5.5,
and we consider six different levels of absorption, governed by the imaginary part of the
refractive index n = nR + inI . Specifically, the real part of the refractive index is taken
to be 1.5 throughout, which, as discussed in Chapter 1, represents a rough average of the
varying (with wavelength) refractive index of ice. The imaginary part takes the values
nI = 1/20, 1/40, 1/80, 1/160, 1/320, 0. Throughout we take ↵ = 1.

It ought to be noted that the work in this section is similar to that of the present au-
thor (and colleagues) in [54] in which the same two approximation spaces are considered
and tested via a best-fitting approach. There are some key differences, however, between
the work here and that presented in [54]. In [54] numerical experiments are presented
concerning scattering by an equilateral triangle, as here, but with a refractive index with
nI = 1/20, 1/40, 1/80, 0, i.e., at four different levels of absorption, and with nR = 1.31.
The value nR = 1.31 was chosen since it corresponds to the real part of the refractive in-
dex of ice at a wavelength of 0.55µm. Four different incident wave angles are considered:
the two considered here in Figure 3.4 plus two evenly spaced intermediate angles. The
beam tracing algorithm used in [54] is identical to that used in this thesis except for the
crucial fact that it employs the choice GO1 throughout (see §4.3.2 and §4.3.4 of this thesis)
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(a) di
= (0,�1). (b) di

= (cos(⇡/6),� sin(⇡/6)).

Figure 5.5: Scattering of a plane wave with k
1

= 10 by the triangle in Figure 3.4 with
n = 1.5 + 0.00625i.

which leads to an extremely poor GO approximation at certain incident angles, the worst
GO approximation occuring at the angle corresponding to Angle 2 here. This leads to poor
performance of the HNA approximation spaces at this angle. For the incident angle corre-
sponding to Angle 1 here, however, the approximation spaces perform well. For this angle,
AS1 (with 360 degrees of freedom) yields accuracies of better than 3% on the boundary
provided k

1

nI � 1, and approximation space 2 (with 410 degrees of freedom) yields accu-
racies of approximately 3% or better provided k

1

nI � 0.5. The grading parameters chosen
in [54] for the graded meshes were taken as �

1

= �
2

. C was taken as 1 and p fixed at 4.
Here we present an altered form (as described earlier) of the algorithm of [54] incor-

porating the BTA which switches between GO1 and GO2 when appropriate as stated in
§4.3.4. We shall show that our new method provides a much more accurate and consistent
(in terms of scattering angle) approximation to the boundary data v with fewer degrees of
freedom.

First let us consider the performance of AS1. We take p = 3 leading to a total (fixed)
number of degrees of freedom of 360 for both angles. Tables 5.6 and 5.7 present results
for the incident angles 1 and 2, respectively. The errors shown are for the approximations
W

1

and (@u/@n)go to @u/@n. The relative errors in U
1

were found to be similar to those
in W

1

in all cases tested, so we do not reproduce them here. We are aiming for less than
2% error on the boundary with the expectation that this will be reduced in the solution in
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nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125
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go
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10 1.07e-2 1.11e-1 4.22e-2 1.28e-1 8.23e-2 1.56e-1 1.13e-1 1.83e-1 1.34e-1 2.01e-1
20 7.48e-4 8.03e-2 9.23e-3 8.86e-2 3.77e-2 1.00e-1 7.47e-2 1.22e-1 1.02e-1 1.44e-1
40 1.00e-3 5.87e-2 1.32e-3 6.38e-2 8.11e-3 6.81e-2 3.29e-2 7.64e-2 6.51e-2 9.48e-2
80 5.49e-4 4.18e-2 6.92e-4 4.73e-2 9.40e-4 4.90e-2 6.66e-3 6.10e-2 2.72e-2 5.75e-2

160 7.08e-4 2.91e-2 7.93e-4 3.25e-2 8.93e-4 3.51e-2 1.04e-3 3.67e-2 5.53e-3 3.75e-2

Table 5.6: Performance of approximation space 1 for scattering by a triangle of different refractive index µ = 1.5 + nI i by a plane wave
with incident direction di

= (0, �1) (Angle 1). Highlighted cells indicate when an error of 2% or better is achieved. The approximation
space contains 360 degrees of freedom.

nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125
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10 1.74e-2 1.76e-1 5.73e-2 1.70e-1 9.70e-2 1.73e-1 1.21e-1 1.79e-1 1.33e-1 1.84e-1
20 1.67e-3 1.28e-1 1.05e-2 1.23e-1 4.75e-2 1.21e-1 8.31e-2 1.28e-1 1.06e-1 1.06e-1
40 1.51e-3 9.24e-2 1.75e-3 8.97e-2 1.13e-2 8.63e-2 4.01e-2 8.77e-2 7.08e-2 9.86e-2
80 9.79e-4 6.60e-2 1.02e-3 6.47e-2 1.23e-3 6.31e-2 9.44e-3 6.10e-2 3.38e-2 6.47e-2

160 1.11e-3 4.69e-2 1.15e-3 4.63e-2 1.17e-3 4.56e-2 1.29e-3 4.45e-2 7.96e-3 4.33e-2

Table 5.7: As per Table 5.6 but for an incident wave with direction di
= (cos(⇡/6), � sin(⇡/6) (Angle 2).
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Figure 5.8: Scattering of a plane wave with direction di
= (0, �1) (Angle 1) by the triangle

in Figure 3.4 . k
1

= 40 and nI = 0.003125. The real part of the approximation U
2

split
into its oscillatory constituents. Note the different y-axis scales.

the domain and far-field. Therefore, when an error in this range, or better, is achieved, the
corresponding cell in the table is highlighted. As can be seen from these two tables, our
prescribed accuracy is achieved for k

1

nI � 0.5. We emphasise that the GO alone never
achieves 2% accuracy for the examples presented.

Now let us assess the efficacy of AS2 for the same examples. This approximation space
with p = 3 possesses 400 degrees of freedom for Angle 2 and 384 degrees of freedom
for Angle 1. Figure 5.8 shows the separate oscillatory constituents of the approximation
U
2

for scattering from Angle 2 with k
1

= 40 and nI = 0.003125. Clearly the diffraction
behaviour on the shadow side (side 3) is dominated by the radial wave with phase k

2

r.
On the lit sides, the field is dominated by the waves with phases ±k

1

s and ±k
2

s with the
solution’s peaks at the corners being well resolved by the graded meshes. The full results
are shown in Tables 5.11 and 5.12.

We see that for Angle 1 the error tolerance is achieved as long as k
1

nI � 0.125. How-
ever, for Angle 2, the error has scarcely improved from approximation space 1. In order to
ascertain the cause for this, let us consider the example k

1

= 40 and nI = 0.003125 for
Angle 2. The top panel of Figure 5.9 shows a comparison of the real parts of W

2

� @u/@n

and @u/@n � @ugo/@n on the boundary of the triangle going anti-clockwise starting from
P

1

. The vertical lines indicate the corners (see Figure 5.10 for a reminder of the scattering
setup). That is, we are plotting the best approximation (with AS2) to @ud/@n and the exact
@ud/@n. The bottom panel shows the absolute error of W

2

around the boundary. It is clear
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Figure 5.9: Scattering by the triangle in Figure 5.10 with k
1

= 40 and nI = 0.003125. The
top panel shows the real part of the approximation to @ud/@n with AS2 on � compared to
the exact value. The bottom panel shows the absolute error in the approximation W

2

on �.
The error is clearly dominated by the poor approximation near the “second order” shadow
boundaries at s/(2⇡) = 0.5 and s/(2⇡) = 2.5.
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Figure 5.10: Second order shadow boundaries for the triangle in Figure 3.4 for the incident
wave associated with Angle 2.
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nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125
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10 2.94e-3 1.11e-1 7.94e-3 1.28e-1 1.52e-2 1.56e-1 2.29e-2 1.83e-1 2.89e-2 2.01e-1
20 5.20e-4 8.03e-2 2.10e-3 8.86e-2 7.91e-3 1.00e-1 1.70e-2 1.22e-1 2.59e-2 1.44e-1
40 1.00e-3 5.87e-2 9.02e-4 6.38e-2 2.47e-3 6.81e-2 8.80e-3 7.64e-2 1.83e-2 9.48e-2
80 5.48e-4 4.18e-2 6.91e-4 4.73e-2 8.74e-4 4.90e-2 2.06e-3 6.10e-2 8.58e-3 5.75e-2

160 7.07e-4 2.91e-2 7.91e-4 3.25e-2 8.91e-4 3.51e-2 1.00e-3 3.67e-2 2.22e-3 3.75e-2

Table 5.11: Performance of AS2 for scattering from the triangle in Figure 3.4 of refractive index µ = 1.5 + nI i of a plane wave with
incident direction di

= (0, �1) (Angle 1). Highlighted cells indicate when an error of 2% or better is achieved. The approximation
space contains 400 degrees of freedom.

nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125

k
1

|| @u
@n�W2||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

|| @u
@n�W2||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

|| @u
@n�W2||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

|| @u
@n�W2||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

|| @u
@n�W2||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

10 1.33e-2 1.76e-1 4.20e-2 1.70e-1 7.00e-2 1.73e-1 8.68e-2 1.79e-1 9.52e-2 1.84e-1
20 1.55e-3 1.28e-1 1.08e-2 1.23e-1 3.79e-2 1.21e-1 6.67e-2 1.28e-1 8.52e-2 1.06e-1
40 1.51e-3 9.24e-2 1.70e-3 8.97e-2 9.75e-3 8.63e-2 3.45e-2 8.77e-2 6.12e-2 9.86e-2
80 9.79e-4 6.60e-2 1.02e-3 6.47e-2 1.19e-3 6.31e-2 8.44e-3 6.10e-2 3.03e-2 6.47e-2

160 1.11e-3 4.69e-2 1.15e-3 4.63e-2 1.17e-3 4.56e-2 1.26e-3 4.45e-2 7.34e-3 4.33e-2

Table 5.12: As per Table 5.11 but for an incident wave with direction di
= (cos(⇡/6), � sin(⇡/6) (Angle 2). Here the approximation

space contains 384 degrees of freedom.
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that the error in W
2

is dominated by the poor approximation at the points s/(2⇡) = 0.5 and
s/(2⇡) = 2.5. These are the points where � is intersected by the “second order” shadow
boundaries, associated with the diffracted waves from corners P

2

and P
3

, which are cur-
rently neglected in our construction of AS2. In the next section we shall show how the
error obtained using AS2 can be significantly reduced for configurations such as this one,
by a simple modification of the approximation space. This modification will account for
second (and potentially higher) order shadow boundaries which introduce discontinuities
of a significant magnitude.

