
A Moving Mesh Finite Element Method
And Its Application To Population

Dynamics

Anna Watkins

Department of Mathematics

Reading University

This dissertation is submitted for the degree of

Doctor of Philosophy

June 2017

Declaration

I confirm that this is my own work and the use of all material from other sources has been
properly and fully acknowledged.

Anna Watkins
June 2017

Acknowledgements

There are many who deserve acknowledgement for their part in the completion of this thesis.
The work here must be one of the longest running PhD theses of all time at 11 years, and has
been completed in part-time bursts whenever life and time allowed. The beginning was as a
new graduate in a rented flat, coding on my first laptop. During the course of the work, there
have been two house moves, a wedding, a house renovation, a career as an athlete spanning
two Olympic games, a start-up business, a new career in analytics, and two children. The
work was done on planes, buses and commuter trains, at home with a baby in a sling, in
any number of hotel rooms whilst on training camp and and even greater number of coffee
shops, and even occasionally in the department at Reading. Therefore the support of those
around me has been fundamental.

I’m very grateful to Paul Thompson, my rowing coach, who believed that space needs to
be made for things like this in an athletic career. This attitude meant that I have been able to
cope with retirement from sport much better than I would have otherwise. I’m also grateful
to Reading University Boat Club, who gave me a sports scholarship, and to UK Sport, who
gave me an education grant, between which I was able to make ends meet in the early days
when money was tight. I’m grateful to my parents for the encouragement they gave. I’d also
like to thank Paul Glaister and Peter Grindrod for their generous time and friendly support,
in supervising me and sharing ideas and research.

There are certain people I’d like to thank simply for putting up with me. In this group
are my rowing partners, particularly Annie Vernon, Elise Sherwell and Katherine Grainger,
who put up with me ignoring them as we shared rooms whilst training, and even as I zoned
out to think about maths in the middle of a training session in the boat. The other two
important people who have put up with me are my sons William and Richard, aged 2 and 3
now. I’m sorry I was tired and busy and that you weren’t allowed to mash the keys on the
keyboard or watch train videos on the screen.

However I do have two very major acknowledgements to share. I’m incredibly grateful
to my main supervisor Mike Baines. Mike and I have always spent our time together with
equal time given to maths and life in general. Mike has heard and advised on the trials and

iii

tribulations of my rowing career and motherhood as well as the ups and downs of research.
His relentless support, friendly hello and interest in discussing any and every challenge in
life means that I will count him as a lifelong friend. I always looked forward to our time,
even when things weren’t going well. I’m sorry Mike that I took so long and was often
absent for long periods.

Finally I would like to thank my wonderful husband Oliver. His contributions to this
work are too numerous to detail, but stretch comprehensively across all three of the finan-
cial, practical and emotional ranges. Thanks for paying for our flat when we first started out.
Thank you for answering with good humour yet another late night LATEXquestion delivered
in a bad mood. Thanks for teaching me coding standards and debugging. Thanks for work-
ing out ways to make it all happen. Thanks for being my rock every day, a brilliant dad and
and my sounding board for life. I could never have done any of it at all without you.

Anna Watkins

Abstract

The moving mesh finite element method (MMFEM) is a highly useful tool for the numerical
solution of partial differential equations. In particular, for reaction-diffusion equations and
multi-phase equations, the method provides the ability to track features of interest such as
blow-up, the ability to track a free boundary, and the ability to model a dynamic interface
between phases. This is achieved through a geometric conservation approach, whereby the
integral of a suitable quantity is constant within a given patch of elements, but the footprint
and location of those elements are dynamic. We apply the MMFEM to a variety of systems,
including for the first time to various forms of the Lotka-Volterra competition equations.
We derive a Lotka-Volterra based reaction-diffusion-aggregation system with two phases,
representing spatially segregated species separated by a competitive interface. We model
this system using the MMFEM, conserving an integral of population density within each
patch of elements. We demonstrate its feasibility as a tool for ecological studies.

Table of contents

1 Introduction 1
1.1 Mesh adaptation . 2
1.2 Scope of work . 2
1.3 Novel material . 3

2 Technical background 4
2.1 Moving mesh methods . 4

2.1.1 Location-based methods . 4
2.1.2 Moving mesh partial differential equations (MMPDEs) 6
2.1.3 Velocity-based methods . 7
2.1.4 Monitor functions . 9

2.2 Population Dynamics . 10

3 The MMFEM and existing applications 12
3.1 The moving mesh finite element method 12

3.1.1 Generating the weak forms of the PDE and associated equations . . 13
3.1.2 Introducing the MMFEM framework in one dimension 20
3.1.3 Introducing the MMFEM framework in two dimensions 25

3.2 Existing applications of the MMFEM . 31
3.2.1 The porous medium equation . 31
3.2.2 A fourth order problem . 32
3.2.3 A Stefan problem . 33
3.2.4 Finite difference implementations 33

3.3 Extensions to the MMFEM . 34

4 New applications for MMFEMs 38
4.1 An Illustration of the Equidistribution Method: a vertical velocity profile . . 38

Table of contents vi

4.1.1 Weak forms . 39
4.1.2 Equidistribution by arc length . 42

4.2 An Illustration of the Conservation Method: Fisher’s Equation 50
4.2.1 Fisher’s Equation in 1D . 50
4.2.2 Fisher’s Equation in 2D . 76

4.3 Keller-Segel model in 2D . 93

5 Moving interface models 109
5.1 The two phase Stefan problem in 1D . 109

5.1.1 Construction of the finite element form 117
5.1.2 Results . 119

5.2 The two phase model of competition-diffusion 121
5.2.1 Construction of the finite element form 130
5.2.2 Results . 133

6 Aggregation models 143
6.1 Population clustering models for a single species 144

6.1.1 1D population clustering model for a single species 145
6.1.2 Construction of the finite element form 147
6.1.3 2D population clustering model for a single species 150
6.1.4 Construction of the finite element form 152
6.1.5 Results . 154

6.2 Population clustering models for two competitive species 159
6.2.1 The conservative population case 160
6.2.2 Construction of the finite element form 163
6.2.3 Results . 166
6.2.4 The non-conservative population case 167
6.2.5 Construction of the finite element form 171
6.2.6 Results . 173
6.2.7 A change in the resource space . 177

7 A combined model with a moving interface 182
7.1 The two phase model of competition-diffusion-aggregation 182
7.2 1-D competition-aggregation-diffusion in a two phase model 184

7.2.1 Construction of the finite element form 192
7.2.2 Results . 197

Table of contents vii

7.3 2-D competition-aggregation-diffusion in a two phase model 202
7.3.1 Construction of the finite element form 212
7.3.2 Results . 217
7.3.3 Further work . 217

8 Summary 221

Appendix A Piecewise linear approximations 224

Appendix B Gaussian quadrature 226

References 229

Chapter 1

Introduction

In a great many areas of study, partial differential equations (PDEs) are used to describe
models, laws and systems. From the simplest of examples, the equations governing heat
transfer, through to trading models for global financial markets, the PDE gives us an ap-
proach that can tackle a vast and ever-growing range of real-world problems. We may
understand and make predictions about the behaviour of complex mechanical systems, we
may study the weather, or we may gain insights into biological systems. The scope of PDEs
and their relevance to our lives is beyond doubt. In many of these systems we have very
complex interactions for which analytical solutions are not practicable or even possible.
Direct experimentation and measurement may likewise not be practical and is generally ex-
pensive. Numerical modelling is therefore the key tool to unlock our understanding of how
these systems are working or how they might evolve in time. Techniques for doing so are
well established and are subject to continual refinement and improvement. One particular
modelling technique, the use of finite elements, has plenty to recommend it. It involves di-
viding the domain into small discrete elements, and calculating the effect of each part upon
its neighbours. In doing so an approximation to the whole system is produced. The size
and spacing of these elements can be chosen to particularly suit the shape or dynamics of
the domain, and is specified by a grid or mesh. The mesh may be uniformly distributed
or otherwise. In the particular case of time dependent PDEs, there may be advantages to
having a mesh that moves with time, so that features of interest may be tracked with accu-
racy without the computational expense of increasing the resolution everywhere. For certain
phenomena such as boundary layers, interior moving interfaces and blow-up problems this
can be especially true. This is the field of moving mesh finite element modelling, and this
field is the subject of this thesis.

1.1 Mesh adaptation 2

1.1 Mesh adaptation

In the body of work concerning mesh adaptation, there are three basic approaches which are
usually given the following names:

h-refinement is the insertion of extra mesh points around an area of interest;

p-refinement is the use of a higher-order polynomial in each interval between mesh points,
so that values between mesh points are better approximated;

r-refinement is the dynamic movement of existing mesh points to track a feature of interest.

Most commonly, h-refinement and p-refinement techniques are used and are often com-
bined together. Their strength is that the algorithms produced are versatile; they do not
need to utilise any particular dynamic properties of the underlying solution. This is also a
weakness, since the dynamic properties of the solution can be an excellent guide to the most
efficient mesh adaptations.

In r-refinement, the mesh nodes are assigned a velocity at each time step. This approach
naturally lends itself to the solving of time dependent systems, as the time integration for the
mesh movement and the solution evolution can be performed alongside one another, using
any chosen integration scheme. Also, the node velocity can be chosen to work with useful
properties of the system; for example one might wish to conserve mass within each element.
Taking advantage of this sort of property means that, if our scheme is well chosen, the mesh
evolves to reflect the solution in an efficient and elegant way. The nodes move smoothly
along with the solution. We do not need to add or remove nodes, and we do not need to
interpolate the solution between nodes. The node positions and the solution are completely
linked. An excellent summary of the theory and practice of r-refinement techniques can be
found in Huang and Russell’s book [49].

1.2 Scope of work

In this thesis, we consider in particular the application of one r-refinement technique. The
technique of interest is termed the moving mesh finite element method (MMFEM). This
method was developed in 2005 by Baines, Hubbard and Jimack [5], and uses a geometric
conservation approach to generate mesh adaptation. A finite element construction provides
the framework. We apply this method to a variety of reaction-diffusion PDE systems. We
have a particular focus on multi-phase systems, where a dynamic interface exists between

1.3 Novel material 3

phases. The MMFEM has previously been applied to the Stefan problem [8] where the
dynamic interface represents the melting of ice into water. We extend this work with a sim-
plified method. We then consider the application of the MMFEM to models of population
dynamics. We take a version of the Lotka-Volterra competition model that, like Stefan, de-
scribes a two-phase reaction-diffusion system, and implement the MMFEM for this system.
We then consider the application of the MMFEM to systems of intraspecies and interspecies
interactions with aggregating dynamics. Finally, we present a new model for interspecies
reactions that permits a dynamic interface combined with aggregating dynamics, as well as
the more familiar reaction-diffusion dynamics. We implement the MMFEM for this model
in chapter 7, and demonstrate its utility.

1.3 Novel material

This thesis contains the following novel material

• An application of the equidistribution method to a vertical water column under wind
shear;

• A two dimensional MMFEM implementation for the Fisher’s equation for the first
time;

• A two dimensional MMFEM implementation for the Keller-Segel model for the first
time;

• The first numerical model of the two phase Lotka Volterra competition system derived
by Hilhorst et al. [31]. We use the MMFEM to achieve this;

• A novel approach to generating an interface velocity between phases for the compet-
itive Lotka-Volterra system.

• A MMFEM model for single species population aggregation in one dimension;

• A MMFEM model for single species population aggregation in two dimensions, which
is also the first 2-D numerical model of the aggregation proposed by Grindrod [29];

• A finite element model of the Lotka-Volterra competition equations in 2-D;

• A new multi-phase aggregation-reaction-diffusion model for Lotka-Volterra competi-
tion, and its implementation using the MMFEM in both 1 and 2-D.

Chapter 2

Technical background

In this thesis we apply a moving mesh finite element method to a variety of systems, with a
particular focus on population dynamics. Here we set out the historical evolution of moving
mesh methods, and also a history of PDE systems for population modelling.

2.1 Moving mesh methods

In moving the mesh, we have two fundamentally different approaches. We may use a system
that provides a mapping to move the nodes at each time step in a fixed, Eulerian frame,
or we may construct the entire system in a Lagrangian, or moving, co-ordinate system.
Following [18], we will call these location-based, and velocity-based methods, respectively.
An overview of these methods is given here. For a more detailed summary, the 2009 paper
by Budd, Huang and Russell [15] is recommended.

2.1.1 Location-based methods

The common feature of this class of methods is that the location of the mesh nodes at
a particular time step is directly controlled by a mapping function. The principle most
often used to achieve this is equidistribution. Equidistribution is a term used to describe
the locating of points such that a particular monitor function, for example arc length, is
the same for all intervals between nodes. This is achieved either directly, or by defining
the mapping as the minimiser of a functional. In one dimension, consider the case of an
adaptive mapping x(ξ , t) from a computational domain Ωc to a physical domain Ω. If we
are using a uniform computational mesh then ∂ξ

∂x is the density of the mesh on Ω. We then

2.1 Moving mesh methods 5

choose a monitor function M(x)> 0 and require the mesh density to be proportional to it,

∂ξ

∂x
= c M(x). (2.1)

The equivalence to a functional approach is apparent if we take the quadratic functional:

I[ξ] =
∫

Ω

[M(x)]−1
(

∂ξ

∂x

)2

dx (2.2)

for which the corresponding Euler-Lagrange equation is:

∂

∂x

(
[M(x)]−1 ∂ξ

∂x

)
= 0 (2.3)

which is the same as dividing (2.1) by M(x) and differentiating, and can be solved with a
given M to give ξ in terms of x. The functional approach is useful as it is comparatively
easily extended to higher dimensions.

An early example of the use of equidistribution is given by White [52]. He uses the
integral version of the equidistribution principle (2.1) which is, in continuous form:

∫ x(ξ ,t)

0
M(x(ξ , t), t)dx = ξ

∫ 1

0
M(x(ξ , t), t)dx ∀t. (2.4)

If this is differentiated with respect to ξ we obtain

M(x(ξ , t), t)
∂

∂ξ
x(ξ , t) = θ(t) (2.5)

where
θ(t) =

∫ 1

0
M(x(ξ , t), t)dx

and differentiating with respect to ξ again gives

∂

∂ξ

(
M(x(ξ , t), t)

∂

∂ξ
x(ξ , t)

)
= 0. (2.6)

This will generally be nonlinear and so has been solved using an iterative approach by
Baines [3]. We use this approach in Chapter 4, where we use an arc length monitor function
to update the node spacing for a water column model with coriolis forces.

2.1 Moving mesh methods 6

2.1.2 Moving mesh partial differential equations (MMPDEs)

It is recommended by Huang, Ren and Russell in their 1994 paper [32] to choose a method
that generates moving mesh equations in a continuous form. A simple algorithm is also very
desirable. This is achieved in their work by constructing moving mesh partial differential
equations (MMPDEs) directly from an equidistribution principle. This is a neat and elegant
construction that avoids having to consider user-defined input parameters in the mesh map-
ping. In taking this approach a more stable and more general algorithm can be produced. A
simple example is given here. Huang et al. derive a MMPDE by differentiating (2.6) with
respect to time to give

d
dt

(
∂

∂ξ

(
M(x(ξ , t), t)

∂

∂ξ
x(ξ , t)

))
= 0 (2.7)

which can be rearranged to give the MMPDE

∂

∂ξ

(
M

∂ ẋ
∂ξ

)
+

∂

∂ξ

(
∂M
∂ξ

ẋ
)
=− ∂

∂ξ

(
∂M
∂ t

∂x
∂ξ

)
(2.8)

where ẋ(ξ , t) is the mesh velocity. A great variety of MMPDEs exist, which vary in their
approach to temporal and spatial smoothing and regularisation. The power of selecting the
right one was demonstrated by Budd et al. in 1996 [14]. They took an MMPDE from a
1986 paper [1] and applied it to a blow up problem. The MMPDE they used was derived
from (2.7) using temporal smoothing and is

∂ 2ẋ
∂ξ 2 =−1

r
∂

∂ξ

(
M

∂x
∂ξ

)
(2.9)

where r is a small relaxation time after which the mesh is to reach equidistribution. This
form has scale invariance properties. Here it is demonstrated that the use of monitor func-
tions which incorporate such key properties of the original PDE can be particularly useful,
as they allow features such as scaling invariance to be preserved. Natural spatial features
of the PDE are inherited by the MMPDE. In this paper, self-similar or approximately self-
similar solutions of blow-up equations are shown to be successful.

Another key concept was introduced by Budd and Williams in their 2006 paper [16].
They solve a relaxed form of the Monge–Ampere equation to compute a transformation
from a regular (computational) to the desired spatially non-uniform mesh. The method
involves the creation of a mesh potential which determines the location of the mesh points.
Using the Legendre transformation, the equidistribution principle is transformed into the

2.1 Moving mesh methods 7

Monge–Ampere equation giving the mesh potential.

2.1.3 Velocity-based methods

The following velocity based methods make use of the Arbitrary Langrangian Eulerian
(ALE) form of the PDE; that is to say that a moving co-ordinate system is used to directly
provide the mesh velocity. The form provides a mapping from the fixed to the moving
frame. Consider the time dependent PDE

∂u
∂ t

= L u, (2.10)

where u = u(x, t) is defined in a fixed (Eulerian) reference frame, and L is a differential
operator involving only space derivatives. To rewrite this in a moving (Lagrangian) frame,
we allow x to be a moving co-ordinate x(t), which is related to a set of reference co-ordinates
a by the invertible mapping

x = x̂(a, t) (2.11)

where the hat denotes a mapping from the Eulerian frame to the moving frame. We can then
define the solution u(x, t) in the moving frame:

u(x, t) = u(x̂(a, t), t) = û(a, t) (2.12)

and then by the chain rule
∂ û
∂ t

=
∂ x̂
∂ t

·∇u+
∂u
∂ t

(2.13)

where we clarify that

u̇ =
∂ û
∂ t

, ẋ =
∂ x̂
∂ t

. (2.14)

The ALE form of the PDE is then

u̇− ẋ ·∇u = L u. (2.15)

There are now two unknowns, u̇ and ẋ, so we must know the mesh velocities before we
are able to find the solution. The specific method for constructing these velocities varies
from using a real physical motion that provides a natural reference frame, through to defin-
ing the motion with the sole aim of optimizing geometric properties of the mesh. The
velocity can be defined in any way that is helpful or suitable to the system. The various
approaches are outlined here.

2.1 Moving mesh methods 8

Moving finite elements

The MFE method of Miller and Miller, [38] and [39], involves taking the PDE (2.10) and
determining the solution and the mesh simultaneously. This is achieved by minimising a
discrete residual of the ALE form of the PDE (2.15) in a moving frame. Miller and Miller
made the first attempts at a moving mesh of finite elements to deal with a model involving
a sharp transition layer. These attempts made use of Burgers’ equation as a test equation
and had some success in having nodes automatically concentrate in the critical regions.
This pioneering work inevitably led to the discovery of several common difficulties with
the moving mesh approach, such as instabilities arising from nodes colliding or crossing,
and high sensitivities to particular user-defined parameters and unknowns. Having moving
piecewise linear functions approximating smooth functions produced an inherent singular-
ity in certain cases, where a node velocity on a smooth section would be unconstrained. The
improvements that were attempted included introducing viscous forces to encourage nodes
to stay separate, and then in [39] replacing this with a variety of short and long range intern-
odal repellant forces. Whilst stability remained a problem and computation efficiency was
not yet demonstrated, these early models did at least have a mesh with nodes that followed
a moving shock and allowed an improved resolution of the form of the shock when com-
pared with a static grid. A comprehensive summary of the work in this area can be found
in Baines’ book ’Moving Finite Elements’ [2]. Carlson and Miller in [19] and [20] provide
some further suggestions for improvements using gradient weighted finite elements, which
reduce the sensitivity of the system. The use of smoothing for second order terms and the
introduction of small diffusion terms are suggested as well as the addition and removal of
nodes at intervals of several ordinary time steps.

The Geometric Conservation Law

In the 2002 paper [17], Cao, Huang and Russell introduce the concept of the Geometric
Conservation Law (GCL) to MMPDEs. A variational principle is used to construct a min-
imisation problem that must be solved to find the mesh velocities. This is a method that
seeks to preserve properties associated with the volume of each element, so that, for ex-
ample, a moving fluid could not lose or generate mass by mesh movement alone. This is
achieved through enforcing the conservation of the integral of a suitable monitor function
across a mesh interval. The advantages associated with this new method are that the degree
of mesh adaptation is easy to control, and there are theoretical stabilities inherent in the
method that prevent a singular or non-existent co-ordinate transform. A particularly helpful

2.1 Moving mesh methods 9

innovation in the paper is the use of a mesh velocity potential in the calculation of grid veloc-
ities; this can make the finite element formulation better conditioned as certain asymmetric
matrices can be substituted out. Furthermore, velocities in two or more space dimensions
can be uniquely calculated from it. The mesh velocity potential idea is extensively used in
this field after this publication.

The conservation method

The 2005 paper by Baines, Hubbard and Jimack [5] takes the GCL concept and firmly
establishes it from a finite element perspective. This method shares common roots with
the GCL, but instead of using the variational principle to find the mesh velocities they are
directly calculated from the integral form of the PDE. This is achieved by taking a weak
form of the PDE that includes a set of weight functions that move with the mesh. Then
the Reynolds Transport Theorem is used to provide a link between the Eulerian and La-
grangian perspectives. A system is constructed where the mesh velocity is given in terms
of a potential at a particular location (Eulerian view), but the elements themselves track the
movement of mass (Lagrangian view). This gives rise to the Arbitrary Lagrangian Eulerian
(ALE) equation, where a single equation ties together the relationship between the moving
and static reference frames. The examples demonstrated each conserve a proportion of a
quantity within each patch of elements. This may be mass itself for systems where mass is
conserved overall, in which case the simplest form of the theory can be used. This is demon-
strated for the porous medium equation and a fourth-order nonlinear diffusion equation. For
non-conservative systems, the theory uses the concept of relative mass, the proportion of
total mass associated with each element patch, and this is applied to a Stefan problem and
a diffusion problem with a negative source term. The method is extended in their 2006
paper [7] to include the solution of scale invariant PDEs. This exploits the inherent inde-
pendence of physical systems from any given unit system. Again using moving mesh finite
element systems, the time stepping is coupled to the mesh resolution, resulting in a scheme
that provides uniform local accuracy in time. This exploitation of scale invariance is not an
option for fixed mesh models since they are time-independent and therefore cannot exploit
the coupling of dependent and independent variables in time.