5.3.3 Revised Approximation Space 2

Here we develop a revised version of AS2 which performs better than AS2 for low ab-
sorptions or low frequencies by taking into account the shadow boundary discontinuities of
sufficiently large magnitude introduced by beams of order 2 and higher in the BTA. To do
so, we introduce extra points in the meshes for the appropriate “non-adjacent” amplitude
functions v

2,i+2

, i = 1, . . . , ns � 2, as we already do for the lowest order transmitted GO
beams in AS2. To limit the complexity of the resulting approximation space, we consider
only “strong” discontinuities (as defined below) which make a significant contribution to
the error of the AS2 approximation (recall that our target accuracy is approximately 2%).
We consider the absolute value of each beam in the BTA which determines the magnitude
of these discontinuities. The aim is to determine some tolerance for this absolute value
above which we call the discontinuity “strong”, and we introduce mesh points correspond-
ing to the beam’s shadow boundaries.

The magnitude of the second order beams at the points s/(2⇡) = 0.5, 2.5 in Figure 5.9
(for nI = 0.003125, k

1

= 40, Angle 2) is 0.488. Comparing the nI = 0.003125 columns
of Tables 5.11 and 5.12, we see that we would also like to reduce the error at k

1

= 80,
for which these beam edges introduce discontinuities with an absolute value of 0.247. So,
erring on the side of caution, an initial first tolerance choice might be tolshad = 0.2. How-
ever, we must check that such a tolerance does not preclude the inclusion of the first order
shadow boundaries for many of the Angle 1 problems. The Angle 1 problems for which we
wish to keep the first order shadow boundaries are those for which we obtain a significant
improvement from the approximation obtained with AS1 to that obtained with AS2. In par-
ticular, those problems for which the error reduces from above 2% in the first instance to
below 2% in the second. Comparing tables 5.6 and 5.11, we see that is for k

1

nI  0.25. So
we may, without loss of generality, take the case k

1

= 80, nI = 0.003125 for which the first
order shadow boundaries are as shown in Figure 5.2. The absolute value of the offending

125



0.0 0.5 1.0 1.5 2.0 2.5 3.0

�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

R
e⇣ @

u
@
n

�
� @

u
@
n

� go

⌘

Exact
@u
@n ⇡ W̃2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
s/(2⇡)

0.0

0.1

0.2

0.3

|� @
u

@
n

�
W̃

2� |

Figure 5.13: As per Figure 5.9 but now using the RAS2 which takes into account the strong
shadow boundaries at s/(2⇡) = 0.5 and s/(2⇡) = 2.5 by introducing mesh points here.

beams at these shadow boundaries is 0.165. Hence we shall decide on a tolerance (again
erring on the side of caution) of

tolshad = 0.15. (5.9)

Of course, this tolerance ought to be reduced if the user is aiming to obtain a better
accuracy in the approximation. However, we shall not explore this further here. This new
tolerance defines the “Revised Approximated Space 2” (RAS2) for which we denote the
approximation to v as ˜V

2

= (

˜U
2

, ˜W
2

). Figure 5.13 shows the RAS2 counterpart to the
AS2 approximation in Figure 5.9. It is apparent that the approximation ˜W

2

is a dramatic
improvement over W

2

with the previous error spike of magnitude 2.5 being replaced by a
much smaller spike, of magnitude 0.04. To completely eradicate the error spike, geometric
grading of the mesh towards the discontinuity is advised (as recommended in [61]), but of
course this comes at an increased computational cost. Such a refinement of the technique
is not explored here.

Table 5.14 is the RAS2 counterpart to Table 5.12. It can be seen that the required
accuracy is achieved when k

1

nI � 0.125 as was the case for Angle 1. The number of
degrees of freedom is shown also. We see that when tolshad is exceeded by the secondary
beams, the number of degrees of freedom increases slightly, from 384 to 400.
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nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125

k
1

|| @u
@n� ˜W2||
|| @u
@n || #DOF || @u

@n� ˜W2||
|| @u
@n || #DOF || @u

@n� ˜W2||
|| @u
@n || #DOF || @u

@n� ˜W2||
|| @u
@n || #DOF || @u

@n� ˜W2||
|| @u
@n || #DOF

10 1.33e-2 384 7.48e-3 400 1.13e-2 400 1.50e-2 400 1.77e-2 400
20 1.55e-3 384 1.08e-2 384 7.52e-3 400 1.62e-2 400 2.50e-2 400
40 1.51e-3 384 1.70e-3 384 9.75e-3 384 6.42e-3 400 1.48e-2 400
80 9.79e-4 384 1.02e-3 384 1.19e-3 384 8.44e-3 384 6.87e-3 400

160 1.11e-3 384 1.15e-3 384 1.17e-3 384 1.26e-3 384 7.34e-3 384

Table 5.14: Performance of RAS2 for scattering from the triangle in Figure 3.4 of different refractive index µ = 1.5 + nI i of a plane
wave from incident Angle 2 (⇡/6). Highlighted cells indicate when an error of 2% or better is achieved. The number of degrees of
freedom in the approximation space now varies slightly as a function of k

1

nI but coincides with that for AS2 for sufficiently high k
1

nI .
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5.4 Finalised approximation strategy

Tables 5.6, 5.7, 5.11, 5.12 and 5.14 show the accuracy of the various approximation spaces
considered and we notice that depending on which k

1

nI regime we are in, different ap-
proximation spaces are necessary to achieve our desired accuracy. In particular, when
k
1

nI � 0.5 AS1 proves sufficient, whereas for 0.125  k
1

nI < 0.5, RAS2 is required to
achieve our prescribed accuracy. In this section we shall develop a strategy for switching
between the approximation spaces RAS2 and AS1 when the extra DOFs used in RAS2
appear to not be necessary. This strategy shall define the approximation spaces employed
in the Galerkin HNA BEM implemented in §6.

We consider the magnitude of the radial wave vreik2r to investigate when we can switch
between the approximation spaces AS1 and RAS2. When this wave is sufficiently small,
we expect that neglecting it from our approximation (i.e., reducing from RAS2 to AS1)
makes little difference to the accuracy. From the previous chapter, we anticipate that this
radially diffracted wave (and similarly for the other diffracted waves) has an amplitude vr

that decays asymptotically as

vr ⇠ O
✓

1p
k
2

r
e�k1n

I

r

◆
, k

1

r ! 1,

where r is the distance from the diffracting corner. Since the exponentially decaying term
will dominate as k

1

nIr ! 1, and also to simplify matters slightly, we consider the am-
plitude of vr with the factor 1/

p
k
2

r divided out. That is, we shall identify the decay of vr

with that of the amplitude
A := e�k1n

I

r. (5.10)

For the equilateral triangle of side length 2⇡, the maximum value of A is

max

r
|A(r)| = e�k1n

I

⇡
p
3

as can be seen from the geometry of the triangle shown in Figure 5.15. We are interested
in the transition between the cases k

1

nI = 0.025 and k
1

nI = 0.05 since this is where the
if appears we can switch from RAS2 to AS1 and still retain engineering accuracy. In the
first case we wish to keep the eik2r functions and in the second case we wish to discard
them. The values of maxr |A(r)| in these two regimes are 0.0658 and 0.257, respectively.
We should also keep in mind the tolerance (5.9) for introducing meshpoints at shadow
boundaries. This tolerance is 0.15 which fits between the two aforementioned numbers.
Again, we decide to err on the side of caution and shall choose our tolerance for discarding
the eik2r-type basis functions as 0.1.
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Figure 5.15: Distances within the equilateral triangle.

That is,
toldecay = 0.1. (5.11)

So if maxr |A(r)| < 0.1 on an element in the mesh, with A := e�k1N
I

r, discard the
corresponding eik2r-type basis functions from that element.

If we are to treat the radial waves in this manner, we should also treat the e±ik2s waves
in the same way. So,

if maxs |A(s)| < toldecay on an element in the mesh, where s is the arc-length from
the corner, and

A := e�k1n
I

s,

then discard the corresponding eik2s- or eik2s-type basis functions from that element.

This proposed approximation space is a hybrid between AS1 and RAS2, and even re-
duces to a smaller approximation space than AS1 for k

1

nI large enough. We shall denote
the approximation space corresponding to this strategy as AS for “Approximation Strat-
egy”. Tables 5.16 and 5.17 show the results from before but using AS. This approximation
space optimises the number of degrees of freedom used to achieve the best accuracies from
the previous tables. It is of particular note that not only do the number of degrees of free-
dom not have to increase, they in fact may decrease as k

1

increases to achieve our error
tolerance.
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nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125

k
1

|| @u
@n�W3||
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF

10 1.07e-2 360 7.94e-3 400 1.52e-2 400 2.29e-2 400 2.42e-2 432
20 7.48e-4 360 9.22e-3 360 7.91e-3 400 1.70e-2 400 2.59e-2 400
40 1.44e-3 312 1.31e-3 360 8.10e-3 360 8.80e-3 400 1.83e-2 400
80 5.61e-4 312 8.69e-4 312 9.38e-4 360 6.65e-3 360 8.58e-3 400

160 7.09e-4 312 7.93e-4 312 9.27e-4 312 1.46e-3 312 5.53e-3 360

Table 5.16: Performance of AS for scattering from the triangle in Figure 3.4 of different refractive index µ = 1.5 + nI i of a plane wave
from incident angle 1 (⇡/2). Highlighted cells indicate when an error of 2% or better is achieved. The number of degrees of freedom in
the approximation space now varies slightly as a function of k

1

nI .

nI = 0.05 nI = 0.025 nI = 0.0125 nI = 0.00625 nI = 0.003125

k
1

|| @u
@n�W3||
|| @u
@n || #DOF || @u

@n�W3|
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF || @u

@n� ˜W2||
|| @u
@n || #DOF || @u

@n�W3||
|| @u
@n || #DOF

10 1.74e-2 360 7.48e-3 400 1.13e-2 400 1.50e-2 400 1.77e-2 400
20 1.67e-3 360 1.05e-2 360 7.52e-3 400 1.62e-2 400 2.50e-2 400
40 1.97e-3 312 1.75e-3 360 1.13e-2 360 6.42e-3 400 1.48e-2 400
80 1.00e-3 312 1.05e-3 312 1.23e-3 360 9.44e-3 360 6.87e-3 400

160 1.11e-3 312 1.15e-3 312 1.17e-3 312 1.29e-3 312 7.96e-3 360

Table 5.17: As per Table 5.16 but for an incident wave with Angle 2 (⇡/6).
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5.5 A recap of the algorithm for a general convex polygon

In this section we shall summarise the algorithm developed in this chapter to construct the
HNA approximation space for a general convex polygon. The approximation space we
have developed relies on certain tolerances for which specific choices have been made here
in order to achieve our desired accuracy. These choices can be altered however and so we
shall present the algorithm with the tolerances left unspecified (but with reminders of our
chosen values given). This is stated for an ns-sided convex polygon.