2.1.4 Monitor functions

The choice of a suitable monitor function is of course key. The choice will be influenced by
the underlying physics of the system as well as the moving mesh method itself. There are

2.2 Population Dynamics 10

three classes of construction:

• An estimate of a quantity related to the solution such as arc length or mass, that can
be made at the prior time step;

• An estimate of the error at each node or across each element, which can then be
corrected by a suitable mesh adjustment. This is the approach used in moving finite
element methods, where the mesh movement is determined by the velocity term in an
ALE equation;

• A feature of underlying physics which is advantageous, often because of scale invari-
ant properties. An example would be potential vorticity in a meteorological problem.

2.2 Population Dynamics

The time-dependent interactions between species are of great interest to ecologists. The
best known set of equations, the predator-prey Lotka-Volterra equations, were first derived
in the 1920s. Alfred Lotka [37] and Vito Volterra [47] independently derived a pair of equa-
tions which describe the interaction and self-interaction of a predator-prey pairing. These
equations were famously used to model cyclical interactions between Canadian lynx and
snowshoe hares [26]. For a prey species u1 and a predator u2,

du1

dt
= αu1 −βu1u2

du2

dt
= δu1u2 − γu2 (2.16)

where all parameters are positive and real.
The form of the Lotka–Volterra equations for interspecies competition [48] is similar to

the form for predation in that the equation for each species has one term for self-interaction
and one term for the interaction with other species. However, in the equations for predation,
the base population model is exponential, whilst for the competition equations, both species
have a logistic equation as the base. The competition equations are

du1

dt
= r1u1

(
1−
(

u1 +K1u2

k1

))
du2

dt
= r2u2

(
1−
(

u2 +K2u1

k2

))
(2.17)

2.2 Population Dynamics 11

where k1 and k2 are the carrying capacities of species 1 and 2 respectively, K1 is a measure
of the effect that species 1 has on species 2, and K2 is a measure of the effect species 2 has
on species 1. The parameters r1 and r2 are a measure of the timescales upon which births
and deaths operate.

These early sets of equations did not consider spatial effects, so an important develop-
ment was made by Conway and Smoller in 1977 [22], where a diffusion term was included
along with spatial dependence. This allowed the study of a vastly increased range of phe-
nomena, such as the geographic spread of invasive species, or of disease, or the effect of
non-homogenous resource distribution. When random motion of the individuals is consid-
ered in the form of a diffusion term, the Lotka-Volterra equations are of reaction-diffusion
form. We have

∂u1

∂ t
= δ1∇

2u1 + f (u1,u2)u1

∂u2

∂ t
= δ1∇

2u2 +g(u1,u2)u2 (2.18)

where δ1, δ2 are constant diffusion coefficients, and with f (u1,u2) and g(u1,u2) given by
the logistic equations

f (u1,u2) = r1

(
1− u1 −K1u2

k1

)
g(u1,u2) = r2

(
1− u2 −K2u1

k2

)
. (2.19)

It is this set of equations which is of interest to us here.

Chapter 3

The MMFEM and existing applications

3.1 The moving mesh finite element method

The conservation method of Baines, Hubbard and Jimack [5] can be implemented from
either a finite difference or finite element perspective. Using the finite element method can
be more computationally expensive than the finite difference method, but can be more easily
extended to higher dimensions, and depending on the system, more stable. Furthermore,
finite elements lend themselves well to being applied to complex geometries, although that
is beyond the scope of this work. In this thesis we will take a finite element approach.
This approach is termed the Moving Mesh Finite Element Method (MMFEM), and is the
foundation of the methods in this thesis. The mass conservation concept involves assigning
a local proportion of mass to a patch of elements surrounding a particular mesh node. The
mass is assigned from the initial data and conditions, and then remains constant with respect
to time as the solution evolves. In this way, parts of the solution with increasing density will
also have increasing mesh resolution. It is not necessary to have a system with constant
total mass as a property, since there is a version of the method that instead uses a system
of relative proportions of mass or density. Furthermore, it is not necessary to be working
with mass or density in a physical sense. Other quantities, such as volume, concentration or
temperature, are appropriate alternative choices. The MMFEM, in common with standard
static finite element methods, requires that the PDE of interest is written in a weak, integral
form, along with the other relationships necessary for solution. At that point finite element
substitutions can be made and the system can then be solved.

The finite element method can be traced back to approaches to civil engineering prob-
lems, with an early form of the method published by Courant in 1943 [23]. The method was
developed from an engineering perspective during the 1950s within the aerospace industry,

3.1 The moving mesh finite element method 13

and although many contributors could be acknowledged a key individual was certainly M.J.
Turner at Boeing. His 1956 paper [46] contains the basis of the method. A rigorous math-
ematical basis was provided in 1973 by Strang and Fix [45]. Modern reference textbooks
include those of J.N.Reddy [41], and Brenner and Scott, [12] which both outline the modern
forms and techniques for the standard, static finite element method. For semilinear forms,
Larsson’s 1994 paper [35] introduced the approach, and a second textbook by J.N.Reddy
[42] outlines the modern methodology. The key steps of the moving (MMFEM) approach
are outlined here.

3.1.1 Generating the weak forms of the PDE and associated equations

Our example will be a time dependent PDE of the form

∂u
∂ t

= Lu x ∈ Ω(t) (3.1)

where u = u(x, t) is defined in a fixed (Eulerian) reference frame, and L is a differential
operator involving only space derivatives. The boundary conditions must be consistent over
time, and the initial conditions must be known. The variable we seek to solve for, u= u(x, t),
may represent any of a number of physical quantities. For the PDEs examined in this thesis,
u is most commonly a measurement of density. When the integral of u is conserved over a
particular domain for a particular PDE, we will say that it is a ’mass conserving problem’.
We will use the term ’mass’ to refer to u throughout this thesis to allow for comparability
between PDEs, even though for certain PDEs a different physical quantity is actually the
subject of the equation. The boundary conditions will typically include given normal fluxes
uẋ · n̂, where n̂ is the outward pointing normal to the boundary.

Mass conserving problems

Define a reference test domain Ω(0) at t = 0 and a moving test volume Ω(t) in the moving
frame with co-ordinate x(t) and boundary S(t). Mass is conserved so we can write

d
dt

∫
Ω(t)

u dΩ = 0. (3.2)

The Reynolds Transport Theorem, derived in the original 1903 book by Reynolds [43]
is

d
dt

∫
Ω(t)

f dΩ =
∫

Ω(t)

∂ f
∂ t

dΩ+
∫

S(t)
(ẋ · n̂) f dS (3.3)

3.1 The moving mesh finite element method 14

which, when applied to our mass conserving system, becomes

∫
Ω(t)

∂u
∂ t

dΩ+
∫

S(t)
uẋ · n̂ dS = 0 (3.4)

which can be written using the Divergence Theorem as

∫
Ω(t)

(
∂u
∂ t

+∇ · (uẋ)
)

dΩ = 0 (3.5)

where ẋ is any velocity field consistent with the boundary velocities. In the moving frame
then, our original PDE (3.1) can be written in integral form as∫

Ω(t)
Lu dΩ =−

∫
Ω(t)

∇ · (uẋ)dΩ. (3.6)

The PDE can be generalised to a suitable weak form. A weight function wi is introduced,
which moves with velocity ẋ. The function wi is part of a set of functions that form a
partition of unity, i.e. ∑i wi = 1. This will satisfy the advection equation

∂wi

∂ t
+ ẋ ·∇wi = 0. (3.7)

We can write a generalised form of equation (3.2) as

d
dt

∫
Ω(t)

wiu dΩ = 0 (3.8)

which, using the Reynolds Transport Theorem (3.3) again, with f = wiu, implies the gener-
alised form of (3.5), ∫

Ω(t)

∂

∂ t
(wiu)dΩ+

∫
S(t)

wiuẋ · n̂ dS = 0 (3.9)

leading to ∫
Ω(t)

(
wi

∂u
∂ t

+u
∂wi

∂ t
+∇ · (wiuẋ)

)
dΩ = 0 (3.10)

or ∫
Ω(t)

(
wi

∂u
∂ t

+u
∂wi

∂ t
+wi∇ · (uẋ)+uẋ ·∇wi

)
dΩ = 0. (3.11)

Here, ẋ is any velocity field consistent with the boundary velocity. Using the advection

3.1 The moving mesh finite element method 15

equation (3.7) we can cancel out terms

∫
Ω(t)

(
wi

∂u
∂ t

+wi∇ · (uẋ)
)

dΩ = 0 (3.12)

giving us the weak form of a PDE in the moving frame,

−
∫

Ω(t)
wi∇ · (uẋ)dΩ =

∫
Ω(t)

wiLu dΩ (3.13)

or, after integration by parts,

−
∫

S(t)
wiuẋ · n̂ dS+

∫
Ω(t)

uẋ ·∇widΩ =
∫

Ω(t)
wiLu dΩ (3.14)

where n̂ is the outward pointing unit normal. We assume that the boundary flux uẋ · n̂ is
given by boundary conditions that either (1) give both ẋ and u directly or (2) permit a free
boundary with ẋ undefined, but have the condition that u = 0. We now have an equation for
ẋ in terms of u.

A velocity potential is introduced. When we come to calculate the values of ẋ from
equation (3.14), we will be working within a finite element framework. We can make a
substitution here that turns (3.14) into a form that lends itself more naturally to a viable
numerical method. The substitution will give a unique solution, as well as enabling us to
work with symmetric matrices which make for a more straightforward and well conditioned
algorithm. The substitution we will use is to define a velocity potential, φ ,

ẋ = ∇φ . (3.15)

We take care to consider the implications of the Helmholtz decomposition [27] in the solu-
tion of (3.15). Because a vector field in three dimensions can be resolved into the sum of an
irrotational (curl-free) vector field and a solenoidal (divergence-free) vector field, providing
that either φ or ∇φ .n̂ is specified at each point along the boundary, a unique solution is
defined. The choice of which to specify is determined by the boundary conditions of the
system under consideration. Equation (3.14) can be rewritten as∫

Ω(t)
u∇φ ·∇widΩ =

∫
Ω(t)

wiLu dΩ+
∫

S(t)
wiuẋ ·n dS (3.16)

which can then be used to determine φ . The recovery of ẋ can then be made using the weak

3.1 The moving mesh finite element method 16

form of the definition (3.15) of φ ,∫
Ω(t)

wiẋ dΩ =
∫

Ω(t)
wi∇φdΩ. (3.17)

The Eulerian velocity ẋ is now known, and a moving reference frame can be generated. This
can be considered as a deformation x → x̂ in time, derived from the ODE system

dx̂
dt

= ẋ(x̂, t) (3.18)

with initial condition x̂ = x. Once x̂ has been found we can recover the solution from the
mass conservation principle (3.8) in the form∫

Ω(t)
wi(x̂(t), t)u(x̂(t), t)dΩ =

∫
Ω(0)

wi(x̂(0),0)u(x̂(0),0)dΩ (3.19)

at any later time t.

Algorithm 1

The solution of the mass conserving equation (3.1) on the moving mesh therefore consists
of the following steps.
Given functions u and x initially, for each time t:

1. Find the velocity potential by solving equation (3.16) for φ(x, t);

2. Find the node velocity by solving equation (3.17) for ẋ(t);

3. Generate the moving co-ordinate system at the next time-step by integrating (3.18)
for x̂(t +dt);

4. Find the solution u(x̂(t +dt), t +dt) by solving equation (3.19).

Non mass-conserving problems

For the case where total mass is not conserved, the situation requires an additional variable.
A relative conservation principle is introduced. In order to derive the moving co-ordinate

system, a principle is introduced whereby a normalised, or relative local mass is conserved.
The total mass of the system is defined as

θ(t) =
∫

Ω(t)
u dΩ (3.20)

3.1 The moving mesh finite element method 17

and the test volume Ω(t) is defined to be the total spatial domain of the model at time
t, moving with velocity ẋ. We introduce again our weight function wi, also moving with
velocity ẋ, as in (3.7). Again we require that wi is part of a set of functions that together
form a partition of unity. We now define the moving co-ordinate system by requiring that
the integral of u multiplied by that moving weight function is a constant proportion of the
total mass in the system, i.e. ∫

Ω(t)
wiu dΩ = ciθ(t) (3.21)

where the constant ci is determined by the initial wi and the initial data. Since ∑i wi = 1, it
follows that ∑i ci = 1 also. Differentiating with respect to time gives

d
dt

∫
Ω(t)

wiu dΩ = ci
dθ

dt
= ciθ̇(t). (3.22)

As in the case of conserved total mass, we define a reference test domain Ω(0) at t = 0
and a moving test volume Ω(t) in the moving frame x. Applying the Reynolds Transport
Theorem to wiu, we obtain

d
dt

∫
Ω(t)

wiu dΩ =
∫

Ω(t)

∂

∂ t
(wiu)dΩ+

∫
S(t)

wiuẋ · n̂ dS

=
∫

Ω(t)

(
wi

∂u
∂ t

+u
∂wi

∂ t
+∇ · (wiux)

)
dΩ (3.23)

for the generalised weak form of the PDE. Using the advection equation (3.7) we can cancel
out terms as before, giving us the weak form of the PDE in the moving frame,

d
dt

∫
Ω(t)

wiu dΩ−
∫

Ω(t)
wi∇ · (uẋ)dΩ =

∫
Ω(t)

wiLu dΩ. (3.24)

We now use the relative conservation principle (3.21) to make a substitution. We use the
weak form (3.22) to give

ciθ̇(t)−
∫

Ω(t)
wi∇ · (uẋ)dΩ =

∫
Ω(t)

wiLu dΩ. (3.25)

After integration by parts we obtain

ciθ̇(t)+
∫

Ω(t)
uẋ ·∇widΩ =

∫
Ω(t)

wiLu dΩ+
∫

S(t)
wiuẋ · n̂ dS. (3.26)

The boundary flux uẋ · n̂ is again assumed to be given by the boundary conditions. We now

3.1 The moving mesh finite element method 18

have an expression for ẋ in terms of u and θ̇ . So long as we select weight functions wi that
form a partition of unity, ∑i wi = 1, we can calculate θ̇ by summing this expression over all
weight functions in the model and using the boundary conditions. Recalling that ∑i ci = 1,
we sum equation (3.26) over all i, to give

∑
i

ciθ̇(t)+∑
i

(∫
Ω(t)

uẋ ·∇widΩ

)
= ∑

i

(∫
Ω(t)

wiLu dΩ

)
+∑

i

(∫
S(t)

wiuẋ · n̂ dS
)
.

(3.27)

Noting that ∇∑wi = 0,

θ̇(t) =
∫

Ω(t)
Lu dΩ+

∫
S(t)

uẋ · n̂ dS (3.28)

will determine θ̇ , providing that the boundary flux is indeed known.
A velocity potential is then introduced in the same way as for the conservative case. A

velocity potential, φ is defined,
ẋ = ∇φ (3.29)

so that equation (3.26) can be rewritten as

ciθ̇(t)+
∫

Ω(t)
u∇φ ·∇widΩ =

∫
Ω(t)

wiLu dΩ+
∫

S(t)
wiuẋ · n̂ dS (3.30)

and we are now able to uniquely determine φ in terms of u and θ̇ , as long as φ is given at
one point at least. As before, the recovery of ẋ is made using the weak form of the definition
(3.29) of φ ∫

Ω(t)
wiẋ dΩ =

∫
Ω(t)

wi∇φdΩ. (3.31)

Having updated x̂(t) from ẋ and θ(t) from θ̇ using a suitable integration procedure, we can
now recover u from the relative conservation principle,

1
θ(t)

∫
Ω(t)

wi(x̂(t), t)u(x̂(t), t)dΩ =
1

θ(0)

∫
Ω(0)

wi(x̂(0),0)u(x̂(0),0)dΩ. (3.32)

Algorithm 2

The solution of the non mass conserving equation (3.1) on the moving domain therefore
consists of the following steps. Given u and x at t = 0 and θ calculated from (3.20), for
each time t:

3.1 The moving mesh finite element method 19

1. Find θ̇(t) from (3.28)

2. Find the velocity potential by solving equation (3.30) for φ(x, t);

3. Find the deformation velocity by solving equation (3.31) for ẋ(t);

4. Generate the moving co-ordinate x̂ at the next time-step t + dt by integrating (3.18).
Similarly, update θ(t +dt) from θ̇(t);

5. Find the solution u(x̂(t + dt), t + dt) by solving the relative conservation equation
(3.32).

We now have all the key relationships expressed in weak forms, suitable for a finite
element method of solution.

1-D forms

Before looking at the two dimensional finite element method, we will examine the one
dimensional version. In order to do this we will need the analogous system of weak PDE
equations in 1-D. The domain will be x ∈ [a(t),b(t)], and we use u = u(x, t). We begin with
the 1-D definition for θ , analogous to (3.20)

θ(t) =
∫ b(t)

a(t)
u dx. (3.33)

Having introduced the weight function wi, we require that a proportion ci of total mass
associated with that weight function is conserved. We recall equation (3.21), and write the
1-D analogy ∫ b(t)

a(t)
wiu dx = ciθ(t) (3.34)

where the constant ci is determined by the initial wi and the initial data.
The section spanning equations (3.21) to (3.30) outlines the steps required to arrive at

the 2-D weak form of the PDE (3.30). Taking the 1-D definitions (3.33) and (3.34) we
follow the same steps to arrive at the analogous 1-D weak form of (3.30),

ciθ̇(t)+
∫ b(t)

a(t)
u

∂φ

∂x
∂wi

∂x
dx =

∫ b(t)

a(t)
wiLu dx+[wiuẋ]b(t)a(t) (3.35)

where the boundary flux uẋ is given by the boundary conditions and θ̇ is given by the 1-D

3.1 The moving mesh finite element method 20

form of (3.28),

θ̇ =
∫ b(t)

a(t)
Lu dx+[uẋ]b(t)a(t) . (3.36)

The weak integral form defining the one dimensional velocity potential φ is

∫ b(t)

a(t)
wiẋ dx =

∫ b(t)

a(t)
wi

∂φ

∂x
dx. (3.37)

3.1.2 Introducing the MMFEM framework in one dimension

A good choice for the weight function wi is a piecewise linear basis function, having the
property that all the weight functions in the domain together form a partition of unity. For
the second term of (3.35) we require that the weight function is once differentiable. However
our weak formulation will mean that we only need to obtain the derivative between mesh
points rather than at those points, and so a piecewise linear function fits this requirement.
We can write the weak form (3.30) for each function in the domain and can then assemble
the whole system in matrix form. All the instances of equation (3.35) can then be solved at
the same time.
In one dimension, the finite element framework we use is as follows. We discretise the
domain of the PDE on which we wish to solve into intervals, which may be regular or
irregular depending on the initial conditions and/or prior knowledge of the solution. We call
this closed domain [a(t),b(t)] where a(t) and b(t) are moving boundaries in general. The
interval partitions xi(t) will be known as nodes. For i = 1, ...,N,

[a(t) = x0(t)< x1(t)< ... < xi−1(t)< xi(t)< xi+1(t)< ... < xN+1(t) = b(t)] (3.38)

We define the one-dimensional weight functions as piecewise linear functions:

Wi(x) =

x−xi−1
xi−xi−1

xi−1 ≤ x ≤ xi

xi+1−x
xi+1−xi

xi ≤ x ≤ xi+1

0 otherwise

which are graphically shown in figure 3.1. At the domain edge boundary nodes, x0(t) and
xN+1(t), half functions are used as shown in the diagram. Our weak form (3.35) now specif-

3.1 The moving mesh finite element method 21

Fig. 3.1 Weight or basis functions for nodes x0 and xi

ically uses the weight functions Wi(x) rather than the generic weight function wi, so

ciθ̇(t)−
[
Wiu

∂φ

∂ t

]b(t)

a(t)
+
∫ b(t)

a(t)
u

∂φ

∂x
∂Wi

∂x
dx =

∫ b(t)

a(t)
WiLu dx (i = 0, ...,N +1).

(3.39)
Now we can substitute finite element approximations Φ, Ẋ and U for φ , ẋ and u re-

spectively. These are also piecewise linear in form, and are linear combinations of basis
functions Wj(t). The basis functions Wj(t) are often chosen to be the same set of functions
as the weight functions Wi(t), although this does not have to be the case. Here we will
use the same definitions for Wj(t) and Wi(t) unless we specify otherwise. We will use the
subscript i for weight functions, and the subscript j for basis functions. For example, the
function Φ(x, t) is defined as

Φ(x, t) =
N+1

∑
j=0

Φ j(t)Wj(x, t). (3.40)

In this formulation each of the N +2 nodes will have a coefficient Φ j associated with it and
(3.40) will form a linear spline. Similarly we also define

Ẋ(x, t) =
N+1

∑
j=0

Ẋ j(t)Wj(x, t) (3.41)

and

U(x, t) =
N+1

∑
j=0

U j(t)Wj(x, t). (3.42)

We can also use the result that
∂Φ

∂x
=

N+1

∑
j=0

Φ j
∂Wj

∂x
. (3.43)

3.1 The moving mesh finite element method 22

These can now be substituted into equation (3.39) to give

ciθ̇(t)+
N+1

∑
j=0

[∫ b(t)

a(t)
U

∂Wi

∂x
∂Wj

∂x
dx
]

Φ j =
∫ b(t)

a(t)
WiLU dx+[WiUẋ]b(t)a(t) . (3.44)

Note that the term
∫ b(t)

a(t) WiLU dx is not subject to an approximation or substitution for this
general case. Its treatment will depend on the nature of the operator L. If the term cannot be
converted into a linear form then it will be evaluated using quadrature rules.

We will also use the weight functions to evaluate the ci. Each of the ci is associated with
a weight function Wi at t = 0, c f . equation (3.21)

ci =
1
θ

∫ b

a
WiU dx (3.45)

at t = 0. Then, since the basis functions are all compact functions, we can write (3.44) for
each internal node i = [1, ...,N].

ciθ̇(t)+
j=i+1

∑
j=i−1

[∫ xi+1(t)

xi−1(t)
U

∂Wi

∂x
∂Wj

∂x
dx
]

Φ j =
∫ xi+1(t)

xi−1(t)
WiLU dx (3.46)

and for the boundary nodes i = 0 and i = N +1

c0θ̇(t)+
j=1

∑
j=0

[∫ x1(t)

x0(t)
U

∂Wj

∂x
∂W0

∂x
dx
]

Φ j =
∫ x1(t)

x0(t)
WiLU dx− W0U0ẋ|a(t) (3.47)

cN+1θ̇(t)+
j=1

∑
j=0

[∫ xN+1(t)

xN(t)
U

∂Wj

∂x
∂WN+1

∂x
dx
]

Φ j =
∫ xN+1(t)

xN(t)
WiLU dx+ WN+1UN+1ẋ|b(t) .

(3.48)
We can summarize this system as a single matrix equation

Cθ̇ +K(U)Φ = L (3.49)

where Φ is a vector of the unknowns Φ j, C is a vector of the values ci, L is a vector of the
right hand sides of (3.46) to (3.48) with the boundary term included, and the matrix K(U)

is a weighted stiffness matrix, consisting of entries

K(U)i j =
∫ xi+1

xi−1

U(x)
∂Wi

∂x
∂Wj

∂x
dx. (3.50)

3.1 The moving mesh finite element method 23

The process for assembly of K(U) is outlined in section 3.1.2. The matrix is singular but a
value of φ is imposed at one point.

The right hand side L of equation (3.49) can take many forms depending on the nature
of the operator L and the boundary conditions. It may be necessary to make substitutions
and/or perform integration by parts to obtain a computable form: a weak form requiring
functions once-differentiable between nodes only. Note that if we sum over all rows of
(3.49) the rows of the stiffness term K(U) of (3.49) will sum to zero, and the ci values will
sum to unity. Providing that

∫ b(t)
a(t) LUdx is known, this makes it possible to recover θ̇ as the

only remaining unknown by summing the rows of (3.49).

Recovering Ẋ

Equation (3.37) is ∫ b(t)

a(t)
wiẋ dx =

∫ b(t)

a(t)
wi

∂φ

∂x
dx. (3.51)

Selecting the piecewise linear weight functions wi = Wi and using the piecewise linear ap-
proximations (3.41) and (3.43) with basis functions Wj we rewrite (3.51) as

N+1

∑
j=0

[∫ b(t)

a(t)
WiWj dx

]
Ẋ j =

N+1

∑
j=0

[∫ b(t)

a(t)
Wi

∂Wj

∂x
dx
]

Φ j. (3.52)

In matrix form this is
MẊ = BΦ j (3.53)

where Ẋ and Φ j are the vectors containing the unknown weightings ẋ j and the known Φ j.
The mass matrix M is symmetric positive definite and has entries

Mi j =
∫ b(t)

a(t)
WiWjdx (3.54)

and B is an asymmetric matrix consisting of entries

Bi j =
∫ b(t)

a(t)

∂Wj

∂x
Widx. (3.55)

In this way, (3.53) can be solved to obtain the Ẋ j values. The time integration is approxi-
mated by any chosen scheme, for example the explicit Euler scheme.

3.1 The moving mesh finite element method 24

Recovering U

Equation (3.34) is ∫ b(t)

a(t)
wiu dx = ciθ(t). (3.56)

Since the ci are constant, we may write

1
θ(t)

∫ b(t)

a(t)
wi(x(t), t)u(x(t), t)dx =

1
θ(0)

∫ b(0)

a(0)
wi(x(0),0)u(x(0),0)dx (3.57)

for any time t. Using the weight functions Wi, the basis functions Wj, and making the
substitution U(x, t) = ∑ j Wj(x, t)U j(t) we obtain

N+1

∑
j=0

[∫ b(t)

a(t)
WiWjdx

]
U j(t) = ciθ(t) (3.58)

where ci is given by

ci =
1

θ(0)

N+1

∑
j=0

[∫ b(t0)

a(t0)
WiWjdx

]
U j(t0) (3.59)

for the initial data U(0). Then (3.58) is equivalent to the mass matrix system

MU =Cθ(t) (3.60)

with C as the vector containing entries ci, and M the mass matrix as in (3.54). We may then
solve (3.60) for U .

Algorithm 3

The finite element solution of the non mass conserving equation (3.1) on the moving mesh
therefore consists of the following steps. Given initial U and X , and having calculated θ

and C from (3.59), then for each time t:

1. Find θ̇(t) by summing over all rows of the matrix equation (3.49);

2. Find the velocity potential by solving equation (3.49) for the Φ j(t) values;

3. Find the node velocity by solving equation (3.53) for the Ẋ j(t) values;

4. Generate the moving co-ordinate system from (3.18) using the forward Euler approx-
imation. Update θ(t +dt) from θ̇(t) similarly;

3.1 The moving mesh finite element method 25

5. Find the solution values U j(t + dt) by solving the relative conservation equation
(3.60).

Constructing the weighted stiffness matrix

Whilst it is necessary to use both mass and stiffness matrices in the calculations described
in this chapter, the standard forms are well known. The weighted stiffness matrix K(U) of
equation (3.49) is of more interest.

Recall that the elements of K(U) are given by equation (3.50) as

K(U)i j =
∫ xi+1

xi−1

U(x)
∂Wi

∂x
∂Wj

∂x
dx.

Over each element, the value of U(x) is approximated in a piecewise linear manner. This
leads to an element matrix for the interval e = [i−1, i] of:

K(U)e =

Ui+Ui−1

2(xi−xi−1)
−(Ui+Ui−1)
2(xi−xi−1)

−(Ui+Ui−1)
2(xi−xi−1)

Ui+Ui−1
2(xi−xi−1)

 . (3.61)

Since U is continuous, and the functions Wi can be summed from two halves (one lying in
each interval) we may superimpose the element matrices to form an assembled matrix for
all (i, j),

K(U) =

U1+U0
2(x1−x0)

−(U1+U0)
2(x1−x0)

0 · · · · · · · · · 0

−(U1+U0)
2(x1−x0)

(
U1+U0

2(x1−x0)
+ U2+U1

2(x2−x1)

)
(U2+U1)
2(x2−x1)

· · · · · · · · ·
...

0
. . .

. . .
. . .

. . .
. . .

...

... · · · −(Ui+1+Ui)
2(xi+1−xi)

(
Ui+1+Ui

2(xi+1−xi)
+

Ui+2+Ui+1
2(xi+2−xi+1)

)
−(Ui+2+Ui+1)
2(xi+2−xi+1)

· · ·
...

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · · · · · · · · · · −(UN+1+UN)
2(xN+1−xN)

UN+1+UN
2(xN+1−xN)

.

3.1.3 Introducing the MMFEM framework in two dimensions

In two dimensions we also use piecewise linear weight and basis functions, again chosen so
that all the weight functions in the domain together form a partition of unity. There are a

3.1 The moving mesh finite element method 26

Fig. 3.2 Weight function or basis function centred at the node Wi

variety of suitable functions available but in this thesis we will use the simplest option, that
of piecewise linear functions on a triangulated domain.
We triangulate the domain Ω(t) of the PDE we wish to solve. The nodes of the triangulation
will be {Xi},(i = 1, ...,N).

We define the two-dimensional weight function Wi(x) as the piecewise linear function
that takes the value 1 at node i and the value 0 at all other nodes. Figure 3.2 contains a
diagram for clarity. Our weak form of the PDE now specifically uses the piecewise linear
weight functions Wi rather than the generic weight function wi. From (3.30) we have

ciθ̇(t)+
∫

Ω(t)
u∇φ ·∇WidΩ =

∫
Ω(t)

WiLu dΩ+
∫

S(t)
Wiuẋ · n̂ dS. (3.62)

Importantly,
∫

S(t)Wiuẋ · n̂ dS is assumed known from the boundary conditions.
The function φ(x) is again defined in terms of a piecewise linear approximation Φ(x).

As in the 1-D case, each of the N nodes will have a coefficient Φ j associated with it and
these will specify a linear combination of the basis functions Wj. A convenient choice for
these is the same set of functions as we use for the weight functions Wi,

Φ(x, t) =
N

∑
j=1

Φ j(t)Wj(x, t). (3.63)

We also have the analogous definition

U(x, t) =
N

∑
j=1

U j(t)Wj(x, t). (3.64)

3.1 The moving mesh finite element method 27

We use the result that

∇Φ =
N

∑
j=1

Φ j∇Wj (3.65)

and make a substitution for ∇φ and u into equation (3.62), giving

ciθ̇(t)+
N

∑
j=1

[∫
Ω(t)

U∇Wj ·∇WidΩ

]
Φ j =

∫
Ω(t)

WiLU dΩ+
∫

S(t)
WiU ẋ · n̂ dS. (3.66)

We also use the weight functions to evaluate the values for ci, recalling equation (3.21)

ci =
1

θ(t)

∫
Ω(t)

WiU dx. (3.67)

We may construct (3.66) for every triangle and node combination, and thus obtain a linear
system of equations. When doing so we must take special care to include the boundary term
for domain edge boundary triangles. The boundary terms for internal triangle edges will
cancel out, since each edge connects two triangles which will have opposite outwards point-
ing normals n̂, and U is continuous. Each triangle with an edge lying along the boundary
does make a contribution to the boundary term, so that in the sum of these contributions the
whole boundary has been considered.
The assembled matrix equation has exactly the same form as the 1D case,

Cθ̇(t)+K(U)Φ = L. (3.68)

However, the weighted stiffness matrix in 2D is given by

K(U)i j =
∫

Ω(t)
U(x)∇Wi(x) ·∇Wj(x)dΩ. (3.69)

As in the 1-D case, we can use (3.68) to obtain θ̇ by summing over all rows. The stiffness
term will sum to zero and the ci values will sum to unity, leaving the boundary terms as-
sumed known and θ̇ as the only unknown. We can then use (3.68) in full form to determine
the vector Φ, imposing a value of Φ j at one point.

Recovering Ẋ

To find ẋ, we work from the definition of φ (3.16)

ẋ = ∇φ (3.70)

3.1 The moving mesh finite element method 28

for which a weak form is ∫
Ω(t)

wiẋdΩ =
∫

Ω(t)
wi∇φdΩ. (3.71)

Using again the linear weight functions wi = Wi(x, t), and (using basis functions Wj) the
piecewise linear approximations Ẋ = ∑ j Ẋ j(t)Wj(x, t) and ∇Φ = ∑ j Φ j(t)∇Wj(x, t) we ob-
tain

∑
j

[∫
Ω(t)

WiWj dΩ

]
Ẋ j = ∑

j

[∫
Ω(t)

Wi∇WjdΩ

]
Φ j. (3.72)

Hence in matrix form, (3.72) can be solved for Ẋ using

MẊ = BΦ (3.73)

where Ẋ = {Ẋ j}, M is the symmetric mass matrix with elements Mi j =
∫

Ω(t)WiWjdΩ, and
B is an asymmetric matrix with elements Bi j =

∫
Ω(t)Wi∇WjdΩ.

Having found Ẋ, the nodes are repositioned using the forward Euler scheme, and θ̇ is
used to update θ for the new time step in the same way.

Recovering U

We recover u using our distributed mass conservation principle (3.67). For each node i,

ci =
1

θ(t)

∫
Ω(t)

Wiu dx.

Using the piecewise linear approximation U = ∑ j U j(t)Wj(x, t) we obtain

∑
j

[∫
Ω(t)

WiWjdx
]

U j = ciθ(t) (3.74)

which is equivalent to the mass matrix system

MU = θ(t)C. (3.75)

This equation is used to calculate the initial (and constant) values of ci, using the initial
values of U j and X j. After repositioning the nodes we may recover U j(t) from the mass
matrix system (3.75).

3.1 The moving mesh finite element method 29

Algorithm 4

The finite element solution of the non mass conserving equation (3.1) on the moving mesh
therefore consists of the following steps. Given the initial U and X, and having calculated
C and the initial θ from the definition (3.20), then for each time t:

1. Find θ̇(t) by summing over all rows of the matrix equation (3.68);

2. Find the velocity potential by solving equation (3.68) for the Φ j(t) values;

3. Find the node velocity by solving equation (3.73) for the Ẋ j(t) values;

4. Generate the moving nodes X j(t + dt) at the next time-step by solving (3.18) using
the forward Euler approximation. Update θ(t +dt) from θ̇(t) in the same way;

5. Find the solution U(t +dt) by solving the relative conservation equation in the form
(3.75).

Constructing the 2-D weighted stiffness matrix

The entries of the weighted stiffness matrix (3.69) are

K(U)i j =
∫

Ω(t)
U(x, t)∇Wi(x, t) ·∇Wj(x, t)dΩ.

In order to determine the entries for each element matrix we examine a weight or basis
function WA on triangle ωe represented by the co-ordinates xek labelled (A,B,C) (figure
3.3). The triangle has angles α,β ,γ as shown in figure 3.3. Such a triangle actually contains
three local linear functions WA,WB,WC, one associated with each node. The gradient of each
weight or basis function can be calculated from the properties of the triangle. If heightA is
the height of triangle ωe in the direction of the normal to side BC,

|∇WA|=
1

heightA
=

1
bsinγ

. (3.76)

Likewise,
|∇WB|=

1
heightB

=
1

csinα
(3.77)

and
|∇WC|=

1
heightC

=
1

asinβ
. (3.78)

3.1 The moving mesh finite element method 30

Fig. 3.3 Weight or basis function WA centred at the node A

The area of the triangle can be calculated from any of these heights as

areae =
1
2

a(heightA) =
1
2

b(heightB) =
1
2

c(heightC)

=
1
2

bcsinα =
1
2

casinβ =
1
2

absinγ. (3.79)

The piecewise linear construction of function U means that U is linear in each triangle. We
can therefore use the mean to give U in any triangle. Taking each combination of two nodes
at a time, the entries for the element stiffness matrix can be determined. For example,

KBC =
∫

ωe

U∇WB ·∇WCdx

=

(
UA +UB +UC

3

)
areae

(heightB)(heightC)
(−cosα)

=

(
UA +UB +UC

3

) 1
2bcsinα

bcsin2
α
(−cosα)

=

(
UA +UB +UC

3

)
1

2sinα
(−cosα)

=
(UA +UB +UC)

3
(−cot)

2
α (3.80)

3.2 Existing applications of the MMFEM 31

and since ∇(WA +WB +WC) = 0 it follows that

KAA =
∫

ωe

U∇WA ·∇WAdx

=−
∫

ωe

(
UA +UB +UC

3

)
∇WA · (∇WB +∇WC)dx

=

(
UA +UB +UC

6

)
(cotβ + cotγ). (3.81)

The other combinations follow in the same way so that the element stiffness matrix is:

K(U)e =

(
UA +UB +UC

6

)

cotγ + cotβ −cotγ −cotβ

−cotγ cotα + cotγ −cotα

−cotβ −cotα cotβ + cotα.

. (3.82)

Entries calculated from each triangle can be superposed since we have a continuous U , and a
Wj that can be summed from its component triangles. Because of the node interconnectivity,
the full matrix is an obvious candidate for being assembled as part of the algorithm. Having
described the technique we now turn to some existing examples.

3.2 Existing applications of the MMFEM

3.2.1 The porous medium equation

In their 2005 paper [5], Baines et al. apply algorithm 4 to the porous medium equation, for
which the fixed reference form of the PDE is

∂u
∂ t

= ∇ · (um
∇u) (3.83)

with u = 0 at the boundary. This is a mass conserving problem, so θ̇ = 0 and only the
simpler form of the method is required, given in section 3.1.1. When the steps outlined in
this chapter are applied, the weak, integral form for Φ produced is

∫
Ω(t)

U∇Φ ·∇Wi dΩ =−
∫

Ω(t)
Um

∇U ·∇Wi dΩ (3.84)

3.2 Existing applications of the MMFEM 32

after integration by parts, and imposing the boundary condition u = 0. In [5] Φ was com-
puted using a finite element approximation in both one and two dimensions. The model was
found to be second-order accurate for m = 1, although of lower accuracy for m = 3. An
improvement was made in having the initial grid non-uniform. The starting nodal positions
were optimised using a least squares best fit to the initial conditions which improved accu-
racy to second order in one dimension. A further development was made in the 2006 paper
[7], for which scale invariance is incorporated. In this case the time stepping and the mesh
spacing are coupled together with the solution, and this was found to improve accuracy.

3.2.2 A fourth order problem

The fourth order diffusion equation seen in [5] and covered in detail in the 2014 PhD thesis
by N.Bird [10], is

∂u
∂ t

= ∇ · (um
∇p) (3.85)

where p, the pressure, is given by
p =−∇

2u, (3.86)

and
u = ∇u · n̂ = 0 (3.87)

on the boundary. This system models the capillary effects in the coating of a solid surface
by a thin liquid film.

This problem requires an additional step compared to the Porous Medium Equation. It
is necessary to obtain p from u, and this can also be done using a finite element approach.
The weak form (3.86) for p, using integration by parts, is∫

Ω(t)
wi p dΩ =

∫
Ω(t)

∇wi ·∇u dΩ (3.88)

which is suitable for finite element substitutions to be made. Solution of the resulting system
of equations when m = 1 is compared to an exact solution and found to be fourth-order
accurate in one dimension, and second-order accurate in two dimensions.

3.2 Existing applications of the MMFEM 33

3.2.3 A Stefan problem

A non mass conserving example is given in the original 2005 Baines paper [5]. The single
phase Stefan problem describes heat diffusion in two dimensions given by the PDE

∂u
∂ t

= k∇
2u (3.89)

with different values for k and an interface boundary condition

∂u
∂n

∣∣∣∣
Γ1

=CLẋ ·n uΓ1 = uB (3.90)

where CL is the heat of phase change per unit volume, and the temperature uΓ1 at the inter-
face is the constant uB. Here Γ1 represents a moving boundary. This is the basis for the later
two-phase method in [8].

3.2.4 Finite difference implementations

As has been mentioned, the underlying conservation method behind the MMFEM can also
be implemented numerically from a finite difference perspective. The conservation method
with a finite difference approach has been applied to a wide variety of problems in one
and two dimensions. These demonstrate the generality and adaptability of the method, and
also provide a guide to useful implementation directions for the MMFEM. In one and two
dimensions, a blow up problem in a version of Fisher’s Equation has been studied by S.Cole
[21]. She studies systems with p = 2 in the reaction-diffusion PDE

∂u
∂ t

=
∂ 2u
∂x2 +up. (3.91)

A model of a volcano has been studied by N. Robertson [44]. In this model, h is the height
of the profile and U is a plastic flow property that is a function of h and the slope gradient.
The PDE is:

∂h
∂ t

+
∂U
∂x

= ws(x). (3.92)

The system of Euler equations of compressible flow were studied in the PhD thesis by
Wells [50] and the paper [51] by Wells, Glaister and Baines. This requires the solution
of a system of three equations to be solved together at each time step as they have com-
plicated interdependency and this was achieved using the finite difference ALE (Arbitrary
Langrangian Eulerian) method.

3.3 Extensions to the MMFEM 34

A different combined system of equations was studied by S.Cole in [21]. Models of
chemotaxis using the Keller-Segel equations were solved in one and two (radial) dimen-
sions using a finite difference conservation method. The system involves a substrate and a
reactant, and the PDEs are

ut = ∇.(k1(u,v)∇u− k2(u,v)u∇v)+ k3(u,v) (3.93)

and
vt = Dv∇

2v+ k4(u,v)− k5(u,v)v (3.94)

where u is cell density, v is concentration of substrate, k1 is diffusivity, k2 is chemotactic
sensitivity, k3 is cell growth and death, k4 is production of substrate and k5 is degradation of
substrate.

Free boundary problems

In their 2015 paper [36], Lee, Baines and Langdon use the finite difference implementation
of the method to examine free boundary problems in one dimension. These included the
Porous Medium equation, Richards equation and the Crank Gupta problem. A moving
boundary is introduced with a flux boundary condition. For a boundary at x = b(t), the
boundary conditions are

u(b(t), t) = 0, u(b(t), t)
db
dt

= 0 (3.95)

This is found to provide solutions accurate to second order.
In this thesis we will take a selection of these finite difference implementations and

derive, implement and study the corresponding MMFEM.

3.3 Extensions to the MMFEM

Since the Baines, Hubbard and Jimack papers [5] and [7], a variety of interesting applica-
tions and extensions to the method have been investigated. Excellent overviews are given
in the review papers [6] and [36]. It has been demonstrated that forms of the method can
successfully be applied to linear and nonlinear systems, and systems with more than one
phase. Highlights are described in this section.