Firstly, we calculate the GO term vgo using the BTA as described in §4. The BTA
is truncated when the amplitude (in absolute value) of the next beam to be included falls
below a tolerance tolgo. Now, to the approximation of vd using the HNA method. Recall
our ansatz for the unknown vd on a typical side �j . It is

vd(x) ⇡v
1,1(s)eik1s + v

1,2(s)e�ik1s
+ v

2,1(s)eik2s + v
2,2(s)e�ik2s

+

+ v
2,3(r1)eik2r1 + v

2,4(r2)eik2r2 + . . . + v
2,n

s

(rn
s

�2

)eik2rns

�2 .

The amplitudes v
1,1, v1,2, v2,1, v2,2 are approximated by piecewise polynomials supported

on overlapping graded meshes. The meshes for v
1,1, v2,1 are graded geometrically towards

s = 0 with grading parameters �
1

, �
2

, respectively. The meshes for v
1,2, v2,2 are graded

geometrically towards s = Lj with grading parameters �
1

, �
2

, respectively. These meshes
are constructed independently of the incident wave direction. We use one mesh (per side) to
support the polynomials approximating the remaining amplitudes v

2,3, v2,4, . . . , v2,n
s

. The
positions of the mesh points in this mesh are dependent on the incident wave direction since
they are placed according to the locations of “strong” shadow boundaries introduced by the
beam tracing procedure. That is, we first run the BTA and then take note of any beam
edges intersecting the side �j . At each of these intersections we evaluate the absolute value
of the corresponding beam at the intersection point. If this absolute value is greater than
the tolerance tolshad, then we introduce a mesh point at the intersection. This defines the
meshes in their initial state.

Now we describe the variation of polynomial degree on the meshes. We choose the
polynomial degree vector p on each of the graded meshes to have the form

(p)i :=

(
p �

j
(n+1�i)

n p
k

, 1  i  n � 1,

p, i = n,

where the integer p � 0 is the highest polynomial degree on the mesh. The number of
elements n is related to the maximum polynomial degree p as

n = dC(p + 1)e.
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On each element of the mesh approximating v
2,3, v2,4, . . . , v2,n

s

we place polynomials of
the maximum degree p. This defines the degrees of the polynomials accommodated on the
meshes.

To avoid potential redundancy (and hence potential ill-conditioning), we employ a pro-
cess by which we discard basis functions. This only comes into effect for problems where
k
2

2 C so that the functions eik2s, e�ik2s, eik2r1 , eik2r2 , . . . , eik2rns

�2 are decaying. We dis-
card a basis function of the form P (d)eik2d, for d = s or d = r, when

max

d
e�ik1n

I

d < toldecay,

where d ranges over the distances from the diffracting corner to each part of the element
supporting the basis function.

We now restate the values of the above tolerances and meshing parameters which were
chosen for the implementation of this method here, with the specific aim to achieve a rela-
tive error of 2% or less on the boundary �. These values are

tolgo = 5 ⇥ 10

�3,

�
1

= 0.2,

�
2

= 0.19,

C = 1.5,

tolshad = 0.15,

toldecay = 0.1.

(5.12)

In the next chapter we implement this approximation space as a Galerkin BEM. But
before doing so we end this chapter by testing its performance for polygons with more than
three sides and also investigating its performance as p ! 1.

5.6 Scattering by polygons with more than three sides

The equilateral triangle was used as a prototype scattering shape for the development of
the HNA approximation space in this chapter. In this section we shall demonstrate the
effectiveness of our HNA approximation space for general convex polygons, by considering
scattering by a square with n = 1.5 + 0.0125i and scattering by a hexagon with n =

1.5 + 0.00625i. The results presented here are for the approximation space of §5.5.

5.6.1 Scattering by a square

We consider the scattering of a plane wave with direction di
= (cos(⇡/4), � sin(⇡/4))

by the square depicted in Figure 5.18 with refractive index n = 1.5 + 0.0125i. We shall
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Figure 5.18: Scattering setup for a square of side length 2⇡.

consider two different values of p. First, we take p = 3 as recommended up to now, and
then show that, for this example, we can in fact take p = 2 and still obtain an accuracy of
less than 2% on the boundary for all k

1

considered.
First we present the results for p = 3, these are shown in Table 5.19. The results in the

k
1

|| @u
@n�W3||
|| @u
@n || #DOF #DOF per �

2

10 5.29e-3 608 5.07
20 4.34e-3 608 2.53
40 5.01e-3 480 1
80 7.75e-4 480 0.5

160 1.03e-3 416 0.217

Table 5.19: Relative errors in approximation to @u/@n on �, total number of degrees of
freedom in the approximation space and number of degrees of freedom per wavelength (�

2

)
for the square using AS with p = 3.

table clearly show that the 2% tolerance is easily achieved for all k
1

considered here. Also
shown is the number of degrees of freedom per wavelength. This number is calculated as

#DOF

2nsRe(k2)

where here ns = 4 is the number of sides of the polygon. The 2 comes from the fact that
there are two unknowns we are approximating (u and @u/@n) and the product nsRe(k2)

is equal to the number of wavelengths around the boundary since the side lengths of the
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k
1

|| @u
@n�W3||
|| @u
@n || #DOF #DOF per �

2

10 1.59e-2 448 3.73
20 4.87e-3 448 1.87
40 5.25e-3 352 0.733
80 2.77e-3 352 0.367

160 3.08e-3 304 0.158

Table 5.20: Relative errors in approximation to @u/@n on �, total number of degrees of
freedom in the approximation space and number of degrees of freedom per wavelength (�

2

)
for the square using AS with p = 2.

square are chosen equal to 2⇡. The relatively small number in this column of Table 5.19
emphasise the power of the HNA method compared to conventional methods. For the
conventional hp BEM presented in §3 it was seen that approximately 3 DOF per �

2

were
required to achieve 1% accuracy in the far-field. The results in the table demonstrate that
the HNA method is on a par with the conventional BEM for k

1

= 10 but for all higher k
1

it
proves much more efficient in terms of memory storage required, with a mere 0.2 DOF per
�
2

required for k
1

= 160.
Since the accuracy for p = 3 is approximately 0.5% or better on the boundary, we now

present in Table 5.20 the results for the AS with p = 2. Here we see that again all the
boundary errors are less than 2% and so it appears that p = 2 is sufficient for this example,
to achieve our accuracy goal.

5.6.2 Scattering by a hexagon

Consider the scattering of a plane wave with direction di
= (cos(✓i), � sin(✓i)), where

✓i = tan

�1

(2/3), by the hexagon in Figure 5.21 with refractive index n = 1.5 + 0.00625i.
Table 5.22 shows the results for p = 3. We notice an increase in the number of degrees
per wavelength compared to the square for p = 3. This is due to the increased number of
shadow boundaries which lead to additional mesh points. Nevertheless, we observe that
less than 2% error is achieved for all wavenumbers with a number of degrees of freedom
which is decreasing as k

1

increases.
We have seen that the approximation strategy which we developed in the earlier part

of this chapter for the equilateral triangle is also effective for polygons with more sides.
In fact, owing to the wider angles of these two latter polygons, the waves must traverse a
greater distance inside the shapes, and hence there is greater opportunity for decay. So for
these shapes we observe a slight improvement in performance of the HNA approximation
space as compared with its performance for the equilateral triangle.
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Figure 5.21: Scattering setup for a hexagon of side length 2⇡.

k
1

|| @u
@n�W3||
|| @u
@n || #DOF #DOF per �

2

10 1.35e-2 1264 7.02
20 1.60e-2 1136 3.16
40 8.06e-3 976 1.36
80 2.00e-3 720 0.5

160 1.21e-3 624 0.217

Table 5.22: Relative errors in approximation to @u/@n on �, total number of degrees of
freedom in the approximation space and number of degrees of freedom per wavelength (�

2

)
for the hexagon using AS with p = 3.

5.7 Convergence in p

The HNA hp-BEMs developed in [29, 63] (among others) yield errors which decay expo-
nentially with respect to the number of degrees of freedom. Precisely, their approximation
'N to the solution ' has an error of the form

||'� 'p||  Ce�p⌧ , (5.13)

where p is the polynomial degree, and C and ⌧ are constants (see, e.g., [62, 63]) with C

growing mildly (algebraically) with k
1

. Here || · || represents the L2 norm on �.
These HNA methods are for scattering by impenetrable polygons for which the asymp-

totic behaviour of the solution is well-understood and hence the approximation spaces can
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Figure 5.23: Relative L2 error on � versus maximum polynomial degree p for scattering by
a square of refractive index 1.5 + 0.0125i.

be designed to capture all of the expected oscillatory behaviour. The HNA method pro-
posed here, on the other hand, neglects some of the oscillatory behaviour in the solution
and so we cannot anticipate achieving an error bound such as (5.13). Instead we might
expect the error to behave like

||'� 'p||  Ce�p⌧
+ F (k

1

), (5.14)

where

F (k
1

) =

(
O(k�↵

1

), if Im(k

2

) = 0,

O(e�ck1k�↵
1

), if Im(k

2

) > 0,
(5.15)

for some ↵ > 0 and c > 0. The function F corresponds to the portion of the diffracted
field which we are ignoring in the construction of our approximation space. For real k

2

we expect the size of this portion to decay at a rate k�↵
1

, where the constant ↵ is likely to
be dependent on the scatterer shape. In contrast, for complex k

2

, this remainder term will
be exponentially decaying as k

1

increases since now the interior waves all decay exponen-
tially. Therefore, in the complex k

2

case, the error bound (5.13) may be recovered for k
1

sufficiently large.
To explain this claim, we consider the example of scattering of a plane wave with

di
= (cos(⇡/4), � sin(⇡/4)) by a square of refractive index n = 1.5 + 0.0125i for three

different wavenumbers k
1

= 10, 40, 160. Figure 5.23 shows the relative L2 error in the
approximation @u/@n on � versus the number of degrees of freedom. It should be noted
that each point corresponds to a value of p from 0 to 7.
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It can be seen that for k
1

= 10, 40, the error reduces quickly to approximately 1⇥ 10

�2

at p = 3 but then stagnates and increasing p gives little improvement. This stagnation
occurs (which limits our accuracy) since our approximation space ignores higher order
asymptotic terms, which are more important for these low values of k

1

. For k
1

= 160,
on the other hand, we appear to achieve exponential convergence in p. The reason for the
apparent stagnation at p = 6, 7 for k

1

= 160 is that we are approaching the accuracy of the
reference solution (⇡ 5 ⇥ 10

�5). These results support the form of the error bound (5.14).
Nevertheless, we see for all three wavenumbers that an accuracy of approximately 1%

is achieved for p = 2. This corresponds to 3.73, 0.733 and 0.158 degrees of freedom per
wavelength for k

1

= 10, 40, 160, respectively, which is a considerable saving compared to
many conventional methods that require between 6 and 10 degrees of freedom per wave-
length to achieve engineering accuracy.
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Chapter 6

The HNA BEM - an hp Galerkin
implementation

In the previous chapter an effective HNA ansatz was developed for a class of transmission
problems. This chapter is devoted to the realisation of this approximation space within an
hp Galerkin boundary element method.