3.3 Extensions to the MMFEM 35

High order nonlinear diffusion

In his PhD thesis [10], N.Bird considers nonlinear diffusion of second, fourth and sixth
order. The MMFEM is applied, and interestingly an alternative type of higher order ba-
sis function is also tried. In one dimension Lagrange polynomials of linear, quadratic and
fourth-order forms are used to provide a basis for the finite element approximation. The
MMFEM is compared with a finite difference method. Some practical difficulties in ap-
plying the finite difference method are considered. These arise when the boundaries are
permitted to move, resulting in certain functions becoming unbounded and singularities be-
ing introduced. It is found that the MMFEM alleviates this problem partially, although
undesirable oscillations are still observed.

Two phase Stefan problem

In 2009, Baines, Hubbard and Jimack together with Mahmood [8] present a version of the
algorithm from [5] in the form of an Arbitrary Lagrangian-Eulerian equation (ALE) that is
sufficiently general to be able to model a two phase problem with a moving interface. Each
phase is a diffusion system with driving PDEs

KS
∂u
∂ t

= ∇ · (kS∇u) in solid regions (3.96)

KL
∂u
∂ t

= ∇ · (kL∇u) in liquid regions (3.97)

where u is the temperature, the K are the volumetric heat capacities of each phase, and the
k are the thermal conductivity of each phase. There is also an interface condition described
by the Stefan equation

kS
∂uS

∂ t
− kL

∂uL

∂ t
= λv (3.98)

in the normal direction to the interface, with constant temperatures uS = uL = uM at the
interface M. Here uM is the temperature at which melting takes place, λ is the heat of phase
change per unit volume, and v is the velocity of the interface.

Again a conservation principle is used to generate nodal velocities. This is then applied
to a two-phase model, in both one and two (radially symmetric) dimensions. The model
considers a domain containing both a solid and a liquid phase, with a moving interface
between the two. This moving interface is of course internal to the domain. The transition
between solid and liquid is modelled by applying the Stefan condition (3.98) at the interface.
A system is constructed for each phase and also the interface, and the three are linked and

3.3 Extensions to the MMFEM 36

solved as a single system to provide the mesh velocities. The masses are recovered for each
phase separately since they are decoupled by the interface; these are again obtained from the
conservation properties. This work is extended and developed for a new system in Chapter
5 of this thesis.

Ice sheets

In the 2013 PhD thesis [40] by Partridge and the subsequent paper in collaboration with
Bonan et al. [11], a 1-D MMFEM is applied to dynamic ice flow equations to model the
evolution of a glacier. The method is able to accurately capture and track the glacial front
using a moving boundary framework, and the model is extended to two dimensions. In
addition real world data is assimilated using the 3d-var scheme. This is found to work well in
one dimension and to improve the accuracy of the profile of the ice front. In two dimensions
the moving mesh alone works well, but the data assimilation aspect of the problem remains
open-ended.

Explicit and implicit time-stepping schemes

In the methods described above, the time-stepping schemes are usually simple choices such
as the explicit Euler method. These can place considerable constraints on the size of the
time-step that can be made, because mesh tangling can occur. This is caused by nodes
overtaking one another, and imposes a limitation on the speed of computation such that
it becomes impractical to run models for long time horizons. A particular semi implicit
or implicit method is proposed by Baines and Lee in the 2014 paper [9] that can make it
impossible for nodes to tangle in one dimension. This allows us to choose a larger time-step.
The method involves manipulating the structure of the velocity equation so that it makes use
of its similarity to a variable co-efficient heat equation. A maximum/minimum principle can
then be employed which makes it impossible for nodes to overtake. An alternative explicit
method is given by Baines in his 2015 paper [4]. This method focuses on the node spacings
or edge lengths (in 2D) and employs an amplification factor to calculate the distances. This
factor is always positive and prevents overtaking. This is implemented in a finite difference
framework in one dimension and the extension to two dimensions is outlined. It is noted
that smoothness problems in ancillary variables may occur in certain circumstances.

3.3 Extensions to the MMFEM 37

Phase field models

Another approach to the study of phase transitions and interfaces is to attempt the modelling
of a small but finite transition layer between two uniform bulk phases. These are known as
phase field models, and a moving mesh finite element approach is discussed by Zhang and
Du [53]. In these models the field varies smoothly but with a steep gradient in the transition
layer. The example used is the Allen-Cahn equation, and the challenge of suitably resolving
the thin interface layer is discussed with reference to appropriate time-stepping schemes and
numerical stability. The paper also examines cases where such layers move over time such
that dynamically evolving fronts can be tracked with an appropriately adapting mesh.

Chapter 4

New applications for MMFEMs

We shall begin this chapter by illustrating methods that form a part of a development path-
way for MMFEMs. This will allow us to become familiar with useful techniques as well as
to assess the incremental benefits offered by each evolutionary step in the development of
the MMFEM.

4.1 An Illustration of the Equidistribution Method: a ver-
tical velocity profile

The Ekman spiral [25] is a structure of currents near the ocean surface in which the flow
direction rotates as one moves away from the surface. It was first noted by Swedish oceanog-
rapher Fridtjof Nansen, who observed an ice floe drifting at a tangent to the wind direction,
and whose observations allowed Ekman to develop his model. The rotation is driven by the
Coriolis effect. A feature of this structure of currents is the development of a shallow layer
(Ekman layer) with behaviour that differs from the water below. The development of this
layer in an initially stationary water column subject to wind stress is an interesting candi-
date for a moving mesh model, because we might wish to adapt the mesh to better resolve
the emerging layer. Here we illustrate the equidistribution method and assess its utility for
resolving the Ekman layer. A column of water is modelled under wind stress and with a
Coriolis effect taken into account. A 1-D finite element method is used, and both the fixed
mesh and an adaptive scheme for the mesh are considered. In this example, the adaptive
scheme will be the equidistribution method, using arc length as a monitor function. We
also consider alternative monitor functions. Time integration is performed using an Adams
Bashforth method of third order.

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 39

The PDE of interest is

∂u
∂ t

+Fez ×u =
∂

∂ z

(
ku

∂u
∂ z

)
(4.1)

where u(z, t) is the velocity, a function of the depth z. The velocity has two horizontal
components, ux and uy. The physical constants are F = 10−4s−1 (the Coriolis force) and
Ku = 10−2m−2s−1 (eddy viscosity, a function of density, here assumed to be constant). The
boundary condition at the deepest extent of the water column z =−h is the Dirichlet condi-
tion u(z=−h, t) = 0. On the surface, z= 0, we have a wind shear providing a flux boundary
condition ∂u

∂ z

∣∣∣
0
= βββ with components βx = 10−2s−1 and βy = 0. The initial conditions are

u(z, t = 0) = 0.
We separate (4.1) into x and y components. This generates two interdependent equations in
1-D. The PDEs for each component are

∂ux

∂ t
=

∂

∂ z

(
ku

∂ux

∂ z

)
+Fuy (4.2)

∂uy

∂ t
=

∂

∂ z

(
ku

∂uy

∂ z

)
−Fux. (4.3)

4.1.1 Weak forms

To enable substitution of piecewise linear forms suitable for the finite element method, we
must obtain the weak forms of the PDEs. The first step is to multiply the PDEs by a weight
function wi,

wi
∂ux

∂ t
= wi

∂

∂ z

(
ku

∂ux

∂ z

)
+wiFuy (4.4)

wi
∂uy

∂ t
= wi

∂

∂ z

(
ku

∂uy

∂ z

)
−wiFux (4.5)

and integrate from −h to 0. Then integration by parts gives the weak forms. These are, for
each component respectively,

∫ 0

−h
wi

∂ux

∂ t
dz =

∫ 0

−h
wi

∂

∂ z

(
ku

∂ux

∂ z

)
dz+

∫ 0

−h
wiFuy dz

=

[
kuwi

∂ux

∂ z

]0

−h
−
∫ 0

−h
ku

∂wi

∂ z
∂ux

∂ z
dz+

∫ 0

−h
wiFuy dz (4.6)

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 40

and ∫ 0

−h
wi

∂uy

∂ t
dz =

∫ 0

−h
wi

∂

∂ z

(
ku

∂uy

∂ z

)
dz−

∫ 0

−h
wiFux dz

=

[
kuwi

∂uy

∂ z

]0

−h
−
∫ 0

−h
ku

∂wi

∂ z
∂uy

∂ z
dz−

∫ 0

−h
wiFux dz. (4.7)

We can now substitute piecewise linear functions into the weak forms. These functions are
a weighted sum of a set of basis functions Wi,

Ux(z, t) =
N+1

∑
j=0

Ux j(t)Wj(z) (4.8)

Uy(z, t) =
N+1

∑
j=0

Uy j(t)Wj(z). (4.9)

The derivatives with respect to z are

∂Ux

∂ z
=

N+1

∑
j=0

Ux j

∂Wj

∂ z
(4.10)

∂Uy

∂ z
=

N+1

∑
j=0

Uy j

∂Wj

∂ z
(4.11)

and the derivatives with respect to time are

∂Ux

∂ t
=

N+1

∑
j=0

∂Ux j

∂ t
Wj (4.12)

∂Uy

∂ t
=

N+1

∑
j=0

∂Uy j

∂ t
Wj. (4.13)

We also choose the same functions Wi for the weight function wi in (4.6) and (4.7), so that
wi =Wi.

The weak forms (4.6) and (4.7) after substitution are, for any i,

N+1

∑
j=0

∂Ux j

∂ t

∫ 0

−h
WiWj dz =

[
kuWi

∂ux

∂ z

]0

−h
−

N+1

∑
j=0

Ux j

∫ 0

−h
ku

∂Wi

∂ z
∂Wj

∂ z
dz+

N+1

∑
j=0

Uy j

∫ 0

−h
FWiWjdz

(4.14)

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 41

and

N+1

∑
j=0

∂Uy j

∂ t

∫ 0

−h
WiWj dz =

[
kuWi

∂uy

∂ z

]0

−h
−

N+1

∑
j=0

Uy j

∫ 0

−h
ku

∂Wi

∂ z
∂Wj

∂ z
dz−

N+1

∑
j=0

Ux j

∫ 0

−h
FWiWjdz.

(4.15)
The Dirichlet boundary condition u(z = −h, t) = 0, is strongly imposed; therefore we will
not need to calculate (4.14) and (4.15) for the zeroth node at z = −h. However, at z = 0
we will need to incorporate the boundary condition ∂u

∂ z = β . For the weight functions wi, a
convenient choice is the collection of piecewise linear Wi functions from Chapter 3. These
functions are also used as the basis functions for the piecewise linear approximations (4.8)
and (4.9), so that in this case basis functions and weight functions are the same. The weak
forms are now

N+1

∑
j=1

∂Ux j

∂ t

∫ 0

−h
WiWj dz = kuWiβx|0 −

N+1

∑
j=1

Ux j

∫ 0

−h
ku

∂Wi

∂ z
∂Wj

∂ z
dz+

N+1

∑
j=1

Uy j

∫ 0

−h
FWiWjdz

(4.16)
and

N+1

∑
j=1

∂Uy j

∂ t

∫ 0

−h
WiWj dz =−

N+1

∑
j=1

Uy j

∫ 0

−h
ku

∂Wi

∂ z
∂Wj

∂ z
dz−

N+1

∑
j=1

Ux j

∫ 0

−h
WiFWjdz. (4.17)

This pair of equations can be written for any choice of i, so that N + 1 pairs of equations
must be considered (recall that the zeroth node due to the Dirichlet condition need not be
considered). The equations hold for all internal nodes, with the boundary term kuWiβx|0
being relevant to the j = N + 1 case only. This set of equations lends itself therefore to be
written in matrix form. We define matrices M = {Mi j}, K = {Ki j} and F = {Fi j} with the
following entries

Mi j =
∫ zi+1

zi−1

Wi(z)Wj(z)dz (4.18)

Ki j =
∫ zi+1

zi−1

∂Wi

∂ z
∂Wj

∂ z
dz (4.19)

Fi j =
∫ zi+1

zi−1

FWi(z)Wj(z)dz. (4.20)

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 42

We may now write (4.16) and (4.17) in matrix form. For i = [1...N], this will be:

MU̇x +KUx = FUy (4.21)

MU̇y +KUy =−FUx (4.22)

with U̇x denoting a vector of entries {U̇xi} and so on. The boundary term is evaluated
separately and added on to the N +1th row of the computation.

We can now determine U̇x and U̇y,

U̇x = M−1(FUy −KUx) (4.23)

U̇y = M−1(−FUx −KUUy). (4.24)

Equation (4.1) can then be solved on the static mesh using the following algorithm.

Algorithm 5

1. Taking the initial condition u(z, t = 0) = 0, equations (4.23) and (4.24) are solved to
give U̇x and U̇y, incorporating the boundary term on the i = N+1th row, and ignoring
the i = 0 row, overwriting the value of U0 as necessary;

2. Time integration to obtain Ux(t + dt) and Uy(t + dt) is performed using an Adams-
Bashforth scheme of 3rd order.

A convenient visualisation of the Ekman spiral produced and its evolution in time is given
in Figure 4.1.

We shall now compare the results obtained from this static mesh to those from a remap-
ping mesh method, in this case an equidistribution method.

4.1.2 Equidistribution by arc length

The principle behind equidistribution is to select a function M(z) that monitors a suitable
property of the solution and then to equidistribute the nodes according to the integral of that
function.
The monitor function used for this example is the scaled arc length monitor M(z)= ds(z)/dz

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 43

Fig. 4.1 A solution of (4.1) using a fixed mesh. Each line represents the velocity U in the
x and y directions of a column of water and the variation of that velocity by depth. The
navy blue line at the top is the velocity profile at t = 5s, and the subsequent lines show
the evolution of the velocity profile at 5s intervals. The parts of the profiles that appear
as horizontal lines on the chart all correspond to the surface of the water (z = 0). At the
surface of the water, all lines have a similar y component to the velocity which is driven
by the wind shear. The x component to the velocity at the surface is driven by the water
movement happening below the surface. Below the surface, the velocity vector is rotated
due to the Coriolis effect, and the extent of this rotation is a function of time. As the
velocity vector below the surface is rotated, the surface velocity gains an increasingly large
component perpendicular to the wind shear. The evolution in time up to t = 100s is shown.
The calculation assumed a depth of 40m, and used 100 elements with time steps of 0.01s.

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 44

where

s(z) =
∫ (

1+ γ

(
∂u
∂ z

)2
)1/2

dz. (4.25)

Here γ is a scaling factor appropriate to the scaling of the system being studied. For this
example, γ = 1000 is used since the lateral velocity variations are three or four orders of
magnitude smaller than the vertical scale. For our system this function can be expressed as

s(z) =
∫ z

−h

(
1+ γ

(
∂ux

∂ z

)2

+ γ

(
∂uy

∂ z

)2
) 1

2

dz (4.26)

where ux and uy are the horizontal components of the velocity u. New grid points zi are
selected such that

η(z) =
∫ z
−h M(z)dz∫ 0
−h M(z)dz

(4.27)

for a set of regularly spaced grid points 0 ≤ ηi ≤ 1. By differentiating (4.27) with respect to
η twice, we arrive at the differential equation

∂

∂η

(
M(z)

∂ z
∂η

)
= 0. (4.28)

This is a nonlinear PDE, so we will solve it iteratively and therefore write

∂

∂η

(
M(zp)

∂ zp+1

∂η

)
= 0 (p = 0,1, . . .) (4.29)

with an initial guess for a vector of discrete points z0. As we have only discrete values of z

and therefore M(z) to work with, we aim for approximate equidistribution and approximate
(4.29) as

M(zp
j+1/2)(z

p+1
j+1 − zp+1

j)−M(zp
j−1/2)(z

p+1
j − zp+1

j−1) = 0 (4.30)

with our discretised monitor function M as

M(z j+1/2) =

(
1+ γ

(
Ux j+1 −Ux j

z j+1 − z j

)2

+ γ

(
Uy j+1 −Uy j

z j+1 − z j

)2
)1/2

. (4.31)

We assemble (4.30) into a matrix system,

T (zp)zp+1 = b (4.32)

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 45

where T is a tridiagonal matrix of the form

T =

.

0 M(z j−1/2) −M(z j−1/2)−M(z j+1/2) M(z j+1/2) 0

.

(4.33)

and

b =

...

0

...

. (4.34)

The boundary conditions on z are incorporated into T and b so that the top and bottom rows
of each are as in

T =

1 0 0 . . .

· · · ·

. . . 0 0 1

b =

0

·

−h

. (4.35)

To implement the equidistribution process into the finite element scheme, we solve
(4.32) to find the new mesh spacings z(t). We then interpolate the solution onto the new
grid using a cubic spline. The solution of (4.32) is computationally expensive, particularly
as it involves an iterative process, so we won’t remesh the domain at every time step. In-
stead we choose a remeshing rate, which will be set to be once every 10 time steps for these
models.

Algorithm 6

1. Taking the initial condition u(z, t = 0) = 0, equations (4.23) and (4.24) are solved to
give U̇x and U̇y, incorporating the boundary term on the i = N+1th row and ignoring
the i = 0 row, overwriting the values of Ux(0, t) and Uy(0, t) as necessary;

2. Time integration to obtain Ux(t + dt) and Uy(t + dt) is performed using an Adams-
Bashforth scheme of 3rd order;

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 46

3. Steps 1 and 2 are repeated for 10 iterations;

4. Using equation (4.32), calculate zp+1 from zp and repeat until satisfactory conver-
gence (|zp+1 − zp|< 10−5) is achieved between the two. This is then z(t +dt);

5. Interpolate the solutions Ux(t +dt) and Uy(t +dt) onto the new grid z(t).

Figure 4.2 shows a comparison of the fixed grid and an adapted grid at t=100s. It is
easy to see the clear improvements to the model that come with increased resolution. The
fixed grid with 160 elements is the highest resolution that the current MATLAB implemen-
tation can reasonably compute. If we take this as our reference solution, we see that the
moving mesh equidistribution models are more accurate than the fixed mesh models with
the same number of elements, without a corresponding leap in the computational cost. The
improvement is primarily in the gradient of the top portion of the line. Figure 4.3 shows
where the grid adaptation has taken place. We see most adaptation around node 8, where
the accelerations of the fluid integrated over time have been the greatest. Node 8 is at a
depth of around 7m. However, there is a physically important transition from a shearing of
the fluid to a stationary fluid (Ekman layer) at around 10-20m depth at time t = 100 and this
is poorly resolved. We investigate an alternative monitor function in search of a method that
can better resolve this transition.

Equidistribution by curvature

As the region we wish to better resolve is a region of high curvature, we shall attempt
a modification of (4.26) to provide a measure of curvature. This experimental monitor
function, which we will call C(z), is based on the form of the arc length monitor, but using
a second order derivative to quantify the rate of change of slope. We define

C(z) =
∫ z

−h
(1+(γ∇

2u)2)
1
2 dz. (4.36)

For our system C(z) is then

C(z) =
∫ z

−h

(
1+ γ

(
∂ 2Ux

∂ z2

)2

+ γ

(
∂ 2Uy

∂ z2

)2) 1
2

dz. (4.37)

We find the following problems with using curvature as a monitor function:

• Curvature is estimated at a point rather than measured absolutely, so is dependent

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 47

Fig. 4.2 A comparison of the solution given by fixed and equidistributed grids for 40, 100
and 160 elements at t=100. See figure 4.1 for a detailed explanation of how this chart
represents a velocity profile. The reference solution (red) is computed on a fixed grid with
160 elements. Assuming this higher resolution computation to be the most accurate, we
compare the green and purple solutions, computed on 100 elements. We see that we can
improve accuracy through the moving grid whilst still only requiring the inversion of 100
by 100 matrices. This advantage is of course partly offset by requiring the iterative step to
remesh the domain.

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 48

Fig. 4.3 Overall mesh movement for 40 nodes. Total movement for node i is given by
zi(t) = zi(0).

on the size of the interval in z for accuracy. A sensible solution to this would be to
integrate C(z) along the curve;

• Using the integral of curvature as a monitor function we find, at the iterative stage
(4.29), many cases that do not converge;

• We achieve sufficient stability to run the model in limited cases (t<30, γ = 1000).
However, the node movement cannot take place in advance of the feature of interest
forming, so the transition zone is not better resolved. Instead, the increased resolution
is observed where the transition zone had previously been located.

From these examples we can see that the equidistribution method has improved the res-
olution of the Ekman layer for the arc length monitor function, but does not compare well
with a grid with globally higher resolution. The curvature monitor function performs rather
badly. A weakness of the method is the latency in the system; because we look at the solu-
tion to determine mesh spacing we can only respond to features of interest that have already
formed. We have no way of observing the formation of features of interest. Further weak-
nesses include the need to interpolate the solution after the grid has been remeshed, and the
need for an iterative solver and the resulting stability/convergence challenges that this may
present. The conservation method can improve upon each of these drawbacks. As a velocity

4.1 An Illustration of the Equidistribution Method: a vertical velocity profile 49

based method, interesting features in the flow should be tracked as they develop, and there-
fore be tracked before they are observed in the features of the solution. The grid will not
need remeshing periodically so we will not need to interpolate the solution at any point, in-
stead the solution is tied to the grid at all times by the moving basis functions. Furthermore,
the need for an iterative step is eliminated. We will now illustrate the conservation method
using Fisher’s equation.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 50

4.2 An Illustration of the Conservation Method: Fisher’s
Equation

Fisher’s equation is a reaction diffusion system that describes a balance between linear dif-
fusion and nonlinear reaction. It arises in ecology where it is known as a population growth
model, but it can also be used to describe biological invasion, or a simple combustion model
for flame propagation, amongst others. In contrast to the alternative population models de-
scribed later, it involves only a reactant, i.e. any substrate is not relevant. The Fisher’s
equation is known for exhibiting blow-up, which makes it a particularly interesting target
for an adaptive mesh method. We consider here an illustration of Fisher’s equation using
the conservation method. The aim will be to derive a moving mesh that increases resolution
around the blow-up.