In §6.1 we state the Galerkin method. In §6.2.1 we discuss some implementation issues
associated with the oscillatory basis functions. We conclude the chapter in §6.3 with a
selection of numerical examples, demonstrating the performance of the Galerkin method
on a range of scattering configurations. The results show that, for the examples considered
here, the Galerkin implementation achieves errors very close to the best approximation
results from the proceeding chapter. Moreover, all the results presented show that the
method produces accurate approximations for all k

1

considered using just a small number
of degrees of freedom. Most importantly, the number of degrees of freedom does not need
to be increased (in fact, it can be reduced for many problems) in order to maintain accuracy
as k

1

increases.

6.1 Galerkin method

Let us begin by recalling from §2 the integral equation we wish to solve, however with
one small difference: here we shall solve for the unknowns scaled as

⇣
u, 1

k1
@u
@n

⌘
rather than

�
u, @u@n

�
as was done in §2. This is a natural scaling since we expect the absolute value

of @u/@n to be of the order of k
1

. So, the integral equations we wish to solve are the
following. Given an incident field

vi
=

1

k
1

✓
ui

↵@u
i

@n

◆
2 L2

(�), (6.1)
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we seek the solution

v =

✓
u

1

k1
@u
@n

◆
2 L2

(�) (6.2)

such that
Av = vi, (6.3)

where

A =

✓
1

2k1
(1 + ↵)I +

1

k1
(↵D

2

� D
1

) S
1

� S
2

1

k1
(H

1

� H
2

)

1

2

�
1 +

1

↵

�
I +

�
D0

1

� 1

↵D0
2

�
◆

. (6.4)

Here, as in previous chapters, we shall take ↵ = 1. The HNA method proposed here should
also be applicable to the ↵ 6= 1 case, however, an investigation into this claim is left to
future work.

In the HNA approach, we decompose the solution as

v = vgo + vd, (6.5)

where vgo is the GO approximation calculated using the BTA (as described in §4.2), and
vd is the diffracted field which we approximate using our HNA BEM. More explicitly, the
decomposition (6.5) is substituted into (6.3) to give

Avd = vi � Avgo (6.6)

which is the form of equation (6.3) we aim to solve.
Having, in the previous chapter, designed an approximation space QN,k1 for vd, we now

seek an element of QN,k1 using the Galerkin method. That is, we seek V = (U, W ) 2
QN,k1 ⇢ L2

(�) such that

hAV, qiL2
(�)

= hvi � Avgo, qiL2
(�)

, for all q 2 QN,k1 . (6.7)

One of the desirable properties of the Galerkin method is that is can often be proven to
yield quasi-optimal approximations (as defined below). Such quasi-optimality relies upon
the coercivity of the boundary integral operator.

For the problem of scattering by a sound-soft polygon (see [63]), there exists an inte-
gral equation formulation which is provably coercive for star-shaped Lipschitz scatterers,
namely the “star-combined” formulation [127]. The definition of a coercive operator is as
follows. The boundary integral operator A is defined as coercive if, for some � > 0 (the
coercivity constant),

|hAv, vi| � �||v||2, 8v 2 L2

(�). (6.8)
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(We note that the more general definition of coercivity extends to general Hilbert spaces,
however we focus on the space L2

(�) here since it is of primary interest.) The coerciv-
ity and continuity of the integral operator lead, via Céa’s lemma to the quasi-optimality
estimate

||vd � V ||  C(k
1

)

�
inf

q2Q
N,k1

||vd � q||, (6.9)

where C is a constant which may depend on k
1

.
For many previous HNA methods (e.g., [63] for the impenetrable convex polygon, [62]

for the 2D screen), it is assumed that the corresponding integral operator is coercive (e.g.,
[63, Assumption 2.3]), and since the operator is also continuous, Céa’s lemma implies the
quasi-optimality estimate

||vd � V ||L2
(�)

 C(k
1

) inf

q2Q
N,k1

||vd � q||L2
(�)

. (6.10)

The “standard combined” integral equation formulation for the sound-soft problem has
also been proven in [129] to be coercive for � sufficiently smooth, and numerical evidence
in [14] suggests that it is true for general polygons also.

In the penetrable case, however, there is little known about the coercivity or otherwise of
boundary integral operator (6.4). In fact, we are not aware of a coercive boundary integral
equation formulation for this problem. Therefore, a wavenumber explicit quasi-optimality
result such as (6.10) is not available. Nevertheless, it is worthwhile to investigate the re-
lationship between the Galerkin approximation and the best approximation since we hope
that the Galerkin method can generate approximations from our designed approximation
space which are close to optimal. In the results presented later, we shall calculate the ratio

CQO :=

||@ud

@n � W ||
||@ud

@n � WBA||
(6.11)

where WBA is the best approximation to @u/@n obtained using the least squares method
of the previous chapter. We call the quantity (6.11) the “quasi-optimality ratio”. The re-
sults presented later in this chapter suggest that the Galerkin approximation may indeed be
quasi-optimal with a constant CQO that is only mildly dependent on k

1

and the scattering
geometry. However, more in-depth experiments would be required to say anything more
definitive.

6.2 Implementation

Much of the implementation is shared with that of the conventional BEM presented in
§3. The only differences arise in the numerical quadrature and in the scaling of the basis
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functions. The integrals to be evaluated are now more complicated owing to the many
oscillations in the kernels across the supports of the basis functions. Hence we must modify
the numerical quadrature to subdivide the integration domain according to the wavelength
of the oscillations, and on each of these subdomains employ the quadrature techniques
described in §3.2.3. This is potentially expensive and as a cost which scales as k2

1

(for the
Galerkin method), however there exist more sophisticated method for such integrals which
have a cost independent of k

1

. Such methods are not implemented here, however we give
a brief review of them in §6.2.2. The scaling of the basis functions is necessary since,
for complex k

2

, the absolute value of the basis functions varies exponentially across their
supports. So this can lead to entries in the system matrix which vary enormously which
may cause ill-conditioning of the system. This is different to previous HNA methods in
which the wavenumber is real.

6.2.1 Normalising the basis functions

In §3.2.1 we reviewed how the Legendre polynomials can be normalised in order to form
an orthonormal basis. Such a scaling is beneficial since it is desirable for numerical reasons
(in particular, conditioning) to have a system matrix with entries of a similar magnitude,
usually between 0 and 1. The basis functions in our HNA approximation space are not
orthogonal, however it is still beneficial to normalise them appropriately. Consider the
oscillatory basis function

⇢(s) := Lj(s) exp{ik
1

 (s)}, (6.12)

where Lj(s) is the Legendre polynomial of order j as defined in §3.2.1 and with support
[a, b], and  (s) is one of the phases chosen in the previous chapter. Then the local L2 norm
of ⇢(s) is

||⇢||L2
[a,b] =

Z b

a

Lj(s) exp{ik
1

 (s)}Lj(s) exp{ik
1

 (s)}ds

� 1
2

=

Z b

a

(Lj(s))
2

exp{�2k
1

Im[ (s)]}ds
� 1

2

It is easy to see that, if  (s) is real valued, then ||⇢|| =
p

(b � a)/(2j + 1) as we saw for
the Legendre polynomials on their own in §3.2.1. However, if  (s) is complex-valued, as is
the case for the functions oscillating with wavenumber k

2

when k
2

2 C, we may have that
||⇢|| is extremely large or extremely small. To see this more clearly, consider the example
 (s) = k

2

s = k
1

(nR + nI i). Then we have that

||⇢||L2
[a,b] =

1p
2k

1

nI

�
e�2k1n

I

a � e�2k1n
I

b
�
1/2
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which tends to zero as k
1

! 1. In a similar way, the phase ⇢(s) = �k
2

s leads to an
exponentially growing value for ||⇢||. Therefore, in our implementation we normalise each
basis function by its local L2 norm in order to avoid very large and very small entries
occurring in the system matrix.

6.2.2 Oscillatory integrals

In calculating the system matrix for the Galerkin HNA BEM we are required to evaluate
integrals of the form

I :=

Z

�

j

Z

�

i

k(x,y)�i(x)�j(y)dxdy (6.13)

where k(x,y) is a kernel function composed of a difference of (oscillatory) Hankel func-
tions (see equation (3.14) for details), and �i, �i are oscillatory basis functions from the
HNA approximation space constructed in §5. �i and �j are the supports of �i and �j ,
respectively. When the wavenumber k

1

is large with respect to the supports �j and �j ,
integrals of the form (6.13) are highly oscillatory.

To achieve an efficient implementation, one should apply oscillatory quadrature tech-
niques such as Filon quadrature, Levin collocation and Numerical Steepest Descent (NSD).
Such methods require a number of quadrature points that remains fixed, or even decreases,
as k

1

increases. Applications of the Filon method to integrals of the form (6.13) have been
reported in [81] for smooth scatterers, and in [135] for polygonal scatterers. In [67] the
NSD was presented for simple examples of 2D oscillatory integrals, and its application to
the specific type of 2D integrals arising in Galerkin HNA BEM for 2D polygonal scatterers
was briefly discussed in [70]. For detailed reviews of oscillatory quadrature techniques, the
reader is referred to [69, 72].

The focus of this thesis, however, is the design of an HNA approximation space for
the transmission problem and not a fast implementation and hence here we employ a brute
force approach to the evaluation of the oscillatory integrals. This brute force technique is
to divide the integration domain into a large number of smaller domains over which the
integrand is not oscillatory, then apply standard quadrature rules (such as those discussed
in §3.2.3) on the integrals over each of the subdomains. This process is simple and robust
but expensive; the number of quadrature points required scales with k2

1

. This technique was
employed to construct the system matrix for the results presented in §6.3 owing to the ease
of implementation. We now describe this technique is more detail.

We begin with the case when the two basis functions are well separated so that the
singularity in the kernel is sufficiently far away (as defined in §3.2.3). Define the integers
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 �2
2

hx

 �2
2

hy

Figure 6.1: Composite Gaussian quadrature for an oscillatory integral.

nx and ny as

nx =

⇠
hx

�
2

⇡
and ny =

⇠
hy

�
2

⇡
. (6.14)

Then divide the integration region shown in Figure 6.1 of area hx ⇥ hy into nxny boxes of
size h

x

n
x

⇥ h
y

n
y

. Thus none of the smaller boxes has a dimension greater than �2
2

. This ensures
that the functions we are integrating have no more than half an oscillation in either of the
x and y directions, hence employing a tensor product of two Gauss-Legendre quadrature
rules will provide a reliable and accurate approximation on each of these small boxes. It
was found here that a number of quadrature points in either direction of

nG = 10 + p,

where p is the polynomial degree, is sufficient to achieve a relative error of better than
10

�14 for the integration.
If the two basis functions touch at one end then we have a logarithmic singularity lo-

cated at one corner of the integration domain as depicted by the red point in Figure 6.2(b).
As suggested in §3.2.3.3 we may use the tensor product of two one-dimensional composite
Gauss rules to take account of the singularity. However, this does not take account of the
highly oscillatory nature of the integrand. Therefore we modify this method suggested in
§3.2.3.3 in the following way.