4.2.1 Fisher’s Equation in 1D

Fisher’s equation has a variety of common forms but following the Budd et al. paper [14],
we look at the particular form describing the temperature u of a reacting or combusting
medium. The Masters theses by Edgington, 2011 [24], and Cole, 2009 [21], both examine
this same version of Fisher’s equation on moving meshes from a finite difference perspec-
tive, but here we look at a finite element perspective. As discussed in Chapter 3, for ease
of comparison between studies, we will refer to u as mass rather than temperature. Fisher’s
equation is

∂u
∂ t

=
∂ 2u
∂x2 +up. (4.38)

We consider the case with p = 2,

∂u
∂ t

=
∂ 2u
∂x2 +u2 (a ≤ x ≤ b) (4.39)

which has the weak form ∫ b

a
wi

∂u
∂ t

dx =
∫ b

a
wi

(
∂ 2u
∂x2 +u2

)
dx. (4.40)

We will work with the Dirichlet boundary conditions u(a, t) = u(b, t) = 0 for a = −0.5,
b = 0.5, and u(x,0) ≥ 0 in order to produce results that we can compare with Budd et al.

[14]. We will call this case 1. However, we will also consider an alternative set of boundary
conditions where the end points of the range will not be fixed. In this case the boundary

4.2 An Illustration of the Conservation Method: Fisher’s Equation 51

conditions are u(a(t), t) = u(b(t), t) = 0 where the points a(t) and b(t) may have a non zero
velocity. We call this case 2. This allows all nodes including boundary nodes to respond to
the mass dynamics. This is a useful alternative system to model because it will allow us to
develop the approach that can later be used for a two phase system with a moving interface.

Conservation of relative mass

The approach to moving the nodes is now driven entirely by a conservation of mass in each
patch of elements; we have no specialised monitor function with this approach. As the
domain moves, the elements must shrink or grow to keep the proportions of mass constant
in each. However, for this particular problem we do not have the advantage of a conservative
total mass. Instead, as in the generic example in Chapter 3, we will introduce the concept
of a relative total mass. This will be defined as the proportion of mass in each patch of
elements. These proportions will remain constant with respect to time. This principle is set
out as follows for the Fisher’s equation. Define θ(t) to be the area (mass) under the entire
solution curve at time t,

θ(t) =
∫ b(t)

a(t)
u(x, t) dx. (4.41)

We may use (4.41) to calculate θ for any known u at the initial time.
We now show how the concept of relative conservation of mass is applied in a distributed

fashion across the domain. We may write such a relative conservation principle as

1
θ(t)

∫ b(t)

a(t)
wiudx = c (4.42)

where wi is a weight function. If we select the weight functions from a partition of unity, so
that ∑i wi = 1, we may define a distributed conservation of relative mass principle. This is
consistent with the conservation of total relative mass, and additionally requires that relative
mass is conserved within each patch of elements. We define

1
θ(t)

∫ b(t)

a(t)
wiudx = ci (4.43)

where the ci are constant in time. This is our modified conservation principle. Then for all
i,

d
dt

[
1

θ(t)

∫ b(t)

a(t)
wiudx

]
= 0. (4.44)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 52

Using Leibnitz’ integral rule we have

− θ̇

θ

∫ b(t)

a(t)
wiudx+

∫ b(t)

a(t)

∂

∂ t
(wiu)dx+ (wiu)|b

db
dt

− (wiu)|a
da
dt

= 0 (4.45)

or

− θ̇

θ

∫ b(t)

a(t)
wiudx+

∫ b(t)

a(t)

∂

∂ t
(wiu)dx+

∫ b(t)

a(t)

∂

∂x
(ẋwiu)dx = 0 (4.46)

where ẋ is any velocity consistent with db/dt and da/dt, and then

− θ̇

θ

∫ b(t)

a(t)
wiudx+

∫ b(t)

a(t)

[
wi

∂u
∂ t

+u
∂wi

∂ t
+wi

∂

∂x
(uẋ)+uẋ

∂wi

∂x

]
dx = 0. (4.47)

After substitution of (4.43)

−ciθ̇ +
∫ b(t)

a(t)

[
wi

∂u
∂ t

+u
∂wi

∂ t
+wi

∂

∂x
(uẋ)+uẋ

∂wi

∂x

]
dx = 0. (4.48)

We fix our weight functions wi to the domain that moves with velocity ẋ. Therefore we can
argue, by analogy to a convecting system, that

∂wi

∂ t
+ ẋ

∂wi

∂x
= 0. (4.49)

We can multiply (4.49) by u and take out this term from equation (4.48). Rearrangement
yields ∫ b(t)

a(t)
wi

∂

∂x
(ẋu)dx =−

∫ b(t)

a(t)
wi

∂u
∂ t

dx+ ciθ̇ . (4.50)

Substituting from the weak form of Fisher’s equation (4.40),

∫ b(t)

a(t)
wi

∂

∂x
(ẋu)dx =−

∫ b(t)

a(t)
wi

(
∂ 2u
∂x2 +u2

)
dx+ ciθ̇ . (4.51)

Integrating the first term on the left hand side by parts (assuming wi is sufficiently smooth),

[wiẋu]b(t)a(t)−
∫ b(t)

a(t)

∂wi

∂x
ẋudx =−

∫ b(t)

a(t)
wi

(
∂ 2u
∂x2 +u2

)
dx+ ciθ̇ . (4.52)

For both case 1 and case 2, we note that the boundary term on the left hand side of (4.52)
is zero due to the Dirichlet conditions u(a(t), t) = u(b(t), t) = 0. We now have a weak form
of the velocity equation (4.52), so that, given u(x, t), θ(t) and θ̇(t), we can solve for ẋ. We
can transform the second order derivative term in (4.52) by integrating by parts again on the

4.2 An Illustration of the Conservation Method: Fisher’s Equation 53

right hand side

∫ b(t)

a(t)

∂wi

∂x
ẋudx =

[
wi

∂u
∂x

]b(t)

a(t)
−
∫ b(t)

a(t)

∂wi

∂x
∂u
∂x

dx+
∫ b(t)

a(t)
wiu2dx− ciθ̇ . (4.53)

We refer to the wi as weight functions. Equation (4.53) is now in a suitable form for finite
element functions to be substituted.

Finite elements

We choose the set of functions Wi for our weight functions. Consider the boundary term[
wi

∂u
∂x

]b(t)

a(t)
in (4.53). In a finite element framework with Dirichlet conditions, the usual

approach is to solve (4.53) for internal nodes only, and in those cases the boundary term
would be equal to zero. Therefore the boundary term disappears. The given solution on the
boundary can then be strongly imposed. However, in a conservation based system, ignoring
boundary terms would destroy conservation in general. In this circumstance, following [33]
we switch to a modified set of weight functions, which we will call W̃i. These weight func-
tions include a combined weight function for the boundary node and its nearest neighbour.
This will allow us to strongly impose the Dirichlet conditions without destroying mass con-
servation. Our approach from here varies depending on the presence or otherwise of a free
boundary.

Case 1: Fixed boundaries: Boundary conditions are u = 0, ẋ = 0

For the static boundary, case 1, we work in modified weight functions throughout. The mod-
ified weight functions W̃i are constructed from the original weight functions Wi as follows,

W̃1(t,x) =W0(t,x)+W1(t,x) (4.54)

and
W̃N(t,x) =WN(t,x)+WN+1(t,x) (4.55)

with the remaining Wi unaltered. These modified weight functions are illustrated in figure
4.4. Note the dimension of the subspace in which these functions reside is reduced from
N +2 to N. The ci values of equation (4.43) must be adjusted accordingly,

c̃1 = c0 + c1 =
∫ b

a

1
θ
(W0 +W1)u dx (4.56)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 54

Fig. 4.4 Modified weight functions in 1-D for boundary node x0 and internal node xi. These
Wi form a partition of unity and are compatible with strongly imposed Dirichlet conditions.

and
c̃N = cN + cN+1 =

∫ b

a

1
θ
(WN +WN+1)u dx. (4.57)

We then have no c0 or cN+1 values. The remaining ci are unaltered. The use of W̃i and c̃i

ensure that global conservation is not violated in (4.43) by Dirichlet boundary conditions.
We define the piecewise linear approximations Ẋ and U in terms of the (unmodified) basis
functions

Ẋ(x, t) =
N+1

∑
j=0

Ẋ j(t)Wj(x, t) (4.58)

U(x, t) =
N+1

∑
j=0

U j(t)Wj(x, t). (4.59)

We may substitute these in (4.53) to give

N+1

∑
j=0

[∫ b

a
U

∂W̃i

∂x
Wjdx

]
Ẋ j =

[
W̃i

∂u
∂x

]b

a
−

N+1

∑
j=0

[∫ b

a

∂W̃i

∂x
∂Wj

∂x
dx
]

U j +
∫ b

a
W̃iU2dx− c̃iθ̇ .

(4.60)

Note also the fixed domain boundaries a and b for case 1. The term
[
W̃i

∂u
∂x

]b

a
is non-zero

for case 1 and must be included. For all nodes we can therefore write this as a system of
equations. For i = 1,2,3, ..,N

N+1

∑
j=0

[∫ b

a
U

∂W̃i

∂x
Wjdx

]
Ẋ j =−

N+1

∑
j=0

[∫ b

a

∂W̃i

∂x
∂Wj

∂x
dx
]

U j

+
∫ b

a
W̃iU2dx− c̃iθ̇ +

[
W̃i

∂u
∂x

]b

a
(4.61)

or in matrix form
B̃(U)Ẋ = f̃ (4.62)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 55

where Ẋ = {Xi}, and f̃ = { f̃i} given by

f̃i =−
N+1

∑
j=0

[∫ b

a

∂W̃i

∂x
∂Wj

∂x
dx
]

U j +
∫ b

a
W̃iU2dx− c̃iθ̇ +

[
W̃i

∂u
∂x

]b

a
. (4.63)

At a and b, the weighting W̃i = 1, so in order to estimate the term
[
W̃i

∂u
∂x

]b

a
we simply calcu-

late ∂u
∂x with a finite difference approximation. The nonlinear term,

∫ b
a W̃iU2dx, is evaluated

exactly using quadrature rules (described in detail in [42]). In general, Gaussian quadrature
rules are the appropriate choice, especially when higher dimensions come into play, but in
this case the simplest choice for implementation is Simpson’s rule. Simpson’s rule is exact
for cubics but its advantage here is that minimal interpolation between nodes is required.
Simpson’s rule (exact for cubics) is

∫ b

a
f (x) dx =

b−a
6

(
f (a)+4

f (a+b)
2

+ f (b)
)
. (4.64)

The matrix B̃(U) is asymmetric and has entries of the form

B̃(U)i j =
∫ b

a
U

∂W̃i

∂x
Wjdx. (4.65)

We now have the equation (4.62) for Ẋ and we can also use (4.62) as a convenient way to
recover θ̇ . If we sum over all rows i of the matrix system (4.62), the terms containing ∂W̃i

∂x

will sum to zero. The c̃i will sum to 1 from their definitions (4.43) and (4.56), which leaves
the sum over all i as

θ̇ = ∑
i

[∫ b

a
W̃iU2dx

]
+∑

i

[
W̃i

∂u
∂x

]b

a
=
∫ b

a
U2 dx+

[
∂u
∂x

]b

a
(4.66)

which allows us to determine θ̇ for either the fixed or moving boundary case, since the
dependence on the choice of wi is removed in the summation process. The expression
(4.62) does determine Ẋ but with two caveats. Firstly, matrix B̃(U) is singular, so a boundary
condition on Ẋ is required to bring the infinity of solutions down to a unique solution. This is
most easily achieved by requiring Ẋi = 0 for one node, which then serves as an anchor point.
In our system, given a set of initial conditions symmetrical about the origin, the natural
symmetry means that the origin is the obvious choice. We may then reduce the matrix
system under the transformation B̃(U)→ B̄(U), removing the column corresponding to the
stationary central node and obtaining a potentially non-singular B̄(U). Even then the matrix

4.2 An Illustration of the Conservation Method: Fisher’s Equation 56

B̄(U) could be singular if U were constant and it had an odd number of rows and columns.
However, the second caveat is that when we consider the system in two dimensions, the
velocity is not unique because we could add an arbitrary curl vector to uẋ (see equation
(3.5)). By introducing a velocity potential Φ, we can avoid this problem since the velocity
potential is unique. We then specify a curl of zero when we recover Ẋ from Φ. In order to
keep the method consistent between one and two dimensions then, we will also work with
a velocity potential in one dimension. We proceed therefore by introducing the velocity
potential Φ, defined by

Ẋ =
∂Φ

∂x
(4.67)

where

Φ(x, t) =
N+1

∑
j=0

Wj(x, t)Φ j(t) (4.68)

so that
∂Φ

∂x
=

N+1

∑
j=0

∂Wj

∂x
Φ j. (4.69)

Substituting this into equation (4.61), equation (4.62) becomes

K̃(U)Φ = g̃ (4.70)

where Φ is the vector containing {Φ j}. In (4.69) K̃(U) is a symmetric positive definite
matrix with entries, for i, j = [1, ...,N], of

K̃(U)i j =
∫ b

a
U

∂W̃i

∂x
∂Wj

∂x
dx, (4.71)

and g̃ is a vector with entries, for i, j = [1, ...,N], of

g̃i =−
N+1

∑
j=0

[∫ b

a

∂W̃i

∂x
∂Wj

∂x
dx
]

U j +
∫ b

a
W̃iU2dx− c̃iθ̇ +

[
W̃i

∂u
∂x

]b

a
. (4.72)

The nonlinear term is evaluated using Simpson’s rule (4.64). Again, K̃(U) is singular and
the system (4.70) requires a boundary condition. We impose Φ= 0 at one node, by removing
the corresponding column in K̃(U). Then the reduced system

K̄(U)Φ = g̃ (4.73)

is uniquely solvable for Φ.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 57

Getting Ẋ

We then obtain Ẋ from a finite element approximation of (4.67) at each node. From the
definition (4.67) we write the weak form,

∫ b

a
wiẊ dx =

∫ b

a
wi

∂Φ

∂x
dx. (4.74)

For case 1, the fixed boundaries are equivalent to imposing the boundary conditions ẋ|a =
0 and ẋ|b = 0. To impose these without violating relative mass conservation in (4.43),
modified weight functions are again required. We select the modified weight functions
wi = W̃i of (4.54), (4.55) and use the piecewise linear approximations (4.58) and (4.68). We
obtain

N+1

∑
j=0

[∫ b

a
W̃iWj dx

]
Ẋ j =

N+1

∑
j=0

[∫ b

a
W̃i

∂Wj

∂x
dx
]

Φ j. (4.75)

In matrix form this is
M̃Ẋ = B̃φ

j
. (4.76)

The matrix M̃ is a positive definite and well-conditioned mass matrix with entries

M̃i j =
∫ b

a
W̃iWjdx (4.77)

and B̃ is an asymmetric matrix similar to (4.65), with entries

B̃i j =
∫ b

a
W̃i

∂Wj

∂x
dx. (4.78)

Note that we will only need to invert M̃ in order to recover Ẋ .

Finding X

A time integration approximation such as forward Euler is used to generate the grid at the
next time step from the values of Ẋ .

4.2 An Illustration of the Conservation Method: Fisher’s Equation 58

Recovering U

To generate the new solution for U at the new time step we return to our relative conservation
principle (4.43), with our modified basis functions wi = W̃i,

1
θ(t)

∫ b

a
W̃iudx = c̃i.

In discretised form this becomes, with U(x, t) = ∑ j Wj(x, t)U j(t),

N+1

∑
j=0

[∫ b

a
W̃iWjdx

]
U j = c̃iθ(t) (4.79)

where the c̃i are given by the modified values

c̃i =
1

θ(t0)

∫ b

a
W̃iU0dx =

1
θ(t0)

∫ b

a
W̃iu0 dx (4.80)

for initial data u0, if the U0 is the L2 best fit to u0. Then (4.79) is equivalent to the mass
matrix system

M̃U = θ(t)c̃ (4.81)

with c̃ as the vector containing entries c̃i, and M̃ the mass matrix calculated for the new
nodal positions. We may then solve for U with the boundary condition

[
W̃iẋU

]b
a = 0 strongly

imposed on U , without violating relative mass conservation.

Algorithm 7

For case 1 with fixed boundaries.
Having initial u0 and x0, and having calculated the piecewise linear function U0 at the nodes
X0, as well as θ from (4.41), the finite element solution of Fisher’s equation (4.39) on the
moving mesh in 1-D consists of the following steps at each time t:

1. Find θ̇(t) by evaluating (4.66);

2. Find the velocity potential by solving equation (4.73) for the Φ j(t) values, with Φ

specified at the central node;

3. Find the node velocity by solving (4.76) for the Ẋ values at internal nodes, strongly
imposing the boundary conditions;

4.2 An Illustration of the Conservation Method: Fisher’s Equation 59

4. Generate the co-ordinate system X(t + dt) at the next time-step by evaluating (3.18)
using the forward Euler approximation. Similarly, update θ̇ from θ̇(t);

5. Find the solution U(t +dt) by solving the relative conservation equation (4.81) using
the strong form of the boundary conditions.

Case 2: Moving boundaries: Boundary conditions are u = 0, uẋ = 0

For the free boundary, case 2, whilst we have Dirichlet conditions for u we do not have them
for ẋ. In fact there are no boundary conditions to impose on ẋ. We will not need modified
weight functions to obtain ẋ and indeed, using them would prevent us from obtaining a
solution for ẋ at the boundaries x = a and x = b. For this reason we proceed initially with
unmodified weight functions. Substituting the standard piecewise linear approximations
(3.41) and (3.42) into (4.53) we obtain

N+1

∑
j=0

[∫ b(t)

a(t)
U

∂Wi

∂x
Wjdx

]
Ẋ j =

[
Wi

∂u
∂x

]b(t)

a(t)
−

N+1

∑
j=0

[∫ b(t)

a(t)

∂Wi

∂x
∂Wj

∂x
dx
]

U j+
∫ b(t)

a(t)
WiU2dx−ciθ̇ .

(4.82)

The term
[
Wi

∂u
∂x

]b(t)

a(t)
again remains non-zero for case 2 and must be included. Proceeding

as for case 1, we obtain analogous equations for Ẋ and Φ which differ only from case 1 in
that there is now no tilde denoting modified basis functions. We have the matrix equation to
give Ẋ ,

B(U)Ẋ = f (4.83)

where Ẋ = {Ẋi}, and f = { fi} given by

fi =−
j=i+1

∑
j=i−1

[∫ b(t)

a(t)

∂Wi

∂x
∂Wj

∂x
dx
]

U j +
∫ b(t)

a(t)
WiU2dx− c̃iθ̇ (4.84)

for i = [1, ...,N]. The nonlinear term is evaluated using Simpson’s rule (4.64). For i = 0,

f0 =−
1

∑
j=0

[∫ b(t)

a(t)

∂W0

∂x
∂Wj

∂x
dx
]

U j +
∫ b(t)

a(t)
W0U2dx− c̃iθ̇ −

[
W0

∂u
∂x

]
a(t)

(4.85)

and for i = N +1,

fN+1 =−
N+1

∑
j=N

[∫ b(t)

a(t)

∂WN+1

∂x
∂Wj

∂x
dx
]

U j +
∫ b(t)

a(t)
WN+1U2dx− c̃iθ̇ +

[
WN+1

∂u
∂x

]
b(t)

.

(4.86)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 60

Matrix B(U) is asymmetric and has entries

B(U)i j =
∫ b(t)

a(t)
U

∂Wi

∂x
Wjdx. (4.87)

For the same reasons as in case 1, we introduce a velocity potential Φ. The piecewise
linear approximation for Φ is composed of unmodified basis functions so that Φ = ∑ j WjΦ j,
and hence we obtain the matrix equation

K(U)Φ = g (4.88)

where Φ is the vector containing {Φ j}, for j = [0, ...,N +1]. K(U) is a symmetric positive
definite matrix with entries

K(U)i j =
∫ b(t)

a(t)
U

∂Wi

∂x
∂Wj

∂x
dx (4.89)

and g is a vector with entries

gi =−
j=i+1

∑
j=i−1

[∫ b(t)

a(t)

∂Wi

∂x
∂Wj

∂x
dx
]

U j +
∫ b(t)

a(t)
WiU2dx− c̃iθ̇ +

[
Wi

∂u
∂x

]b(t)

a(t)
. (4.90)

As before the nonlinear term is evaluated using Simpson’s rule (4.64).

Recovering Ẋ

We continue to use standard weight functions. Beginning with the weak form (4.74), and
following the process described for case 1, we obtain the matrix form that will allow us to
recover Ẋ

MẊ = BΦ j. (4.91)

This differs from (4.76) for case 1 only in that basis functions are now standard, so that we
have separate basis functions for each of the boundary nodes making two more in total. The
matrix M is a mass matrix with entries

Mi j =
∫ b(t)

a(t)
WiWjdx (4.92)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 61

and B is the asymmetric matrix of (4.78):

Bi j =
∫ b(t)

a(t)
Wi

∂Wj

∂x
dx. (4.93)

Finding X

A time integration approximation such as forward Euler is used to generate the grid at the
new time step according the values of Ẋ .