First we subdivide the integration domain using the geometric grading as described in
§3.2.3, with grading parameter � = 0.15. This results in a grid as depicted in Figure 6.2(a).
Next, we subdivide any boxes which have a dimension larger than �

2

/2 as shown in Fig-
ure 6.2(b). This is done in the same fashion as described above for the non-singular case.
Then on each of the boxes we use 10 + p Gaussian quadrature points in either direction.

Finally, for the case when the supports of the two basis functions coincide we have a
singularity along the diagonal of the integration domain. To cope with this case, we first
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(a) First step: grade towards the
singularity with grading parameter
� = 0.15.

(b) Second step: subdivide the boxes
into smaller boxes of dimension
smaller than or equal to �2/2.

Figure 6.2: Composite quadrature for an oscillatory two-dimensional integral with a loga-
rithmic singularity at one corner of the integration domain.

split the domain along this diagonal into two triangular regions as was done in §3.2.3.3.
We also follow the approach there of employing the Duffy transformation on each of these
triangles which maps them to squares on which the integrands have singularities along two
of the sides of the domain. Now the integrals over each of these two transformed domains
may be treated in the same way as discussed for the singularity at a corner above.

6.3 Numerical results

In this section we present numerical results demonstrating the performance of our HNA
Galerkin BEM for a range of scattering problem involving triangle, squares and hexagons.
Recall that throughout we are taking ↵ = 1.

6.3.1 Scattering by a triangle

We first consider scattering by the triangle of Figure 3.4. We consider the following six
combinations of incident wave direction and refractive index:

1. di
= (0, �1) and n = 1.5 + 0.05i,

2. (i) di
= (0, �1) and n = 1.5 + 0.0125i,

(ii) di
= (cos(⇡/3), � sin(⇡/3)) and n = 1.5 + 0.0125i,

(iii) di
= (cos(⇡/6), � sin(⇡/6)) and n = 1.5 + 0.0125i,

3. di
= (0, �1) and n = 1.5 + 0.00625i,

4. di
= (0, �1) and n = 1.5 + 0.003125i,
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Five of these examples were considered in §5 and are considered again for direct compar-
ison to the best approximation results. The one additional example is 2.(ii) where a new
incident direction is considered, namely di

= (cos(⇡/3), � sin(⇡/3)). This direction leads
to a grazing incident wave and is an intermediate direction between the two previously
considered directions of §5. For grazing incidence we expect the head wave discussed in
§4.8.1 to be at its most prominent since it is generated by the incident wave as well as the
diffracted waves, rather than just the diffracted waves for non-grazing incidence. Recall
that head waves are neglected in our approximation space, therefore it is interesting to see
how our HNA BEM fares for this grazing incidence case.

In addition to these examples, we shall present a comparison of the accuracies of the ap-
proximations obtained for scattering by a triangle with nI = 0, 1/320, 1/160, 1/80, 1/40, 1/20

by a wave with di
= (0, �1). This is to show how the accuracy improves with increasing

absorption but also to demonstrate that the method produces an approximation satisfactory
for many applications even for scatterers with zero absorption. In all of our experiments in
this subsection we take the maximum polynomial degree as p = 3.

Example 1: di
= (0, �1) and n = 1.5 + 0.05i.

The scattering setup is as depicted in Figure 3.4 with the incident wave travelling at an
angle of ⇡/2 to the x-axis (Angle 1). Relative L2 errors demonstrating the accuracy of the
approximation on the boundary obtained by the Galerkin method are presented in Table 6.3
and should be compared with the best approximation results in Table 5.16. Also given
are the relative L2 errors for the Galerkin approximation to the far-field FG, the total field
uG on the circle shown in Figure 5.5, the condition numbers of the system matrix A, the
number of degrees of freedom per wavelength in the approximation space, and the quasi-
optimality ratio CQO. We see that the error in the approximation on the boundary is below

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 1.07e-2 9.66e-3 5.06e-3 5.66e5 360 4 1.01
20 7.92e-4 7.16e-4 3.82e-4 6.91e5 360 2 1.07
40 1.66e-3 6.65e-4 3.58e-4 3.80e5 312 0.867 1.15
80 6.70e-4 3.18e-4 1.68e-4 2.25e5 312 0.433 1.19

160 1.14e-3 7.32e-4 4.01e-4 1.50e6 312 0.217 1.61

Table 6.3: Scattering by a triangle with refractive index n = 1.5+0.05i by plane wave with
direction di

= (0, �1). Relative L2 errors, condition numbers, and the number of DOF per
wavelength in the approximation space.

2% for all k
1

, and the errors in the far-field and the total field are less than 1% for all k
1

. We

145



also observe that the conditioning of the system matrix has a value of approximately 10

5

or 106 for each k
1

. This is an admissible condition number since we have ensured that the
entries of the matrix are calculated to an accuracy of nearly 10

�14 relative error. It should
be noted that this would not be the case if the basis function discarding process of §5.4 and
the basis function scaling of §6.2.1 were not incorporated. Results demonstrating this are
not presented here, however these problems were indeed encountered in the development
of this method.

Also shown is the number of degrees of freedom per wavelength. These results demon-
strate that the HNA method is on a par with the conventional BEM for k

1

= 10 but for all
higher k

1

it proves much more efficient in terms of memory storage required, with a mere
0.2 DOF per �

2

required for k
1

= 160. It should also be noted that for k
1

� 20 the error in
the far-field is less than 0.1%.

Finally, the table shows the values of the quasi-optimality ratio. For low k
1

, CQO has a
value close to 1 which increases slowly with increasing k

1

. For all k
1

considered however,
CQO does not exceed 2.

Example 2: n = 1.5 + 0.0125i.

(i) di
= (0, �1)

(ii) di
= (cos(⇡/3), � sin(⇡/3), �1)

(iii) di
= (cos(⇡/6), � sin(⇡/6), �1)

The results for these three examples are presented in Table 6.4, Table 6.5 and Table 6.6,
respectively. We again see that the Galerkin method produces approximations close to the
best approximation results with a quasi-optimality ratio close to 1 but increasing slightly
with k

1

. For examples (i) and (ii), we observe that the error on the boundary is less than
2% for all k

1

. Also, we see that the approximation to the total field u in the domain is even
better.

For (ii) however, we observe that the error on the boundary is not less than 2% until k
1

exceeds 40. We conjecture that this large error is due to the prominence of the head wave
in this grazing incidence case. To see the effect of this head wave, we plot in Figure 6.7
the exact (@u/@n� (@u/@n)go) with its approximation via the HNA BEM in the top panel,
along with the absolute value of the difference between these two in the lower panel, i.e.,
the absolute error in W on �. We see that the most major contribution to the error is coming
from the approximation on the third side, �

3

, of the triangle (2  s/(2⇡)  3) which is
precisely where we expect the head wave to be most prominent. Recall that the incident
wave grazes the first side, �

1

, therefore the head wave it generates propagates into the
triangle and impinges on �

3

(see Figure 3.4 for a reminder of the side labelling). The error
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has a regular oscillatory form which strengthens the conjecture that this is the head wave
we are observing.

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 1.55e-2 1.25e-2 7.01e-3 7.24e5 400 4.44 1.07
20 8.31e-3 7.51e-3 4.19e-3 6.02e5 400 2.22 1.07
40 9.15e-3 5.76e-3 3.07e-3 3.74e5 360 1 1.18
80 1.23e-3 8.31e-4 4.52e-4 2.60e5 360 0.5 1.31

160 1.26e-3 2.35e-3 1.31e-3 2.14e5 312 0.217 1.39

Table 6.4: Scattering by a triangle with refractive index n = 1.5 + 0.0125i by plane wave
with direction di

= (0, �1). Relative L2 errors, condition numbers, and the number of
DOF per wavelength in the approximation space.

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 6.80e-2 7.36e-2 4.13e-2 7.80e5 400 4.44 1.02
20 4.38e-2 4.38e-2 2.14e-2 5.92e5 392 2.18 1.04
40 1.99e-2 2.06e-2 1.05e-2 3.74e5 360 1 1.16
80 7.38e-3 8.91e-3 4.55e-3 2.60e5 360 0.5 1.31

160 4.05e-3 6.36e-3 3.23e-3 2.14e5 312 0.217 1.40

Table 6.5: Scattering by a triangle with refractive index n = 1.5 + 0.0125i by plane wave
with direction di

= (cos(⇡/3), � sin(⇡/3)). Relative L2 errors, condition numbers, and
the number of DOF per wavelength in the approximation space.

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 1.17e-2 1.46e-2 7.68e-3 7.93e5 400 4.44 1.06
20 7.67e-3 9.14e-3 4.67e-3 6.43e5 400 2.22 1.02
40 1.14e-2 1.41e-2 6.85e-3 3.74e5 360 1 1.17
80 1.18e-3 1.06e-3 5.33e-4 2.60e5 360 0.5 1.33

160 1.47e-3 1.74e-3 9.25e-4 2.14e5 312 0.217 1.40

Table 6.6: Scattering by a triangle with refractive index n = 1.5 + 0.0125i by plane wave
with direction di

= (cos(⇡/6), � sin(⇡/6)). Relative L2 errors, condition numbers, and
the number of DOF per wavelength in the approximation space.

Also we observe that the condition numbers are well-behaved and in fact smaller than
for the previous example which has stronger absorption. Here the condition numbers are
less than 10

6 for all k
1

. Finally we note that the value of CQO does not vary much with
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Figure 6.7: Scattering by the triangle in Figure 6.8 with k
1

= 40 and n = 1.5+ 0.0125i for
grazing incidence. The top panel shows the real part of the approximation to
(@u/@n � (@u/@n)go) with the HNA BEM on � compared to its exact value. The bottom
panel shows the absolute error in the approximation W on �.

Figure 6.8: Scattering of a plane wave at grazing incidence di
= (cos(⇡/3), � sin(⇡/3))

with k
1

= 10 an equilateral triangle of refractive index n = 1.5 + 0.0125i.
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incident direction. This is to perhaps be expected since the system matrix remains largely
the same for all incident directions. In fact, for this example, for k

1

� 40, the matrix is
exactly the same for all three incident directions.

Example 3: di
= (0, �1) and n = 1.5 + 0.00625i.

For this example, the absorption is again reduced. Nevertheless, we achieve an approxi-
mation of less than 2% on the boundary for all k

1

� 20 and the error is decreasing with
increasing k

1

despite the fact that the number of degrees of freedom per wavelength is de-
creasing. The errors in the far-field are also decreasing with increasing k

1

and are always
less than 2%. The errors in the total field on the circle in Figure 5.5 are always less than
1% and are decreasing with increasing k

1

. An example of the total field on this circle is
shown in Figure 6.10 for k

1

= 80 where # runs from 0 to 2⇡ anti-clockwise starting at the
positive x-axis. We can clearly see the strong reflection regions at #/2⇡ = 0.25 and 0.75,
and the shadow region behind the scatterer at #/2⇡ = 0.5.