Transferring between weight function systems

Now we must recover U , but we have a complication. If we are to strongly impose the
Dirichlet boundary conditions on U , we would require modified basis functions in order
to preserve mass conservation. However, we have not been able to use modified weight
functions thus far because of the need to obtain a value for Ẋ on the free boundary.
We note that we have the choice of two sets of weight functions (modified or unmodified)
that move with the nodal velocities Ẋ j. We may write our finite element system in terms
of either set, and all of the component equations of that system would then be mutually
consistent. It is possible to derive a method by which we can transfer from one set of weight
functions to another whilst preserving conservation of mass, as is required in this case.
Having first determined the values of the Ẋ j using the standard weight functions (so that
we have results for all nodes), we then transfer to the modified weight function system to
recover U . We proceed as follows in the modified basis function system. Rather than using
the concise definition of the ci, (4.43), we use equation (4.61) which is an expanded form.
In terms of the modified c̃i this is, for i = [1,2,3, ...,N]

c̃i =
1
θ̇

(
−

j=i+1

∑
j=i−1

[∫ xi+1(t)

xi−1(t)
U

∂W̃i

∂x
Wjdx

]
Ẋ j −

j=i+1

∑
j=i−1

[∫ xi+1(t)

xi−1(t)

∂W̃i

∂x
∂Wj

∂x
dx
]

U j

+
∫ xi+1(t)

xi−1(t)
W̃iU2dx+

[
W̃i

∂u
∂x

]b

a

)
. (4.94)

Again the nonlinear term is evaluated using Simpson’s rule (4.64). This gives the relation-
ship between the c̃i and Ẋ , for a given t. We may insert any chosen values of Ẋ into this
and thus obtain the values of c̃i necessary to conserve relative proportions of total mass. We
insert the values of Ẋ obtained from the unmodified system (4.91). The resulting c̃i values
are defined using the modified weight functions and so are suitable for the recovery of U

4.2 An Illustration of the Conservation Method: Fisher’s Equation 62

using the modified conservation principle.

Recovering U

U can now be recovered in exactly the same way as in case 1, as described in section 4.2.1.

Algorithm 8

For case 2 with free boundaries.
Having initial u0 and x0, and having calculated the piecewise linear function U0 at the nodes
X0, as well as θ from (4.41), the finite element solution of Fisher’s equation (4.39) on the
moving mesh in 1-D consists of the following steps at each time t:

1. Find θ̇(t) by evaluating (4.66);

2. Find the velocity potential by solving equation (4.88) for the Φ j(t) values, with Φ

specified at the central node;

3. Find the node velocity by calculating (4.91) for the Ẋ values at all nodes including
boundary nodes;

4. Generate the co-ordinates X(t+dt) at the next time-step from (3.18) using the forward
Euler approximation. Similarly, update θ̇ from θ̇(t);

5. Find the solution U(t +dt) by solving the relative conservation equation (4.81) using
the strong form of the boundary conditions.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 63

Results for the fixed boundary problem: Case 1

The finite element system was implemented using MATLAB. For computational efficiency
we need to compute only half the domain (x = [0,0.5]) since it is symmetric. We can use
the node adjacent to x = 0 to provide variable values for the node that would have been on
the other (x < 0) side of x = 0 if we had modelled the whole domain. Following [14], the
initial condition used is u(x,0) = 20cosπx.

The vertical lines on figure 4.5 represent the positions of the nodes with iteration number
on the vertical axis. We can see that as we approach blow up the nodes are moving towards
the centre as expected.

Fig. 4.5 A solution of the 1D Fisher’s equation using a moving mesh with the fixed boundary
of case 1. Here we use 40 elements and a time step of 0.00005. As the model approaches
blow-up the nodes become co-located and the solution becomes unstable.

We test the model with a variety of time steps ∆t and also a variety of initial mesh spac-
ings ∆x. The values for these were chosen to enable comparison with previously modelled
methods for the Fisher’s equation, notably Budd’s 2005 paper [13], Edgington’s M.Sc.[24]
and Sarah Cole’s M.Sc. [21]. The choice of time steps ∆t is bounded by the stability condi-

4.2 An Illustration of the Conservation Method: Fisher’s Equation 64

Fig. 4.6 Blow-up of solution u(x, t) of Fisher’s equation (4.39), with case 1 boundary con-
ditions (fixed boundaries). The model is run to t=0.0825, beyond which solutions begin to
suffer from node crossing and other instabilities. The precise time that this occurs for each
choice of ∆t and ∆x is given in table 4.1. The grid resolution is 6 nodes (top), 11 nodes (cen-
tre) and 21 nodes (bottom) in the half domain shown. Initial spacing ∆x is regular. Various
∆t choices are tested for each initial grid resolution. The figures on the right show the detail
at x close to 0. As ∆x is reduced a small improvement in the definition of the peak is noted.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 65

tion, that

∆t < ∆x2 =

(
0.5
N

)2

(4.95)

which limits ∆t to a maximum of 1.25x10−3. In both [21], and [24], Cole and Edgington
attempt a moving mesh solution of the same problem. They use an implicit finite difference
method to compute a conservation-based approach to moving the mesh. The results from
our finite element method are consistent with the approximate blow up time T ≈ 0.082372
given in [13], as table 4.1 shows. We define the blow-up time of the model as the point
of failure of the model to further resolve a solution, i.e. nodes are crossing or some other
catastrophic instability. Looking in more detail, we are able to resolve a higher peak for u

at blow-up with values of the order of u = 105 (figure 4.6) rather than the u = 104 in [21].
We also observe a narrower, more defined peak in u at all values of ∆x and ∆t than in the
Cole dissertation. Furthermore, we note from the results in [24] that the 11 node model
performs better than the 6 node or 21 node models (defined as the number of nodes in the
half-domain 0 ≤ x ≤ 0.5). Presumably the 6 node model is limited by lack of resolution and
the 21 node model is limited by node tangling. We do not see the same node tangling limit
in the finite element implementation. In figure 4.6 we see that the 21 node finite element
model gives a maximum u of the order of 106, whereas in the 21 node finite difference
model the maximum u is of the order of 103 .

Variable Timesteps

We note that we use many more time steps than Cole because she increases the size of her
time step as she approaches blow-up for reasons of numerical stability, whereas our time
step is constant. We do not have this stability problem but for a fair comparison we will
repeat the experiments with the variable time step from [21]. The time step used is

∆t =
∆t0

T − t
(4.96)

which has ∆t increasing as t → T , where T is the blow-up time. As before our reference
T is taken from [13], and has the value T ≈ 0.082372. Since [21] has some blow-up times
greater than this value, and some that are impossible to generate using (4.96), we are not
confident that the method used there is precisely as stated.

Figure 4.8 shows the results from the finite element method with the variable time step.
With this constraint it is apparent that the finite element method does not converge to as
narrow or high a peak in u as the finite difference method, for given initial values of ∆t and

4.2 An Illustration of the Conservation Method: Fisher’s Equation 66

∆x, when the variable time steps are used.

Results for the moving boundary problem: Case 2

Edgington extends the work in [21] by examining the effect of allowing the boundary nodes
to move. He finds that in the finite difference model, the maximum u achieved is reduced
when the boundaries are allowed to move, except in the coarsest 11 node model.

Fig. 4.7 A solution of the 1D Fisher’s equation using a moving mesh with the free boundary
of case 2. Here we use 20 elements and a time step of 0.00005.

We find that our results are somewhat mixed. The maximum u achieved is equalled or
improved when the boundaries are allowed to move, when compared to the fixed boundary
case. However it must be recognised that the problem is defined differently for each case.
For the 21 node model, the maximum resolvable umax is broadly unchanged at (near) blowup
when the moving (case 2) and fixed boundary (case 1) versions are compared. For the 11
node model, allowing the moving boundary increases the resolvable umax at blow-up by
about a factor of 5. For the 6 node model, allowing the moving boundary increases the
resolvable umax at blow-up by about a factor of 10. However, the time taken to blow up is
much less accurate with a moving boundary than with a static boundary. The model stops

4.2 An Illustration of the Conservation Method: Fisher’s Equation 67

running due to nodes crossing at around T = 0.065 in the moving boundary case, whereas
we would aim for the model to run to T = 0.0823. It is probable that this is due to the greater
nodal velocities observed when a free boundary is present.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 68

Table 4.1 Blow-up times from MMFEM implementation of Fisher’s equation, case 1 with
fixed time step

N ∆t steps Tblow−up

6 1x10−5 8411 0.08411

6 5x10−6 16815 0.08408

6 2.5x10−6 33622 0.08406

6 1.25x10−6 67237 0.08405

11 1x10−5 8294 0.08294

11 5x10−6 16582 0.08291

11 2.5x10−6 33156 0.08289

11 1.25x10−6 66304 0.08288

21 1x10−5 8262 0.08262

21 5x10−6 16517 0.08259

21 2.5x10−6 33025 0.08256

21 1.25x10−6 66042 0.08255

41 1x10−5 8253 0.08253

41 5x10−6 16500 0.08250

41 2.5x10−6 32993 0.08250

41 1.25x10−6 65977 0.08247

4.2 An Illustration of the Conservation Method: Fisher’s Equation 69

Table 4.2 Side by side comparison of blow-up times from moving finite difference method
(left) and moving finite element method (right). The finite difference results are taken from
variable time step method of [21]. Fixed boundaries are used in [21], so the equivalence is
with case 1. We use the same variable time step method for the MMFEM to allow com-
parison. Dependence on number of nodes N in the half domain, and initial time step ∆t0 is
shown.

Finite Difference

N ∆t0 steps Tblow−up

6 1.71x10−5 200 0.0774

6 8.55x10−6 399 0.0797

6 4.275x10−6 796 0.0806

6 2.1375x10−6 1591 0.0836

11 1x10−5 341 0.0786

11 4.9x10−6 694 0.0793

11 2.45x10−6 1387 0.0807

11 1.225x10−6 2773 0.0824

21 1x10−5 342 0.0812

21 5x10−6 682 0.0835

21 2.5x10−6 1361 0.0847

21 1.24x10−6 2740 0.0836

Finite Element

N ∆t0 steps Tblow−up

6 1x10−5 342 0.0815

6 5x10−6 681 0.0808

6 2.5x10−6 1360 0.0817

6 1.25x10−6 2717 0.0817

11 1x10−5 342 0.0815

11 5x10−6 681 0.0808

11 2.5x10−6 1360 0.0817

11 1.25x10−6 2717 0.0817

21 1x10−5 339 0.0755

21 5x10−6 681 0.0808

21 2.5x10−6 1360 0.0817

21 1.25x10−6 2717 0.0817

4.2 An Illustration of the Conservation Method: Fisher’s Equation 70

Table 4.3 Blow-up times from MMFEM implementation of Fisher’s equation, case 1 with
smoothing, and fixed time steps. Blow-up happens later with smoothing.

N ∆t steps Tblow−up

6 1x10−5 9821 0.0982

6 5x10−6 19653 0.0983

6 2.5x10−6 39317 0.0983

6 1.25x10−6 78645 0.0983

11 1x10−5 9892 0.0989

11 5x10−6 19865 0.0993

11 2.5x10−6 39817 0.0995

11 1.25x10−6 79727 0.0997

21 1x10−5 9691 0.0969

21 5x10−6 19664 0.0983

21 2.5x10−6 39663 0.0992

21 1.25x10−6 79669 0.0996

Smoothing

We also note some saw-tooth instability in both the constant time step case and, to a lesser
extent, the variable time step case finite element models. This is a common problem with
finite element methods because of the central differences involved combined with explicit
time stepping. We will attempt to smooth this out by introducing a viscosity term (Laplacian
smoothing),

xnew
i = xi +

1
4

δ
2xi, δ

2 = xi+1 −2xi + xi−1. (4.97)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 71

Fig. 4.8 Blow-up of the solution u(x, t) of Fisher’s equation (4.39) with fixed boundaries
(case 1) and variable time steps. The models are run until t=0.0825. Grid resolutions are
from top to bottom, 6 nodes, 11 nodes and 21 nodes. Variable time steps for comparison
with [21] are used. The figures on the right show the results with a normalised u.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 72

When the viscosity is applied, we can run the model for longer, past the expected blow-up
time, because of changes in the model behaviour introduced by the smoothing. Table 4.3
shows the blow-up times predicted by this method (using a fixed time step). We are able
to resolve much higher peaks in u, but it is still somewhat unsatisfactory because of the
obvious inaccuracies in the blow-up time. This inaccuracy arises because the smoothing
term tends to flatten out the natural concave shape of the solution, and in such a way moves
the solution further away from a blow-up state. In effect we change the behaviour of the
Fisher equation to one with viscosity. The effect of the viscosity term is to add to the rate
of diffusion, and may cause a requirement for a correspondingly smaller ∆t. We also note
that the conservation principle is violated by the addition of (4.97), because we are adjust-
ing nodal positions with no regard for the effect upon the relative distribution of mass. The
intention is that the taking of such a liberty would at least provide the advantages of a stable
implementation. However, with the effects on the shape of the solution that we see here,
this approach is clearly not justifiable. The results for this method are shown in figure 4.9.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 73

Order of convergence

Since we have a value for the blow up time from [13], we may examine the orders of
convergence p or q with respect to time or space respectively. When ∆t is varied with ∆x

held constant, we expect a fixed non-zero component of the spatial error, so we may estimate
p and q by looking at the rate at which the differences between successive errors decrease.
We assume

En =C(∆x)q +D(∆t)p (4.98)

where the En are the errors in blow-up time, T , i.e., T −0.082372, and C and D are constants.
For a fixed ∆x, with ∆t halving as n increases by 1, we have

En+1 −En = D((∆t/2)p − (∆t)p) (4.99)

= D(∆t)p(1/2p −1) (4.100)

and

(En −En−1)/(En+1 −En) = D(2∆t)p(1/2p −1)/D(∆t)p(1/2p −1) (4.101)

= 2p (4.102)

Similarly if ∆t is fixed and ∆x is halved as n increases by 1, we have

(En −En−1)/(En+1 −En) =C(2∆x)q(1/2p −1)/C(∆x)q(1/2q −1) (4.103)

= 2q (4.104)

We have examined the change in the error when either the time step or the node spacing is
varied (table 4.4).

4.2 An Illustration of the Conservation Method: Fisher’s Equation 74

Fig. 4.9 The smoothed, fixed time step results at t=0.0825 for blow-up of the solution u(x, t)
of Fisher’s equation (4.39) with fixed boundaries (case 1). Grid resolutions are from top to
bottom, 6 nodes, 11 nodes and 21 nodes in the half domain. The figures on the right show
the same results as the figures on the left but with a change of scale on the x axis. As ∆x is
reduced the peak actually gets wider as the smoothing becomes more effective.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 75

Table 4.4 Errors in blow-up time from MMFEM implementation of Fisher’s equation, case
1 with fixed time step, and their variation by time step and node spacing

N ∆x ∆t En En −En−1
En−En−1
En+1−En

21 0.025 1x10−5 0.000248

21 0.025 5x10−6 0.000213 -0.000035 1.6

21 0.025 2.5x10−6 0.000191 -0.000022 2.0

21 0.025 1.25x10−6 0.000180 -0.00011 2.2

21 0.025 6.25x10−7 0.000175 -0.00005

6 0.1 1.25x10−6 0.001674

11 0.05 1.25x10−6 0.000508 -0.001166 3.6

21 0.025 1.25x10−6 0.000180 -0.000328 4.0

41 0.0125 1.25x10−6 0.000099 -0.000081 4.8

81 0.00625 1.25x10−6 0.000082 -0.000082

We see in table 4.4 that successive differences between errors as you halve ∆t go down
by a factor of about 2, suggesting p ≈ 1 or first order in time. When you halve ∆x these
differences go down by a factor of about 4, suggesting q ≈ 2 or second-order accuracy in
space. This is as expected from forward Euler in time and linear finite elements in space.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 76

4.2.2 Fisher’s Equation in 2D

The two dimensional solution of the Fisher’s equation has not previously been attempted
with a moving mesh, as far as we are aware, in either radial or fully 2-D form. The
conservation-based MMFEM is presented here for the fully two dimensional case. The
2-D form of Fisher’s equation with p = 2 is

∂u
∂ t

= ∇
2u+u2. (4.105)

We consider the domain Ω(t) with free boundary S(t) and the Dirichlet boundary conditions
u(S, t) = 0. This is analogous to case 2 in the 1-D version of the Fisher’s equation. The weak
form of (4.105) is ∫

Ω(t)
wi

∂u
∂ t

dΩ =
∫

Ω(t)
(wi∇

2u+wiu2) dΩ. (4.106)

Define θ(t) as the volume (mass) under the solution u, given by∫
Ω(t)

u dΩ = θ(t). (4.107)

Because
1

θ(t)

∫
Ω(t)

u dΩ = 1 (4.108)

we can define a distributed conservation principle in terms of weight functions wi as∫
Ω(t)

wiu dΩ = ciθ(t). (4.109)

Providing that the set of weight functions wi forms a partition of unity, ∑i wi = 1, equation
(4.109) will allow us to obtain a set of values ci also forming a partition of unity, ∑i ci = 1.
The constants ci are independent of t and are determined by the initial spacing and the initial
data. Differentiating (4.109) with respect to time gives

d
dt

∫
Ω(t)

wiu dΩ = ci
dθ

dt
= ciθ̇ . (4.110)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 77

We define a reference test domain Ω(0) at t = 0 and a moving test domain Ω(t). Applying
the Reynolds Transport Theorem we obtain

d
dt

∫
Ω(t)

wiu dΩ =
∫

Ω(t)

∂

∂ t
(wiu) dΩ+

∫
Ω(t)

wiuẋ · n̂ dS

=
∫

Ω(t)

(
wi

∂u
∂ t

+u
∂wi

∂ t
+∇ · (wiuẋ)

)
dΩ (4.111)

for the generalised weak form, where ẋ · n̂ is any normal velocity consistent with the normal
boundary velocity. Using the advection equation (3.7) we can cancel out terms giving us the
weak form of the Reynolds Transport Theorem in the moving frame,

d
dt

∫
Ω(t)

wiu dΩ−
∫

Ω(t)
wi∇ · (uẋ) dΩ =

∫
Ω(t)

wi
∂u
∂ t

dΩ. (4.112)

We now consider the specific system described by Fisher’s equation. We substitute the weak
form of Fisher’s equation (4.106), and obtain

d
dt

∫
Ω(t)

wiu dΩ−
∫

Ω(t)
wi∇ · (uẋ) dΩ =

∫
Ω(t)

(wi∇
2u+wiu2) dΩ. (4.113)

Integrating by parts on the right gives

d
dt

∫
Ω(t)

wiu dΩ−
∫

Ω(t)
wi∇ ·(uẋ) dΩ=

∫
S(t)

wi∇u ·n̂ dS−
∫

Ω(t)
∇wi ·∇u dΩ+

∫
Ω(t)

wiu2 dΩ.

(4.114)
We now use the relative conservation principle (4.109). From (4.110),

ciθ̇ −
∫

Ω(t)
wi∇ ·(uẋ) dΩ =

∫
S(t)

wi∇u · n̂ dS−
∫

Ω(t)
∇wi ·∇u dΩ+

∫
Ω(t)

wiu2 dΩ. (4.115)

After integration by parts we obtain

ciθ̇ −
∫

S(t)
wiuẋ · n̂ dS+

∫
Ω(t)

uẋ ·∇wi dΩ =∫
S(t)

wi∇u · n̂ dS−
∫

Ω(t)
∇wi ·∇u dΩ+

∫
Ω(t)

wiu2 dΩ (4.116)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 78

where n̂ is the outward pointing unit normal. The boundary flux uẋ · n̂ is zero due to the
Dirichlet condition on u. We now have an equation for ẋ in terms of u and θ̇ ,

ciθ̇ +
∫

Ω(t)
uẋ ·∇wi dΩ =

∫
S(t)

wi∇u · n̂ dS−
∫

Ω(t)
∇wi ·∇u dΩ+

∫
Ω(t)

wiu2 dΩ. (4.117)

Providing that we select weight functions wi that form a partition of unity, ∑wi = 1, we can
calculate θ̇ by summing this expression over all weight functions in the model and using the
boundary conditions. From (4.109), we define ci as the proportion of mass associated with
a particular weight function wi. The sum is

∑
i

ciθ̇(t)−

(∫
S(t)

∑
i

wiuẋ · n̂ dS

)
+

(∫
Ω(t)

uẋ ·∇

(
∑

i
wi

)
dΩ

)

=

(∫
S(t)

∑
i

wi∇u · n̂ dS

)
−

(∫
Ω(t)

∇

(
∑

i
wi

)
·∇u dΩ

)
+

(∫
Ω(t)

∑
i

wiu2 dΩ

)
.

(4.118)

Since uẋ · n̂ is zero on the boundary,

θ̇(t) =
∫

S(t)
wi∇u · n̂ dS+

∫
Ω(t)

u2 dΩ (4.119)

will give us θ̇ .
In the same way as in the 1-D case, a velocity potential φ is defined by

ẋ = ∇φ (4.120)

and equation (4.116) can then be rewritten as

ciθ̇(t)−
∫

S(t)
wiu∇φ · n̂ dS+

∫
Ω(t)

u∇φ ·∇wi dΩ

=
∫

S(t)
wi∇u · n̂ dS−

∫
Ω(t)

∇wi ·∇u dΩ+
∫

Ω(t)
wiu2 dΩ

(4.121)

or, since we have zero Dirichlet conditions on u,

ciθ̇(t)+
∫

Ω(t)
u∇φ ·∇wi dΩ =

∫
S(t)

wi∇u · n̂ dS−
∫

Ω(t)
∇wi ·∇u dΩ+

∫
Ω(t)

wiu2 dΩ.

(4.122)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 79

This expression gives φ for given u and θ̇ , which can be obtained from (4.119). The impli-
cations of the Helmholtz decomposition [27] tell us that (4.122) will have a unique solution
if either φ or ∂φ

∂ n̂ are given on the boundary S. We choose φ = 0 on S. The remaining part
of the method does not differ from the earlier examples in 1-D. Having obtained φ , we are
able to recover ẋ from the definition (4.120). We move the nodes and calculate θ at the new
time step using the chosen integration scheme, and then obtain u at the new time step from
the distributed mass conservation principle (4.109). Again, the chosen numerical method
for these steps is the finite element method, so we now write these steps in finite element
form.

Finite element form

In the same way as for the 1-D case, we may write our system in terms of modified or stan-
dard 2-D basis functions. First presented in [33], the use of the modified basis functions
allows us to strongly impose the Dirichlet boundary conditions on u without violating rel-
ative conservation of mass. We do not then, however, have an equation for the boundary
velocities, and to solve for u we first require knowledge of all the values of ẋ including
boundary values. We now follow the same process as for the 1-D case. We first write the
system in terms of standard basis functions. This allows us to obtain values for ẋ including
at the boundaries. We then rewrite the system in terms of modified basis functions. We write
our conservation principle (4.109) for the modified system in the expanded ALE form. We
impose the values of ẋ obtained from the standard system into the modified system, and ob-
tain the values of ci that are consistent with the ẋ. After time integration, we recover U from
the modified conservation principle, allowing strong imposition of U on the boundaries.

We proceed as described, with standard basis functions Wi. We make the piecewise
linear approximations

U(x, t) =
N

∑
j=1

Wj(x, t)U j(t) (4.123)

Ẋ(x, t) =
N

∑
j=1

Wj(x, t)Ẋ j(t) (4.124)

and

Φ(x, t) =
N

∑
j=1

Wj(x, t)Φ j(t) (4.125)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 80

giving

∇Φ(x, t) =
N

∑
j=1

∇Wj(x, t)Φ j(t). (4.126)

We can now write (4.122) in the form

N

∑
j=1

[∫
Ω(t)

U∇Wi ·∇Wj dΩ

]
Φ j =

∫
S(t)

Wi∇U · n̂ dS

−
N

∑
j=1

[∫
Ω(t)

∇Wi ·∇Wj dΩ

]
U j +

∫
Ω(t)

WiU2 dΩ− ciθ̇(t) (4.127)

or in matrix form
K(U)Φ = f (4.128)

with the vector Φ containing the values Φi, and the vector f containing the values fi given
by

fi =
∫

S(t)
Wi∇U · n̂ dS−

N

∑
j=1

[∫
Ω(t)

∇Wi ·∇Wj dΩ

]
U j +

∫
Ω(t)

WiU2 dΩ− ciθ̇(t). (4.129)

The nonlinear term,
∫

Ω(t)WiU2 dΩ, is evaluated using Gaussian quadrature (see Appendix
B). Whilst not exact, the order of accuracy is high enough not to affect the order of accuracy
of the complete algorithm.

K(U) is the weighted stiffness matrix with elements

K(U)i j =
∫

Ω(t)
U∇Wi ·∇Wj dΩ. (4.130)

We obtain Ẋ from the finite element approximation of (4.120), for which the process is
described in detail in Chapter 3, section 3.1.3. This gives the matrix form

MẊ = BΦ (4.131)

where Ẋ= {ẋi}, M is the standard mass matrix and B is an asymmetric matrix with elements

Bi j =
∫

Ω(t)
Wi∇Wj dΩ. (4.132)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 81

Modified weight functions in 2-D

Having obtained Ẋ we now rewrite the system in terms of modified weight functions, so that
the Dirichlet condition on U can be imposed. Modified weight functions in this context are
any suitable set of piecewise linear weight functions where the weighting normally associ-
ated with a boundary node has been transferred to an internal node, and where a partition of
unity is preserved. We turn our attention firstly to describing our system in terms of modi-
fied weight functions, and afterwards will take a closer look at the form of these functions
and how they may be used in calculating matrices. We use the tilde to denote the use of the
modified weight functions, i.e. wi = W̃i(x,y).

For the approximations to variables, we continue to make piecewise linear approxima-
tions in terms of standard (unmodified) basis functions,

U(x, t) =
N

∑
j=1

Wj(x, t)U j(t) (4.133)

Ẋ(x, t) =
N

∑
j=1

Wj(x, t)Ẋ j(t). (4.134)

The ALE equation (4.117) can now be written, with a little rearrangement, in terms of
modified weight functions W̃i and unmodified basis functions Wj as

c̃i =
1

θ̇(t)

(
−

N

∑
j=1

[∫
Ω(t)

UW̃i ·∇Wj dΩ

]
Ẋ j +

∫
S(t)

W̃i∇U · n̂ dS+
∫

S(t)
W̃iUẊ · n̂ dS

−
N

∑
j=1

[∫
Ω(t)

∇W̃i ·∇Wj dΩ

]
U j +

∫
Ω(t)

W̃iU2 dΩ

)
. (4.135)

We impose our Ẋ obtained from the unmodified system into this modified system, and thus
obtain the correct values of c̃i for the modified system. The nonlinear term is calculated
using Gaussian quadrature (see Appendix B). After time integration, we recover U using
the finite element version of (4.109) with modified weight functions

N

∑
j=1, j ̸∈S

[∫
Ω(t)

W̃iWj dΩ

]
U j = c̃iθ(t) (4.136)

which references internal nodes only. In matrix form this is

M̃U = c̃θ (4.137)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 82

for mass matrix M̃, and vectors U containing the U j values and c̃ containing the c̃i values.
We now turn our attention to selecting a form for the modified weight functions and

consider the implications for matrix construction. Following Hubbard, Baines and Jimack,
2009 [33] we are presented with the choice between two approaches for modifying the
weight functions. These are termed the ’averaged modified approach’ and the ’compact
modified approach’. The two approaches are both derived and discussed only in the context
of the mass matrix. The modified mass matrix alone is sufficient to solve the conservation
equation (4.137), but here we require a more extensive implementation of the modified
weight functions. In order to solve (4.135) we will require an evaluation of both a stiffness
matrix and an asymmetric matrix. We must therefore extend one of the approaches from
[33] in order to provide a way to construct any matrix from the modified weight functions.
The averaged modified approach of [33] lends itself best to this, since it is defined in terms
of the weight functions themselves. In [33] the modified weight functions are constructed in
a similar way to the 1-D case, but with the added complication of increased connectivity. It
is stated that the weight functions associated with boundary nodes are redistributed equally
between their adjacent internal nodes. Therefore all basis functions defined on fully internal
elements remain unaffected. With regard to the construction of the mass matrix, [33] sets
out the following process. For triangles with two nodes on the boundary, all the weight
associated with that triangle has only one internal node to go to, and the calculation is
simple. For a given internal node j on a triangle with vertices [j,J,K] where J and K are
boundary nodes, the modified weight function W̃j

∣∣
[j,J,K]

for triangle [j,J,K] is given by

W̃j
∣∣
[j,J,K]

=Wj +WJ +WK. (4.138)

An example of such a triangle is number 3 of figure 4.10.
For triangles with one node on the boundary, the weight associated with that node is

split equally between the two internal nodes. For a given internal node j on a triangle with
vertices [i, j,J] where only J is on the boundary, the modified weight function W̃j

∣∣
[i, j,J] for

triangle [i, j,J] is given by

W̃j
∣∣
[i, j,J] =Wj +

1
2

WJ. (4.139)

An example of such a triangle is number 2 of figure 4.10.
These sums are presented visually in figure 4.11. Recalling the standard 2-D basis func-

tions Wi of figure 3.2, we obtain from equations (4.138) and (4.139) the coloured prisms
W̃i of figure (4.11). The red volume represents W̃j

∣∣
[j,J,K]

, the contribution from triangle 3
to the modified basis function at internal node j. All the mass from triangle 3 has been as-

4.2 An Illustration of the Conservation Method: Fisher’s Equation 83

Fig. 4.10 Connectivity between boundary nodes (I,J and K) and internal nodes (i,j, and k).
The arrows show where the weight function from each triangle will be transferred to under
the modified system

signed to node j, so the red modified basis function is a triangular prism with height 1 at all
three corners. The purple volume represents W̃j

∣∣
[i, j,J], the contribution from triangle 2 to the

modified basis function at internal node j. Half of the mass normally assigned to boundary
node J is transferred to internal node j, with the remaining half being transferred to internal
node i. The purple modified basis function is therefore a modified prism with height 1 at j,
height 0 at i and height 0.5 at J.

The practical implementation of this modification process takes place at the level of ma-
trix assembly. The 2-D matrices are assembled as part of the algorithm by summing the
element contributions from each triangle. When we require a matrix calculated from mod-
ified weight functions such as the M̃ of (4.137), the contributions from boundary triangles
are adjusted before assembly according to (4.138) and (4.139). Contributions from triangles
with no boundary nodes are unaffected.

The matrix assembly using these modified functions must consider the interactions be-
tween modified weight functions and unmodified basis functions. A generalised matrix A

defined in terms of functions F and G with standard weight functions Wi and basis functions
Wj has entries

Ai j =
∫

Ω

F(Wi)G(Wj) dΩ (4.140)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 84

Fig. 4.11 Modified basis functions for internal nodes. The red modified weight function
represents the mass contribution from triangle 3 to internal node j, and is a triangular prism
with height 1 at all three corners. The purple modified basis function represents the mass
contribution from triangle 2 to internal node j, and is a modified prism with height 1 at j,
height 0 at i and height 0.5 at J.

with a corresponding element matrix given by

Ae =

eii ei j eik

e ji e j j e jk

enki ek j ekk

. (4.141)

We now consider the example of triangle 2 of figure (4.11), with one boundary node J

replacing k and two internal nodes i and j. For an element with one boundary node such as
triangle 2, we instead require a modified matrix with entries

Ãi j =
∫

ωe2

F(W̃i)G(Wj) dΩ (4.142)

where ωe2 is triangle 2 of figure (4.11). The unmodified basis functions Wj for this triangle
are

Wi|[i, j,J] (4.143)

4.2 An Illustration of the Conservation Method: Fisher’s Equation 85

Wj
∣∣
[i, j,J] (4.144)

and
WJ|[i, j,J] . (4.145)

The modified weight functions W̃i for triangle 2 are, in terms of those unmodified basis
functions,

W̃i
∣∣
[i, j,J] = Wi|[i, j,J]+

1
2

WJ|[i, j,J] (4.146)

W̃j
∣∣
[i, j,J] = Wj

∣∣
[i, j,J]+

1
2

WJ|[i, j,J] (4.147)

and
W̃J
∣∣
[i, j,J] = 0. (4.148)

The entries for the modified element matrix as defined by (4.142) can be calculated for
triangle 2 from the local Wj and W̃i functions , (4.143) to (4.148). By reference to (4.140)
and (4.141), the entries can be given in terms of the unmodified elements of (4.141) as

Ãe =

eii +

1
2eiJ ei j +

1
2e jJ eniJ+ 1

2ennJJ

e ji +
1
2enniJ enn j j+ 1

2en jJ enn jJ+ 1
2ennJJ

0 0 0

. (4.149)

The matrix is partitioned into an upper left 2× 2 matrix, a bottom row of all zeros, and a
right hand column which refers to a known value obtained from the Dirichlet condition. For
example to calculate AU , we can see that we have

enii+ 1
2enniJ ei j +

1
2e jJ eiJ +

1
2enJJ

e ji +
1
2eniJ e j j +

1
2e jJ e jJ +

1
2eJJ

0 0 0

=

Ui

U j

UJ

. (4.150)

where Ui and U j are free and UJ is fixed. The known terms generated by the right hand
column of the matrix can be added directly into the rows of the calculation, allowing us to

4.2 An Illustration of the Conservation Method: Fisher’s Equation 86

use only the square matrix of the upper left in the matrix operation. This has the advantage
of being invertible.

We can use this approach to generate the specific matrices we will use. The unmodified
mass matrix given by

M =
∫

Ω

WiWj dΩ (4.151)

has the element mass matrix

Me = area△

1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6

(4.152)

and the modified mass matrix given by

M̃ =
∫

Ω

W̃iWj dΩ (4.153)

has the element mass matrix (for a triangle such as ωe2 with two internal nodes and one
boundary node) given by

Me2 = area△

5
24

3
24

1
6

3
24

5
24

1
6

0 0 0

. (4.154)

We can calculate modified stiffness matrices in the same way. The standard element stiffness
matrix is

Ke =
1
2

cotγ + cotβ −cotγ −cotβ

−cotγ cotα + cotγ −cotα

−cotβ −cotα cotβ + cotα

(4.155)

and the modified element stiffness matrix for a triangle such as ωe2 with two internal nodes

4.2 An Illustration of the Conservation Method: Fisher’s Equation 87

and one boundary node is given by

K̃e2 =
1
2

cotγ + 1

2cotβ −cotγ − 1
2cotα 1

2cotα − 1
2cotβ

−cotγ − 1
2cotβ 1

2cotα + cotγ 1
2cotβ − 1

2cotα

0 0 0

. (4.156)

In the same way, the modified weighted stiffness matrix given by

K̃(U)i j =
∫

Ωi

U∇WiWj dΩ. (4.157)

for which the standard element stiffness matrix is given by (3.82), has a modified element
stiffness matrix (for a triangle such as ωe2 with two internal nodes and one boundary node)
given by

˜K(U)e2
=

(
UA +UB +UC

6

)

cotγ + 1
2cotβ −cotγ − 1

2cotα 1
2cotα − 1

2cotβ

−cotγ − 1
2cotβ 1

2cotα + cotγ 1
2cotβ − 1

2cotα

0 0 0

.

(4.158)

Algorithm 9

The finite element solution of Fisher’s equation (4.105) on the moving mesh in 2-D therefore
consists of the following steps:

1. Find θ̇(t) by summing over all rows of the matrix equation (4.127);

2. Find the velocity potential by solving equation (4.127) for the Φ j(t) values;

3. Find the node velocity by solving equation (4.131) for the Ẋ j(t) values;

4. Generate the co-ordinate system at the next time-step t + dt by solving (3.18) using
the forward Euler approximation. Similarly, update θ̇ from θ̇(t);

5. Find the updated c̃i values using the calculated node velocities Ẋ j(t) in the ALE equa-
tion (4.135);

4.2 An Illustration of the Conservation Method: Fisher’s Equation 88

6. Find the solution U(t +dt) by solving the relative conservation equation (4.137) with
the updated c̃i values.

Results

Fig. 4.12 Initial data (4.159) taken from [13] for the solution of the 2D Fisher’s equation
using a moving mesh. Here we use 5 nodes on 20 concentric circles, and a time step of
dt = 10−5. The mesh is assembled so that node positions alternate on adjacent concentric
circles, see figure (4.17) for clarity.

We first test the model in a radial geometry with initial conditions taken from the 1-D case
[13]. The initial domain is a circle of radius 0.5 centred at the origin, and initial u is given
by, for radius r,

u(0) = 20sin(π(0.5− r)). (4.159)

We find that with these initial conditions in 2-D, the reaction does not build. The diffusion
term overwhelms the reaction term and the system cools; the integral of u reduces over time.
This can be seen in the calculation of (4.127), which gives a negative value for θ̇ . The result
makes intuitive sense, given that heat diffusion, or cooling, is taking place around the entire
circumference of a circle rather that simply at a point on a line. We therefore provide a set
of alternative initial conditions, with the same form but a higher amplitude. We calculate
this amplitude so that the total rate of reaction and the total rate of diffusion (given by the
terms in (4.127)) are in the same ratio as in the 1-D case. These initial conditions are given

4.2 An Illustration of the Conservation Method: Fisher’s Equation 89

by
u(0) = 75sin(π(0.5− r). (4.160)

In this case, the reaction does build, and we observe blow-up in a similar manner to the 1-D
case. We observe node movement towards the centre as u becomes large there. The solution
tends towards a Dirac delta function before the model collapses due to node tangling. These
results are presented in figures 4.12 to 4.16. We use 5 nodes on 20 concentric circles. The
initial grid is presented in figure 4.17. Note that the outermost circle is different in having
10 nodes. This is to avoid the situation where if only 5 nodes were used, nodes from the
next circle inward from the boundary would form part of the boundary, as a consequence
of the alternating positioning of the nodes on adjacent circles. This would complicate the
implementation of the boundary conditions, so additional nodes are added on the outer
circle only. We use a time step of dt = 10−5. Figure 4.13 shows the solution at t = 0.01, and
figure 4.14 shows the solution at t = 0.02. We observe the shape of the solution becoming
narrower and taller. After t = 0.0219 (figure 4.15), we rapidly approach blow up. The final
solution before node tangling occurs is that of figure 4.16, which approximates a Dirac delta
function with amplitude u = 3.6∗106. The degree of node movement achieved is apparent
by comparing figure 4.17 with 4.18. Figure 4.17 shows the initial node positions and figure
4.18 shows the positions at t = 0.0219 as we approach blow-up. We note that the nodes
are indeed clustering around the area of interest, in this case the centre. Having moved the
nodes allows a much better resolution of the shape of the blow up peak, compared to what
is achievable if the nodes had stayed as in figure 4.17.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 90

Fig. 4.13 Solution of the 2D Fisher’s equation at t = 0.01. Note change of scale on the
vertical axis.

Fig. 4.14 Solution of the 2D Fisher’s equation at t = 0.02. Note change of scale on the
vertical axis.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 91

Fig. 4.15 Solution of the 2D Fisher’s equation at t = 0.0219. Approaching blow-up. Note
change of scale on the vertical axis.

Fig. 4.16 Final solution of the 2D Fisher’s equation. Here t = 0.0225. The solution approx-
imates a Dirac delta function, and shortly after this time step the nodes become co-located
and the model becomes unstable.

4.2 An Illustration of the Conservation Method: Fisher’s Equation 92

Fig. 4.17 Initial node positions for 2-D Fisher’s equation at t = 0. We have 5 nodes on 20
equally spaced concentric circles.

Fig. 4.18 Node positions for 2-D Fisher’s equation at t = 0.0219 as we approach blow up.
When compared to the initial grid, the movement towards the centre is clearly apparent.

4.3 Keller-Segel model in 2D 93

4.3 Keller-Segel model in 2D

The Keller-Segel model [34] is a reaction-diffusion system related to the Fisher’s equa-
tion. It differs from the Fisher’s equation in that it involves both a substrate and a reactant,
whereas the Fisher’s equation is concerned with only the reactant. Both Cole [21] and Budd
[13] consider the Keller-Segel system in two-dimensional, but radially symmetric, terms,
on a moving mesh. Budd’s paper [13] contains an equidistribution approach to moving the
mesh, whereas Cole [21] demonstrates a conservation based method with a finite differences
implementation. Here we move to a fully two dimensional approach, with a conservation
based finite element method of solution (MMFEM).

This model, for chemotaxis of cells, takes the form of a pair of interdependent PDEs,

∂u
∂ t

= ∇.(k1(u,v)∇u− k2(u,v)u∇v)+ k3(u,v) (4.161)

∂v
∂ t

= Dv∇
2v+ k4(u,v)− k5(u,v)v (4.162)

where
u=cell density
v=concentration of substrate
k1=diffusivity
k2=chemotactic sensitivity
k3=cell growth and death
k4=production of substrate
k5=degradation of substrate.

We model a system on a fixed domain Ω with boundary S. We take the Neumann bound-
ary conditions used in [13], given by

∇u · n̂|S = 0 (4.163)

and
∇v · n̂|S = 0. (4.164)

We also take the initial values for u and v from [13], given by

u(r,0) = 1000e(−500r2) (4.165)

4.3 Keller-Segel model in 2D 94

v(r,0) = 10e(−500r2) (4.166)

where r ∈ Ω = {r : ∥r∥ ≤ R}, and R = 1. A free boundary is unimportant here, since the
initial conditions give a wide margin where u,v ≈ 0 between the central reacting zone and
the boundary. In the event that we were to allow the boundary to move, this set of initial
conditions would drive no movement in any case.

We consider a minimal model where the rate parameters ki have linear form, and in
particular the case where (4.161) and (4.162) are simplified to

∂u
∂ t

= ∇
2u−χ∇.(u∇v) (4.167)

∂v
∂ t

= ∇
2v+u− v (4.168)

where χ is the chemotactic coefficient, for which a value χ=8 is suggested in [13]. In weak
form, equations (4.167) and (4.168) become respectively

∫
Ω

wi
∂u
∂ t

dΩ =
∫

Ω

wi∇
2u dΩ−

∫
Ω

wiχ∇.(u∇v) dΩ (4.169)

∫
Ω

wi
∂v
∂ t

dΩ =
∫

Ω

wi(∇
2v+u− v) dΩ (4.170)

for a domain Ω.
We proceed similarly to the Fisher’s model, although here matters are simplified by

having a true conservation of total mass so that θ̇ = 0. The Leibnitz integral gives that

d
dt

∫
Ω

u dΩ =
∫

S
ẋu.n̂ dS+

∫
Ω

∂u
∂ t

dΩ. (4.171)

Substitution from (4.167) gives

d
dt

∫
Ω

u dΩ =
∫

S
ẋu.n̂ dS+

∫
Ω

(
∇

2u−χ∇.(u∇v)
)

dΩ = 0 (4.172)

which is equal to zero due to (i) the Neumann boundary conditions (4.163) and (4.164), and
(ii) the fixed boundary so that x.n̂ = 0. Hence∫

Ω

u dΩ = c (4.173)

4.3 Keller-Segel model in 2D 95

and
d
dt

∫
Ω

u dΩ = 0 = θ̇ , (4.174)

i.e., mass is conserved. We define a distributed conservation principle using the weight
functions wi. ∫

Ω

wiu dΩ = ci (4.175)

or
d
dt

∫
Ω

wiu dΩ = 0. (4.176)

We differentiate using Leibnitz’ rule and obtain

∫
Ω

∂

∂ t
(wiu) dΩ−

∫
S

wiuẋ.n̂ dS = 0 (4.177)

or ∫
Ω

[
wi

∂u
∂ t

+u
∂wi

∂ t
+wi∇.(uẋ)+uẋ.∇wi

]
dΩ = 0. (4.178)

If wi moves with velocity ẋ, then by analogy with a convecting system

∂wi

∂ t
+ ẋ.∇wi = 0 (4.179)

then ∫
Ω

wi∇.(ẋu) dΩ =−
∫

Ω

wi
∂u
∂ t

dΩ. (4.180)

By Green’s theorem on the left hand side, and substituting from the weak form (4.169),

−
∫

S
wiẋu · n̂ dS+

∫
Ω

∇wi.ẋu dΩ =
∫

Ω

wi(∇
2u−χ∇.(u∇v)) dΩ. (4.181)

The first term on the left hand side is equal to zero, as ẋ · n̂ is zero on the boundary. Expand-
ing the right hand side using integration by parts, we obtain∫

Ω

∇wi.ẋu dΩ =
∫

S
wi∇u.n̂ dS−

∫
Ω

∇wi.∇u dΩ−
∫

Ω

wiχ∇.(u∇v) dΩ (4.182)

and after integrating by parts again, we arrive at∫
Ω

∇wi.ẋu dΩ =
∫

S
wi∇u.n̂ dS−

∫
Ω

∇wi.∇u dΩ−
∫

S
wiχu∇v.n̂ dS+

∫
Ω

χ∇wi.u∇v dΩ.