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 2.36e-2 1.96e-2 9.43e-3 3.92e6 400 4.44 1.03
20 1.76e-2 1.57e-3 7.49e-3 8.98e5 400 2.22 1.04
40 8.98e-3 8.95e-3 4.15e-3 4.76e5 400 1.11 1.02
80 6.68e-3 6.53e-3 2.83e-3 2.09e5 360 0.5 1.00

160 1.87e-3 1.06e-3 4.85e-4 3.80e5 312 0.217 1.28

Table 6.9: Scattering by a triangle with refractive index n = 1.5 + 0.00625i by plane wave
with direction di

= (0, �1). Relative L2 errors, condition numbers, and the number of
DOF per wavelength in the approximation space.

The condition numbers are again well-behaved and are around 10

5 or 10

6. Finally,
we see that the value of CQO is close to one and starts to increase at k

1

= 160. CQO is
smaller for this example than the previous examples considered. This is perhaps due to the
fact that the singularities at the corners of the triangle are weaker for scatterers with lower
absorption, and it is the strengthening of these singularities that is leading to the increase
in CQO. We can test this hypothesis with the next example.

Example 4: di
= (0, �1) and n = 1.5 + 0.003125i.

This example reduces the absorption further and we see, as conjectured in the previous
example, that indeed the quasi-optimality ratio appears to become better behaved as the
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Figure 6.10: Total field on the circle in Figure 5.5 pattern for k
1

= 80. n = 1.5+ 0.00625i.
Incident direction di

= (0, �1).

k
1

|| @u
@n�W ||
|| @u
@n ||

||F�F
G

||
||F ||

||u�u
G

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 2.49e-2 2.32e-2 1.15e-2 4.19e6 432 4.8 1.03
20 2.70e-2 2.36e-2 1.16e-2 9.19e5 400 2.22 1.04
40 1.87e-2 1.82e-2 8.82e-3 4.89e5 400 1.11 1.02
80 8.64e-3 8.83e-3 4.01e-3 2.15e5 400 0.556 1.01

160 5.72e-3 5.65e-3 2.72e-3 2.49e5 360 0.25 1.04

Table 6.11: Scattering by a triangle with refractive index n = 1.5 + 0.003125i by plane
wave with direction di

= (0, �1). Relative L2 errors, condition numbers, and the number
of DOF per wavelength in the approximation space.

absorption is reduced. The value of CQO is close to 1 for all k
1

and hence the Galerkin
approximation is producing an approximation extremely close to the best approximation.

To conclude this section, we shall compare the relative errors in the far-field for scatter-
ing by a triangle with n = 1.5 + nI i for nI = 0, 1/320, 1/160, 1/80, 1/40, 1/20 by a plane
wave with direction di

= (0, �1). These errors are plotted in Figure 6.12. Also here we
present the errors in the Kirchhoff approximation for the far-field pattern. We emphasise
that the Kirchhoff approximation is an oft-used technique for many scattering problems so
it is of interest to observe that we can improve significantly on this approximation with just
a small amount of computational effort.

We see in this plot that the far-field relative error is certainly less than 2% for all k
1

when nI > 0 (and in many cases, much less) and appears in most cases to decrease as k
1
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(a) HNA Galerkin BEM approximation with 400 or fewer DOF.
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(b) Kirchhoff approximation.

Figure 6.12: Comparison of the HNA Galerkin approximation and the Kirchhoff approximation. Relative L2 errors in F for scattering
of a plane wave with di

= (0, �1) by a triangle with refractive index n = 1.5 + nI i.
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increases. This decrease in error as k
1

increases is to be expected for three reasons. Firstly,
the GO approximation becomes more accurate, secondly the sizes of discontinuities intro-
duced by the BTA diminish, and thirdly the HNA ansatz becomes more appropriate since
it is asymptotic (in k

1

) in its nature. For nI = 0, however, we do not see an improvement
as k

1

increases. This is due to the algebraic rather than exponential decay of the neglected
components as k

1

! 1. Nevertheless, neither do we see a strong deterioration in the accu-
racy with an error for this case, with an error of around 3% being maintained for all k

1

. So
we see that the HNA approach proposed here produces a reasonable (albeit not better than
our imposed tolerance of 2%) accuracy for scattering by a triangle with zero absorption.

When comparing to the Kirchhoff approximation, we see that the HNA approximation
always provides an improvement but with this improvement being most stark for the higher
absorption examples since this is where the approximation space captures the vast majority
of the oscillatory behaviour of the diffracted field. Nevertheless, for low absorption and
for zero absorption, the HNA method at worst halves the error achieved by the KA with a
#DOF of 400 or less.

6.3.2 Scattering by polygons with more than three sides

Up to now we have focused on the problem of scattering by an equilateral triangle. How-
ever, the algorithms presented are applicable to general convex polygons. In this section
we demonstrate this by presenting results for two examples: scattering by a square with
n = 1.2964 + 0.037i and scattering by a hexagon with n = 1.3924 + 6.672 ⇥ 10

�3

i. We
shall see that the HNA BEM works well for both but that, in the hexagon example (although
it could occur for any polygon with ns > 3), the linear system can become ill-conditioned
owing to small elements arising in the eik2r mesh. We shall explain the causes and reme-
dies for this in detail in §6.3.2.2. Firstly we shall consider the square example for which
the imaginary part of the refractive index is large enough that this ill-conditioning problem
does not arise.

Also, note that we are using refractive indices different to those considered before. This
is to illustrate that the algorithms presented are also applicable to scatterers with a range
of refractive index. The chosen values n = 1.2964 + 0.037i and n = 1.3924 + 6.672 ⇥
10

�3

i correspond to the refractive index of ice for light at the wavelengths 8.333µm and
3.732µm, respectively, as taken from [140]. These wavelengths lie, respectively, within
the detecting bandwidths of the IR 8.7 and IR 3.9 sensing channels of SEVIRI, a second
generation Meteosat satellite for meteorological observations [45]. Therefore these are
refractive indices of interest to meteorologists.
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6.3.2.1 Scattering by a square

We consider the scattering of a plane wave travelling at an angle of 3⇡/4 radians to the
x-axis by a square of side length 2⇡ and refractive index n = 1.2964 + 0.037i, as depicted
in Figure 6.13. We employ the HNA BEM with p = 3 and note that the absorption is large
enough such that the eik2r basis functions are not present for this example according to the
tolerance (5.11) imposed in §5.4. As can be seen in Fig. 6.13 the strong absorption created
a weak field within the scatterer and behind it. Nevertheless, diffracted waves can clearly
be seen propagating along the sides not illuminated by the incident wave.

Figure 6.13: Real part of the total field u = ui
+ us for scattering by a square with n =

1.2964 + 0.037i by a plane wave with k
1

= 10 and incident direction di
=

1p
2

(1, �1).

Table 6.14 presents the relative L2 errors in the approximation of @u/@n on �. Those
for u on � are similar and follow the same trend. We see that the accuracy is better than
2% for all k

1

. In fact, the error is substantially better than this for k
1

� 20. The number
of degrees of freedom in the approximation space and the number of degrees of freedom
per wavelength (�

2

) are also presented. We see that the number of DOF per �
2

is below 5
for k

1

= 10 and hence comparable to the efficiency of the conventional BEM (see §3.2.4),
and for k

1

= 160 we achieve an accuracy of less than 0.1% with the number of DOF per
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�
2

equal to 0.251 which is a substantial saving compared to a conventional method. We
also present the condition numbers of the matrix A and notice that they are well-behaved
with a value around 10

6 for all k
1

considered. Finally, we observe that the quasi-optimality

k
1

|| @u
@n�W ||
|| @u
@n ||

|| @u
@n�

(

@u

@n)
go

||

|| @u
@n ||

cond(A) # DOF # DOF
CQOper �

2

10 1.70e-2 2.01e-1 1.68e6 480 4.63 1.01
20 2.55e-3 1.44e-1 1.19e6 480 2.31 1.01
40 1.19e-3 1.02e-1 3.52e6 480 1.16 1.04
80 1.28e-3 7.26e-2 5.36e5 416 0.501 1.05

160 8.40e-4 5.14e-2 4.08e5 416 0.251 1.02

Table 6.14: Relative L2 errors in the approximation of @u/@n on � by the HNA BEM and
GO, condition numbers, degrees of freedom information, and quasi-optimality ratio.

ratio remains close to 1 for all k
1

with little deviation. When we contrast this to the triangle
case, it would suggest that the quasi-optimality ratio is geometry dependent, with sharper
corners producing a larger ratio.
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Figure 6.15: Real part of @u/@n (scaled by k
1

) on � for k
1

= 10. The vertical lines
represent the corners of the square.

In order to understand why the method produces such good approximations for this
example, it is helpful to look at the field on the boundary which is plotted for k

1

= 10

and k
1

= 80 in Figures 6.15 and 6.16, respectively. From the first to the second figure the
frequency of course increases by a factor of eight, but also of note is that the field in the
shadow region becomes extremely small as k

1

is increased. So small in fact, that diffracted
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Figure 6.16: Real part of @u/@n (scaled by k
1

) on � for k
1

= 80. The vertical lines
represent the corners of the square.

waves propagating within the shape decay so rapidly that they do not reach the other sides,
let alone reflect. Therefore, we can be confident that, in this case, the proposed HNA ansatz
is capturing a large proportion of the diffracted wave behaviour.
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6.3.2.2 Scattering by a hexagon

We consider the scattering of a plane wave travelling at an angle of tan(2/3) radians to the
negative x-axis by a hexagon of side length 2⇡ and refractive index n = 1.3924 + 6.672⇥ 10

�3

i,
as depicted in Figure 6.17. We employ the HNA BEM with p = 2. For this example, the
absorption is low enough that the eik1r-type basis functions are present in the approximation
space.

Figure 6.17: Real part of the total field u = ui
+ us for scattering by a hexagon with n =

1.3924 + 6.672⇥ 10

�3

i by a plane wave with k
1

= 10 and direction di
= (cos ✓i, � sin ✓i)

where ✓i = tan

�
1(2/3).

We employ the HNA BEM as described up to this point and present the results in
Table 6.18. We see that for all k

1

the error in the best approximation to @u/@n is ap-
proximately 2% or less. However, for k

1

= 10, the error achieved by the HNA BEM is
approximation 28%. This is caused by the extremely poor conditioning of the matrix A,
which for this value of k

1

has a condition number of 3.18 ⇥ 10

18. The condition number
of A for k

1

= 20 is also extremely large, however the solution obtained in this case is
still close to the best approximation. The cause of this ill-conditioning is the presence of
elements in the eik1r mesh which are small enough so that the eik1r-type basis functions are
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|| @u
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|| @u
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BA

||
|| @u
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|| @u
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(

@u

@n)
go

||

|| @u
@n ||

cond(A) # DOF # DOF
CQOper �

2

10 2.77e-1 1.60e-2 2.17e-1 3.17e18 888 5.15 17.3
20 2.19e-2 2.02e-2 1.17e-1 5.99e17 816 2.44 1.08
40 1.18e-2 1.26e-2 6.41e-2 9.75e4 672 1.01 1.02
80 2.28e-3 2.22e-3 4.39e-2 4.69e4 528 0.395 1.03
160 2.95e-3 2.72e-3 3.71e-2 1.33e5 528 0.198 1.10

Table 6.18: Relative L2 errors in the approximation of @u/@n on � by the HNA BEM and
GO, condition numbers, degrees of freedom information, and quasi-optimality ratios.
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to
x 2 �

5

.

not oscillatory across them.
To understand precisely why this can lead to ill-conditioning, let us begin by detailing

the approximation space on the side �
5

, say, in Figure 6.19. On the side �
5

we have
five meshes as shown in Figure 6.20. Four of these are graded towards the corners and
one has elements dictated by strong (in the sense described in §5.3.1 and defined by the
tolerance (5.9)) shadow boundaries introduced by the beam tracing algorithm. On each of
the elements in this latter mesh, there are 12 basis functions (in general, (ns � 2)(p + 1)

basis functions, where p is the maximum polynomial degree and ns is the number of sides).
These are split into 4 (ns � 2, in general) groups of p + 1 functions corresponding to the
different oscillatory functions

Pi(r1) exp(ik2

r
1

), Pi(r2) exp(ik2

r
2

), Pi(r3) exp(ik2

r
3

), Pi(r4) exp(ik2

r
4

) i = 0, . . . , ns�3,
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.

where the distances r
1

, r
2

, r
3

, r
4

are distances from corners P
1

, P
2

, P
3

, P
4

, respectively,
as shown in Figure 6.19. When k

1

is large relative to the size of a particular element, these
functions will oscillate many times across the length of the element and hence the different
phases will enable the functions to correctly capture different oscillatory solution compo-
nents. However, when k

1

is small relative to the size of the element, these functions closely
resemble one another, so that the approximation space has redundant basis functions. This
is the cause of the ill-conditioning (and unacceptable approximation error) for small k

1

values in Table 6.18.
In order to remedy this situation we may introduce a rule by which we discard basis

functions if they are not sufficiently oscillatory on an element. In order to formulate such a
rule, we parameterise the distance functions ri, i = 1, . . . , ns � 2 by the arc length s along
the side �

5

. Therefore ri(s) can be written as

ri(s) =
p

s2 + 2As + B, (6.15)

where A = t
5

· (P
5

� Pi) and B = |P
5

� Pi|2. We note that this function has a stationary
point when s = �A. Consider an element which is marked in red on �

5

in Figure 6.19 and
is the interval s = [a, b]. Then we may say that the function exp(ik

2

ri) is non-oscillatory
on [a, b] if either

• �A 62 [a, b] (i.e., not stationary point on the interval) and |ri(a) � rb(a)| < ✏ 2⇡
Re(k2)

,

or

• �A 2 [a, b] and |ri(a) � ri(�A)| + |ri(�A) � ri(b)| < ✏ 2⇡
Re(k2)

,

where ✏ is a tuning parameter to be chosen. Simply stated, this says that we define ri as
non-oscillatory if it completes fewer than ✏ oscillations across [a, b].

If a basis function is classified as not oscillatory according to the above definition then
we discard it. However, if all the basis functions on an element are discarded by this

158



process, then we simply reintroduce the first p+1 Legendre polynomials as (conventional)
basis functions on this element. In this way, we can eliminate redundant basis functions
which give rise to ill-conditioning.

Numerical experiments suggest that for the case considered here, the parameter choice
✏ = 3/2 provides a good compromise between conditioning and accuracy. A smaller value
of ✏ leads to better accuracy but worse conditioning, and a larger value leads to poorer
accuracy but better conditioning. The results for the method after this additional piece of
the algorithm is included are displayed in Table 6.22. Along with the updated results of
Table 6.18, also presented are relative errors in the total field on the circle (radius 3⇡) in
Figure 6.17 and in the far-field. We also provide these errors for the GO approximation for
comparison.

The table shows that now, for all k
1

, we achieve an accuracy of roughly 2% or better,
and the HNA BEM produces a solution close to the best approximation. The far-field
accuracy is slightly better than that on the boundary and the accuracy in the total field is
better still, with values less than 1% for all k

1

considered. The relationship between these
errors is clearly seen in the plot Figure 6.21. The new values of CQO are much closer to 1
than previously and the condition numbers are much smaller for the problematic k

1

= 10

and k
1

= 20 examples.
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Figure 6.21: Relative L2 errors in @u
�

/@n, FG, and uG on the circle in Figure 6.17 for
hexagon with n = 1.3924 + 6.72 ⇥ 10

�3

i.

When comparing to the GO approximation on the boundary and the Kirchhoff approx-
imation in the domain ⌦

1

and the far-field, we observe a significant improvement across
the frequency range considered using just 816 or few degrees of freedom. For example, for
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k
1

= 10, the error in the far-field is 1.71% for the HNA BEM and 19.3% for the Kirchhoff
approximation, and for k

1

= 160, the error in the far-field is 0.167% for the HNA BEM
and 1.85% for the Kirchhoff approximation.

To conclude, we provide plots of the far-field pattern in Figure 6.23 and Figure 6.24
for k

1

= 20 and k
1

= 160. The increased oscillatory nature of the field as well as the
strengthening of the shadow and reflected regions as k

1

increases are clearly noticeable.
Figure 6.25 and Figure 6.26 show the total field on the circle in Figure 6.17. Again, we

observe that for k
1

= 20, the field is of a similar magnitude all around the circle, indicating
that diffraction plays an important role in this case. For k

1

= 160, the shadow and reflected
regions, which are GO phenomena, are very pronounced. This later observation implies
that in this case, the GO approximation should give a good approximation which, as can be
seen in Table 6.22, is indeed the case. Nevertheless, the HNA BEM provides an even more
accurate approximation with less than 0.2 DOF per wavelength for this example.
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Approximations on � Far-field In ⌦
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||
||F ||

||u�u2||
||u||

||u�u
go

||
||u|| cond(A) # DOF # DOF

CQOper �
2

10 2.53e-2 1.85e-2 2.01e-2 1.62e-2 3.55e-1 2.17e-1 1.71e-2 1.93e-1 9.58e-3 1.12e-1 8.91e8 762 4.56 1.14
20 4.40e-2 2.49e-2 3.91e-2 2.36e-2 2.07e-1 1.17e-1 1.65e-2 8.21e-2 9.96e-3 5.12e-2 1.43e7 816 2.44 1.06
40 2.46e-2 1.26e-2 2.26e-2 1.18e-2 1.16e-1 6.41e-2 1.22e-2 4.17e-2 6.71e-3 2.40e-2 9.75e4 672 1.01 1.07
80 4.67e-3 2.28e-3 4.52e-3 2.22e-3 7.82e-2 4.39e-2 2.21e-3 2.62e-2 1.29e-3 1.52e-2 4.69e4 528 0.395 1.03

160 4.14e-3 2.86e-3 3.50e-3 2.73e-3 5.55e-2 3.11e-2 1.67e-3 1.85e-2 9.33e-4 1.07e-2 1.33e5 528 0.198 1.06

Table 6.22: Relative L2 errors for scattering by a hexagon. Also presented are the condition number of the matrix A, the number of
degrees of freedom in the approximation space, and the number of degrees of freedom per wavelength around the boundary. Here the
redundant basis functions have been removed (with ✏ = 3/2). Compare to before this removal in Table 6.18.
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Figure 6.23: Far-field pattern for k
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= 20.
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Chapter 7

Conclusions

The main aim of this thesis has been to extend the hybrid numerical-asymptotic (HNA)
approach for the first time to scattering by penetrable obstacles. This task has required us
to address numerous asymptotic and numerical aspects associated with the solution of such
scattering problems. In this chapter, we summarise the main contributions of this thesis to
tackle these aspects and develop an HNA BEM for penetrable obstacles. We conclude the
chapter by indicating areas of potential future research for the improvement and extension
of the method developed here, as well as HNA methods as a whole.

7.1 Summary of results

In §2 we began by stating the 3D EM transmission scattering problem to be solved along
with its reformulation as a system of boundary integral equations. We showed how in the
2D case, this EM problem boils down to solving two 2D acoustic transmission problems,
one for each of the electric and magnetic fields. We then presented the reformulation of the
2D acoustic transmission problem as a system of boundary integral equations. We went on
to prove, using a compact perturbation argument, that the integral equations are uniquely
solvable.

Next in §3 we considered the numerical solution of the BIEs given in §2. We presented a
brief comparison of the performance of a state-of-the-art implementation of a conventional
BEM with a T-matrix method for the solution of the 3D EM scattering problem. We saw
that the memory and time requirements of both methods scale extremely poorly with in-
creasing size parameter and that only problems of size parameter less than 20 can be solved
on a standard desktop (if an accuracy of approximation 1% in the far-field is required). This
demonstrated the limitations of current standard techniques and hence provided motivation
for the development of the HNA method of this thesis. §3.2 onwards discussed the imple-
mentation of a 2D conventional Galerkin BEM for the transmission problem. It was seen
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that approximately six degrees of freedom per wavelength �
1

(or four per �
2

) were required
to achieve approximately 1% accuracy in the far-field and hence for high-frequency prob-
lems, many thousands of degrees of freedom are required to accurately approximate the
solution.

The first important aspect of our HNA method was the development of a beam tracing
algorithm for the calculation of the geometrical optics approximation. This was the topic
of §4.1–§4.6. In order to develop the BTA, we considered the canonical problem of the
scattering of a plane wave at a planar interface between two absorbing media. The same
problem but for two non-absorbing media is completely classical and its analysis appears
in standard physics textbooks. The absorbing media case, however, has been far less well
studied and in fact has led to some contradictory analyses in the literature. Therefore, we
derived the formulae afresh in a way well-suited to the implementation of a BTA, that is,
in terms of vectors rather than angles relative to the interface. We found that the formu-
lae for the direction of the transmitted direction vector contains a square root whose sign
must be specified. In order to decide which sign choice to make, we compared the GO ap-
proximation obtained from a simple scattering problem to a reference solution for different
incident angles. We found that the correct sign choice depends on how close the incident
wave is to being totally internally reflected and that there appear to be two regimes, each
with its own sign choice. The two regimes are connected by a small (and shrinking as k

increases) region in which neither sign choice gives a good approximation and hence our
GO approximation appears to be invalid. The observation of this phenomenon appears to
be novel. We developed a rule of thumb for switching between the two choices resulting in
a consistent (in terms of incident wave direction) BTA for scattering by convex penetrable
polygons.

In §5 we developed the foundation of our HNA BEM, namely the HNA approximation
space for the transmission problem. Our specific aim in this thesis was to achieve a pre-
scribed relative error tolerance in the boundary solution of 2%. We stress that a smaller or
larger error tolerance could have been chosen, but this would have resulted in a larger ap-
proximation space as well as different (tuning) parameter values in the method. We showed
via least squares fitting to a reference solution that for scattering by equilateral triangles in
which k

1

nI � 0.125 (where nI is the imaginary part of the refractive index), and for the
two incident wave directions considered there, our 2% error tolerance could be achieved
with a small number of degrees of freedom which does not grow as k

1

increases. For
problems where k

1

nI < 0.125 the method does not achieve this error tolerance for all k
1

considered, nevertheless it achieves approximations which are significantly more accurate
than GO (which we emphasise is a commonly employed approximation) using only a small
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number of degrees of freedom. It was seen for experiments with a square and hexagon that
indeed the approximation space is suitable for general convex polygons and also that for
these shapes, since they have a larger interior than the triangle, the approximation space
performs even better for lower absorptions than it did for the triangle. Finally, we looked
at the convergence of the method as the polynomial degree is increased.

The HNA approximation space developed in §5 was implemented within a Galerkin
boundary element method in §6. In order to perform this implementation accurately, one
must take care to evaluate the oscillatory integrals accurately, as well as normalise the
basis functions appropriately. Results were presented demonstrating the method’s efficacy
for scattering by a triangle, square and hexagon with various refractive indices. We saw
that close to the best approximation results of §5 were achieved for the scattering by a
triangle examples. In addition to considering some of the same scattering setups from §5,
we considered an example where the incident wave grazes the side �

1

. For this example it
was seen that the 2% tolerance was achieved for k

1

nI � 0.5 rather than for k
1

nI � 0.125

as for the other two incident directions. We hypothesised that this was due to a prominent
head wave generated by the incident wave at grazing. This hypothesis was supported by
the regular oscillatory nature of the error in the approximation on �

3

where we expect
to see the influence of the head wave. This suggests that the current HNA BEM is not
completely robust to incident wave direction and that at grazing incidence, one may have
to include basis functions with the phase of the anticipated head wave. Further investigation
is required to ascertain for certain whether indeed this larger error is in fact due to the head
wave however.

Further to the equilateral triangle examples, scattering by a square and a regular hexagon
were considered. We chose refractive indices relevant to the application to light scattering
by atmospheric ice crystals. We saw that, for the hexagon, the method achieves better than
1% accuracy in the domain for all k

1

considered with a number of degrees of freedom
of 816 or fewer. For this example with k

1

= 160, we achieved an error in the domain
of 0.09% with 0.2 degrees of freedom per wavelength. When compared to the common-
place requirement of 6 to 10 degrees of freedom per wavelength for “engineering accuracy”
(a few percent) with conventional methods, we can see that the HNA BEM allows one to
significantly reduce the number of degrees of freedom required to solve transmissions prob-
lems. Further, we observed in all the examples we considered that our HNA BEM offers an
improvement in accuracy of approximation: a factor of 10 over the commonly-employed
Kirchhoff approximation.
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7.2 Future work

This section is divided into two components, namely the future work relevant to only the
HNA BEM for the transmission problem, and the future work applicable to the HNA ap-
proach as a whole. We shall begin by discussing the former.

7.2.1 The HNA approach for the transmission problem

The HNA BEM developed in this thesis is the first HNA method for scattering by a pen-
etrable scatterer, with all other HNA BEMs in the literature being applicable only to the
impenetrable case. As we have seen, this simple change in the definition of the scattering
problem leads to a huge increase in the complexity of the high-frequency behaviour of the
scattered wave field, and hence in the complexity of the associated HNA BEM. We saw that
the GO approximation now consists of infinitely many terms in comparison to the single
term in the impenetrable convex case. Further, the diffracted field also in principle consists
of infinitely many terms compared to the two per side in the impenetrable convex case.
In an attempt to simplify the problem, we considered scatterers possessing some absorp-
tion. This did indeed simplify the diffracted field however introduced different difficulties
concerning the propagation of inhomogeneous waves within the scatterer. We also saw
that many of the diffracted terms contain discontinuities introduced by the beam tracing
procedure which must be taken into account when constructing the corresponding meshes.

Each of these topics was tackled to an extent in the construction of the HNA method
of this thesis. However, for each, there are improvements that could be made which we
discuss in turn.

• Geometrical optics for absorbing media. When calculating the GO approximation
for scattering by absorbing obstacles, we encountered the phenomenon that the oc-
curring inhomogeneous waves are defined by an equation which has two solutions.
We saw that, depending on problem parameters (incident wave direction, wavenum-
ber etc.), the seemingly correct solution - determined via comparison to a reference
solution - differed. In fact, there appears to be two regions, one for either solution,
with a connecting region in which the GO approximation is seemingly invalid. These
regions are related to the phenomenon of total internal reflection. This observation
appears to be novel and the reasons for its occurrence have not been determined in
this thesis. Further research into this phenomenon and a technique to patch the two
regions together would improve the accuracy of the GO approximation and hence the
overall accuracy of the HNA BEM.
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• Overlapping meshes for the eik2r basis functions. It was chosen here to accommo-
date all the basis functions of the form eik2r1 , eik2r2 , . . . , eik2rns

�2 on a single mesh. As
we saw in §6.3.2.2, sometimes this single mesh implementation leads to redundancy
and hence ill-conditioning if there are small elements present and we must design an
algorithm by which to discard basis functions in this case. An overlapping sequence
of meshes, each accommodating one of the eik2r1 , eik2r2 , . . . , eik2rns

�2 type functions
would avoid this problem and arguably is a more natural way to design the meshes.
Only a small modification to the current implementation would be required to change
to the overlapping mesh setup just described. Hence an investigation into the efficacy
of the method with this new mesh setup would be simple to undertake in future.

• Shadow boundary mesh refinement. To compensate for each discontinuity intro-
duced by the BTA, we added a mesh division in the appropriate numerical mesh.
However this limited the accuracy and convergence (in p) of the method. To improve
the accuracy and convergence, meshes graded towards these discontinuities, as dis-
cussed in [61], should be employed. For a problem with sufficiently high absorption,
i.e., one in which only the shadow boundaries from first order reflections are signifi-
cantly large, we would expect such an approach to yield an hp-HNA BEM which is
exponentially convergent in the polynomial degree p, similar to some previous HNA
methods (e.g., [63]) .

• Higher order terms. In this thesis, we considered only the first order diffracted
waves (i.e., not reflections of diffracted waves), and neglected head waves. A natural
extension of the method proposed here, which may allow the level of absorption to
be lowered without degrading the accuracy, would be to incorporate the reflections of
diffracted waves and head waves into the approximation space. Based on the results
presented in this thesis, it is likely that the inclusion of basis functions corresponding
to one extra reflection of the diffracted waves, as well as the first order heads waves,
would lead to a method which achieves the tolerance set in this thesis for scatterers at
any absorption. Further, we expect that the inclusion of basis functions corresponding
to head waves will make the method more robust to incident wave direction since at
grazing incidence, the head waves are most prominent and the current method which
neglects them performs less well.

• Non-convex geometries. The HNA approximation space proposed here could be
extended to non-convex scatterers by the introduction of basis functions which oscil-
late as exp(ik

1

r) where r is the radial distance from the corresponding corner. These
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functions would propagate in the exterior medium (⌦
1

) and are the same as those pro-
posed for the HNA method for impenetrable non-convex polygons in [29]. We may
also require to consider the transmission of these diffracted waves into the polygon
and then reflections within the scatterer. Indeed, the complexity of such problems
can quickly escalate to such a level when the HNA method as proposed here needs
considerable revision. It is recommended that an investigation into this problem be-
gin with highly absorbing scatterers with geometries such as those in [29] and then
try to incorporate further phases when appropriate as the absorption is reduced.

The final point we mention is not necessarily one requiring further research but rather an
implementation challenge which will improve the speed (in terms of CPU time) of the
transmission HNA BEM.

• Oscillatory quadrature. The implementation of the HNA BEM presented in this
thesis relied on a composite Gaussian quadrature rule to approximate the arising os-
cillatory integrals. Therefore, the time required to calculate the mass matrix scaled as
k2

1

. Oscillatory quadrature techniques exist which allow the frequency-independent
approximation of such 2D integrals. Their implementation is challenging but pos-
sible and would lead to an HNA BEM which not only has a number of degrees of
freedom independent of frequency, but also a computation time which is short and
independent of frequency.

7.2.2 The general HNA methodology

A thorough review of the HNA approach is given in [28] with many of its current challenges
and future directions discussed in detail. Some of these challenges pertain to the theoretical
aspects of the numerical approximation of the scattering problems, e.g., k-explicit coerciv-
ity estimates for integral operators. Here, however, we shall focus on the forward directions
with regard to the development and implementation of practical and efficient HNA BEMs.

• Collocation HNA BEM. As was mentioned in §6.2.2 the efficient numerical evalua-
tion of the oscillatory integrals arising in the HNA method is a significant challenge.
Many methods exist and are well-known however their implementation is not a trivial
task for the 2D integrals arising in the Galerkin method for 2D problems. With the
progression to 3D problems, the Galerkin implementation would require the evalu-
ation of 4D oscillatory integrals, the implementation of which may prove to not be
feasible or at least practical. Therefore, the development of efficient collocation ver-
sions of present HNA methods is an attractive avenue for future research. We point
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out that collocation HNA h-BEMs have been presented for some scattering problems
(e.g., [4]), however research in collocation HNA hp-BEMs is still in it early stages
with the study in [115] providing promising results for scattering by screens in 2D.

• Multiple scattering configurations. HNA methods have been considered for mul-
tiple scattering problems involving smooth scatterers (see, e.g., [43]) for which the
techniques proposed rely on an iterative approach which decomposes the problem
into many single scattering problems. This approach, to the author’s knowledge, has
not been extended to the polygonal scatterer case and hence is a natural extension for
future research. However we note that a different HNA method for multiple scatterers
has been proposed that does not rely on iteration [27].

• Three-dimensional problems. Finally, the ultimate aim of the HNA methodol-
ogy would be to efficiently solve problems of relevance in science and engineering,
namely problems in three dimensions. This extension is a challenging task since,
for the transmission problem, each 2D face of the polyhedron corresponds to a form
of the 2D problem discussed in this thesis, and we also have to take account of the
3D diffracted waves propagating within the scatterer. Some work has been done for
scattering by a 2D screen in three dimensions [58] which is a natural starting point
for 3D problems. The results are promising and with further research could lead the
way for HNA methods for scattering by 3D polyhedra.
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