(4.183)
The boundary terms are zero due to the zero flux Neumann conditions (4.163) and (4.164).

4.3 Keller-Segel model in 2D 96

We arrive at ∫
Ω

∇wi.ẋu dΩ =−
∫

Ω

∇wi.∇u dΩ+
∫

Ω

χ∇wi.u∇v dΩ. (4.184)

This is our weak form for ẋ in terms of u and v. We will move the nodes using a time
integration scheme, and recover u using a conservation approach. We do however, require a
weak form for v̇. We calculate v̇ from the definition of ∂v

∂ t , (4.168), the known nodal velocity
ẋ and the material derivative

dv
dt

=
∂v
∂ t

+∇v · ẋ. (4.185)

The ẋ value is now known. Noting that the weak form (4.170) of the definition of ∂v
∂ t is

∫
Ω

wi
∂v
∂ t

dΩ =
∫

Ω

[
wi∇

2v+wiu−wiv
]

dΩ (4.186)

we apply Green’s theorem to obtain

∫
Ω

wi
∂v
∂ t

dΩ =
∫

S
wi∇v.n̂dS−

∫
Ω

∇wi.∇v dΩ+
∫

Ω

wi(u− v) dΩ. (4.187)

Since we have zero Neumann conditions (4.164) the boundary term is equal to zero. We
have ∫

Ω

wi
∂v
∂ t

dΩ =−
∫

Ω

∇wi.∇v dΩ+
∫

Ω

wi(u− v) dΩ (4.188)

which is the weak form we require in order to obtain v at the new time step through (4.185).

Finite elements

Having constructed the necessary weak form, we now make the finite element substitutions.
We have no Dirichlet conditions to impose, hence we can use unmodified basis functions
as in case 2. To solve (4.184) using the finite element method, we introduce the velocity
potential φ defined by

ẋ = ∇φ . (4.189)

Equation (4.184) becomes∫
Ω

∇wi.∇φu dΩ =−
∫

Ω

∇wi.∇u dΩ+
∫

Ω

χ∇wi.u∇v dΩ. (4.190)

4.3 Keller-Segel model in 2D 97

We use the basis functions wi = {Wi(x,y)} and the piecewise linear approximations

Φ(x, t) =
N

∑
j=1

Wj(x, t)Φ j(t) (4.191)

U(x, t) =
N

∑
j=1

Wj(x, t)U j(t) (4.192)

V (x, t) =
N

∑
j=1

Wj(x, t)Vj(t). (4.193)

We can now write equation (4.184) in a finite element form.

N

∑
j=1

[∫
Ω

U∇Wi.∇Wj dΩ

]
Φ j =−

N

∑
j=1

[∫
Ω

∇Wi.∇Wj dΩ

]
U j +χ

N

∑
j=1

[∫
Ω

(U∇Wi.∇Wj)dΩ

]
Vj.

(4.194)

In matrix form this is
K(U)Φ = f (4.195)

with K(U) the weighted stiffness matrix of chapter 3, section 3.1.3. The vector Φ contains
the Φ j values and the vector f is the vector containing the fi values given by

fi =−
N

∑
j=1

[∫
Ω

∇Wi.∇Wj dΩ

]
U j +

N

∑
j=1

[∫
Ω

(χU∇Wi.∇Wj)dΩ

]
Vj (4.196)

or
f =−KU +χK(U)V (4.197)

with V the vector containing the Vj values. We solve (4.195) for Φ, defining Φ = 0 at
one node to overcome the infinity of solutions that would otherwise be obtainable from
the singular matrix K(U). The velocities can then be recovered exactly as for the Fisher’s
equation, using (4.131).

Time step

We generate the co-ordinate system at the next time-step from (3.18) using the forward
Euler approximation.

4.3 Keller-Segel model in 2D 98

Recovering U

We recover U using our defined mass conservation property, (4.175). The process is similar
to that outlined in chapter 3, section 3.1.3, but is simplified by having true conservation of
mass.

Equation (4.175), using the approximation U ≈ u and having selected the set of basis
functions wi =Wi is, for all i ∫

Ω

WiU dΩ = ci (4.198)

where the ci are the constant local masses associated with the corresponding Wi. Using the
piecewise linear form of U (4.192) we obtain

N

∑
j=1

[∫
Ω

WiWjdx
]

U j = ci (4.199)

which is equivalent to the mass matrix system

MU = c (4.200)

where U is the vector containing the U j values and c is the vector containing the constant
ci values. This equation is used to calculate the initial (and constant) values of ci, using the
initial values of U j. After repositioning the nodes using a time integral of x j, we update the
mass matrix and then may recover U j(t) from the mass matrix system (4.200).

The calculation of ∂v
∂ t

Taking the weak form (4.188), we use the piecewise linear basis functions wi =Wi and the
piecewise linear approximations

V (x, t) =
N

∑
j=1

Wj(x, t)Vj(t) (4.201)

and
∂V
∂ t

= Q(x, t) =
N

∑
j=1

Wj(x, t)Q j(t) (4.202)

4.3 Keller-Segel model in 2D 99

together with the piecewise linear approximations for U (4.192) and V (4.193), we obtain
from (4.188),

N

∑
j=1

[∫
Ωi

WiWj dΩ

]
Q j =−

N

∑
j=1

[∫
Ω

∇Wi.∇Wj dΩ

]
Vj +

N

∑
j=1

[∫
Ω

WiWj dΩ

]
(U j −Vj)

(4.203)
or in matrix form

MQ = M(U −V)−KV (4.204)

in terms of the mass and stiffness matrices. A vector V̇ is thus obtained from known U and
V and then inserted into equation (4.185) to obtain dV

dt . The forward Euler method is then
used to approximate V at the next time step.

Algorithm 10

The finite element solution of the Keller-Segel equations (4.167) and (4.168) on the moving
mesh in 2-D therefore consists of the following steps. Having obtained the values of ci from
(4.200):

1. Find the velocity potential by solving equation (4.195) for the Φ j(t) values;

2. Find the node velocity by solving equation (4.131) for the Ẋ j(t) values;

3. Find Q by solving equation (4.204);

4. Generate the co-ordinate system at the next time-step t + dt from (3.18) using the
forward Euler approximation;

5. Find V (t +dt) at the next time step by integrating the material derivative(4.185) using
the forward Euler approximation;

6. Find the solution U(t +dt) by solving the conservation equation (4.200).

Results

We implement algorithm 10 using MATLAB. We set up an initial grid consisting of m nodes
on n concentric circles. We find that the model is stable and robust under a wide range of
choices of m, n and time step ∆t. For the reference blow up time, we refer to [13], where
a very high resolution model determined a blow up time of T ≈ 5.15× 10−5. For every
set of parameters for which we run our model, the limiting factor for the resolution of the

4.3 Keller-Segel model in 2D 100

blow-up peak is node tangling. We find that the performance is affected not just by the
independent choices of m and n, but by the shapes of the triangles that m and n produce
in combination. However, for the better performing combinations of m and n, the time at
blow-up is much more accurate than was achieved by the radially symmetric conservation
method finite difference models of Cole [21]. For the poorer performing combinations of m

and n, the radially symmetric finite difference model is the better performer. In mitigation
of this it should be noted that the fully 2D model is much more flexible than the radial model
in terms of the range of initial conditions it can simulate. We find that the model result does
not exhibit a close sensitivity to the size of ∆t. We are able to use a larger ∆t than [21],
which is clearly advantageous for the speed of computation. We can then reduce ∆t as we
approach blow up, purely to better resolve the time of blow up. We find that the nodes move
towards the centre as expected. As was observed in [21] and [13], the concentration of the
substrate v does not vary much when the initial conditions are as stated. The concentration
of the reactant forms an approximate Dirac delta function at blow up. We find that the blow
up time is, however, sensitive to the number of concentric circles of nodes n. With reduced
n, we avoid node tangling for longer and so a higher peak in u can be resolved at a later time.
This same trend is observed in the radial model of [21]. We also note that the blow up time is
sensitive to the number of nodes m on each concentric circle. As m increases, node tangling
occurs sooner. It is likely that the long, thin shape of the central triangles in these high m

models is causing an ill-conditioned stiffness matrix to be produced in the computation. We
conclude that it is necessary to design the initial grid with careful consideration given to
avoiding long, thin triangles if possible. Tables 4.5, 4.6 and 4.7 give blow up times for a
variety of m, n and ∆t, chosen so that direct comparisons with [21] can be made.

4.3 Keller-Segel model in 2D 101

Table 4.5 Blow up time for 2D Keller-Segel model with m = 10 showing variation by ∆t,
and n

m n ∆t Tblow−up

10 5 4x10−7 2.00x10−5

10 5 2x10−7 1.90x10−5

10 5 1x10−7 1.90x10−5

10 5 5x10−8 2.00x10−5

10 10 4x10−7 1.48x10−5

10 10 2x10−7 1.24x10−5

10 10 1x10−7 1.10x10−5

10 10 5x10−8 1.00x10−5

4.3 Keller-Segel model in 2D 102

Table 4.6 Blow up time for 2D Keller-Segel model with m = 20 showing variation by ∆t,
and n

m n ∆t Tblow−up

20 5 4x10−7 5.52x10−5

20 5 2x10−7 5.54x10−5

20 5 1x10−7 5.54x10−5

20 5 5x10−8 5.55x10−5

20 10 4x10−7 1.48x10−5

20 10 2x10−7 1.52x10−5

20 10 1x10−7 1.52x10−5

20 10 5x10−8 1.52x10−5

20 20 4x10−7 8.80x10−6

20 20 2x10−7 9.00x10−6

20 20 1x10−7 9.10x10−6

20 20 5x10−8 9.10x10−6

4.3 Keller-Segel model in 2D 103

Table 4.7 Blow up time for 2D Keller-Segel model with m = 40 showing variation by ∆t,
and n

m n ∆t Tblow−up

40 5 4x10−7 5.52x10−5

40 5 2x10−7 5.54x10−5

40 5 1x10−7 5.56x10−5

40 5 5x10−8 5.56x10−5

40 10 4x10−7 1.52x10−5

40 10 2x10−7 1.52x10−5

40 10 1x10−7 1.52x10−5

40 10 5x10−8 1.52x10−5

40 20 4x10−7 8.80x10−6

40 20 2x10−7 8.80x10−6

40 20 1x10−7 8.80x10−6

40 20 5x10−8 8.85x10−6

Examples of the graphical results obtained are given in figures 4.19, 4.20 and 4.21. We
observe the increasing height of the peak in u and the much lesser reduction in the height
of v. Figure 4.22 shows the node positions at t = 0 (dotted line) and at blow up (solid
line). We observe adaptation in the centre of the domain; figure 4.23 shows a closer view.
Interestingly, because the outer elements of the domain hold no mass (i.e. u = 0), they are
unable to adapt their configuration at all in this mass conservation driven approach. We have
node movement only where we have mass movement, and the outer elements are unable to
’donate’ any of their resolution to the centre. This is a drawback to the mass conservation

4.3 Keller-Segel model in 2D 104

method and it should be noted that for domains which involve large regions with zero mass
or constant mass, node movement cannot occur in those regions.

Fig. 4.19 Initial conditions for the Keller Segel model.

4.3 Keller-Segel model in 2D 105

Fig. 4.20 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
at t = 5x10−6.

4.3 Keller-Segel model in 2D 106

Fig. 4.21 Solution of the Keller Segel model on a grid with 20 nodes on 20 concentric circles
as we approach blow-up.

4.3 Keller-Segel model in 2D 107

Fig. 4.22 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line).

4.3 Keller-Segel model in 2D 108

Fig. 4.23 Comparison of mesh movement between initial distribution (red dotted line) and
approaching blow-up (blue solid line), a closer view.

Chapter 5

Moving interface models

5.1 The two phase Stefan problem in 1D

We now consider models with a moving interface between two phases. These models are a
natural development from the free boundary variants of Chapter 4, for example the Fisher’s
model of section 4.2 with case (2) boundary conditions. We begin with a model of the
two phase Stefan problem, constructed in a similar manner to that described in the Baines,
Hubbard, Jimack and Mahmood (2009) paper [8]. The model describes the melting of ice
into water. This model differs from those seen in this thesis so far in that the nodes at the
phase boundary are themselves moving, as well as node movement within each phase. The
model explicitly calculates the velocity of the interface between phases as the ice melts.
This velocity comes from an interface condition, and this information is then incorporated
into the model as a Dirichlet condition at the moving boundary. The model is constructed
as a moving mesh finite element model. We present a modification to the paper [8]. In this
problem we have Dirichlet boundary conditions on the boundary velocities as well as on the
temperature of the ice or water. This makes it possible to construct the entire finite element
model from start to finish in terms of the modified basis functions described in Chapter 4,
section 4.2.1. We therefore do not need to switch basis systems via the ALE equation, as
we did for the free boundary Fisher’s problem (4.2) and as is derived in the paper [8]. We
derive this alternative process and demonstrate that results equivalent to [8] can be obtained
by it. The system is driven by the diffusion of heat. We consider the 1-D diffusion PDEs

KS
∂u
∂ t

=
∂

∂x

(
kS

∂u
∂x

)

5.1 The two phase Stefan problem in 1D 110

KL
∂u
∂ t

=
∂

∂x

(
kL

∂u
∂x

)
. (5.1)

The parameters used are KS and KL, the volumetric heat capacities of the solid and liquid
phases; kS and kL, the thermal conductivities; and u, the temperature.

At the interface, u = um, the temperature at which melting takes place. There is an
energy balance across the phase-change boundary Γm(t). This is described by the Stefan
equation

kS
∂uS

∂x
− kL

∂uL

∂x
= λ ẋm (5.2)

with λ , the heat of phase change per unit volume; and ẋm, the velocity of the interface. We
assume that all parameters are constant within their respective phases. In this system the
derivative ∂u

∂x is not continuous across the moving interface so we will need to be explicit
about in which phase we are evaluating that gradient.

The particular case we will consider uses fixed outer boundaries x ∈ [0,1] with zero
Dirichlet conditions on the velocity for external boundary nodes, and initial conditions taken
from a system with an exact solution,

uS = u∗
(

1− er f (x/(2
√

κS t))
er f ψ

)

uL = u0

(
1− er f c(x/(2

√
κL t))

er f c(ψ
√

κS/κL)

)
. (5.3)

5.1 The two phase Stefan problem in 1D 111

The following values for the parameters are used:

u∗ =−20

u0 = 10

kS = 2.22

kL = 0.556

KS = 1.762

KL = 4.226

λ = 338

ψ = 0.2054

tinitial = 0.0012 (in order to avoid a singularity in (5.3))

κ = k/K.

We consider a domain R(t) with fixed external boundaries ∂R = [0,1] and an interface m.
The boundary conditions are then formally

uS(0) =−20 (5.4)

uL(1) = 10 (5.5)

um(m) = 0 (5.6)

for the temperatures, and
ẋ(0) = 0 (5.7)

ẋ(1) = 0 (5.8)

for the velocities. We also have ẋm, the velocity at the interface, given by the interface
condition (5.2). We write the diffusion PDEs (5.1) in weak form

∫
R

wiKS
∂u
∂ t

dx =
∫

R
wi

∂

∂x

(
kS

∂u
∂x

)
dx (5.9)

∫
R

wiKL
∂u
∂ t

dx =
∫

R
wi

∂

∂x

(
kL

∂u
∂x

)
dx. (5.10)

We begin by defining θ . Although in physical terms this is the integral over temperature u,

5.1 The two phase Stefan problem in 1D 112

it may be helpful to think of this as ’mass’ and we will use that shorthand here.

θ(t) =
∫

R(t)
u dx. (5.11)

We may then write a relative conservation principle in terms of θ ,

1
θ(t)

∫
R(t)

u dx = 1. (5.12)

We may consistently introduce a weighted form

1
θ(t)

∫
R(t)

wiu dx = ci (5.13)

where wi is the weight, equivalent to∫
R(t)

wiu dx = ciθ(t) = ci

∫
R(t)

u dx. (5.14)

Here the constant ci is determined by the choice of wi. If we choose a set of wi that together
form a partition of unity, then the set of ci will likewise form a partition of unity. Equation
(5.14) is now a principle governing the distributed conservation of mass. We differentiate
(5.14) with respect to time using the Leibnitz integral rule. We use a moving reference
frame, so the velocity of the node movements, ẋ(t,x), must be considered in our calculations,

d
dt

[∫
R(t)

wiu dx
]
=
∫

R(t)

(
∂ (wiu)

∂ t
+

∂

∂x
(wiuẋ)

)
dx. (5.15)

This is the Reynolds Transport Theorem described in Chapter 3, section 3.1.1. Assuming
that the basis functions wi move with the domain we know that they have velocity ẋ and
therefore

∂wi

∂ t
+ ẋ

∂wi

∂x
= 0 (5.16)

hence
d
dt

[∫
R(t)

wiu dx
]
=
∫

R(t)
wi

(
∂u
∂ t

+
∂

∂x
(uẋ)

)
dx (5.17)

or
d
dt

[∫
R(t)

wiu dx
]
−
∫

R(t)
wi

∂

∂x
(uẋ) dx =

∫
R(t)

wi
∂u
∂ t

dx. (5.18)

5.1 The two phase Stefan problem in 1D 113

In terms of θ̇ and the constants ci this is

ciθ̇ −
∫

R(t)
wi

∂

∂x
(uẋ) dx =

∫
R(t)

wi
∂u
∂ t

dx. (5.19)

For consistency of method with the 2-D version, we introduce the velocity potential φ de-
fined by

ẋ =
∂φ

∂x
(5.20)

so that
ciθ̇ −

∫
R(t)

wi
∂

∂x

(
u

∂φ

∂x

)
dx =

∫
R(t)

wi
∂u
∂ t

dx (5.21)

or, after integration by parts

ciθ̇ +
∫

R(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂R(t)

=
∫

R(t)
wi

∂u
∂ t

dx. (5.22)

We substitute in a weak form of the driving PDE, either (5.9) or (5.10), depending on the
phase under consideration. For either phase p ∈ [S,L]

ciθ̇ +
∫

R(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂R(t)

=
∫

R(t)

wi

Kp

(
∂

∂x

(
kp

∂u
∂x

))
dx. (5.23)

Again integrating by parts, this time on the right hand side

ciθ̇ +
∫

R(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂R(t)

=−
∫

R(t)
κp

∂wi

∂x
∂u
∂x

dx+
[

wiκp
∂u
∂x

]
∂R(t)

(5.24)

where κp = kp/Kp. From this point onwards we consider the two phases separately, on their
domains RS with boundary ∂RS = [0,m], and RL with boundary ∂RL = [m,1].
The ’masses’ of equation (5.11) become, for the solid phase and liquid phase respectively,

θS(t) =
∫

RS(t)
u dx (5.25)

θL(t) =
∫

RL(t)
u dx (5.26)

5.1 The two phase Stefan problem in 1D 114

with distributed (weak) forms

cSiθS(t) =
∫

RS(t)
wiu dx (5.27)

cLiθL(t) =
∫

RL(t)
wiu dx. (5.28)

We rewrite (5.24) for each phase separately. Since ẋ = 0 at the external boundaries and
u = um on the interface boundary, the velocity potential for the solid phase is given by

cSi θ̇S +
∫

RS(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂RS(t)

=−
∫

RS(t)
κS

∂wi

∂x
∂u
∂x

dx+
[

wiκS
∂u
∂x

]
∂RS(t)

(5.29)

so that

cSi θ̇S +
∫

RS(t)
u

∂wi

∂x
∂φ

∂x
dx− umwi

∂φ

∂x

∣∣∣∣
Rm(t)

=−
∫

RS(t)
κS

∂wi

∂x
∂u
∂x

dx+ wiκS
∂u
∂x

∣∣∣∣
Rm(t)

− wiκS
∂u
∂x

∣∣∣∣
R f

(5.30)

and the velocity potential for the liquid phase is given by

cLi θ̇L +
∫

RL(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂RL(t)

=−
∫

RL(t)
κL

∂wi

∂x
∂u
∂x

dx+
[

wiκL
∂u
∂x

]
∂RL(t)

(5.31)

so that

cLi θ̇L +
∫

RL(t)
u

∂wi

∂x
∂φ

∂x
dx+ umwi

∂φ

∂x

∣∣∣∣
Rm(t)

=

−
∫

RL(t)
κL

∂wi

∂x
∂u
∂x

dx+ wiκL
∂u
∂x

∣∣∣∣
R f

− wiκL
∂u
∂x

∣∣∣∣
Rm(t)

(5.32)

where the subscripts f and m denote the fixed and moving boundaries respectively. The
Stefan condition in distributed form is

kSwi
∂uS

∂x

∣∣∣∣
Rm(t)

− kLwi
∂uL

∂x

∣∣∣∣
Rm(t)

= λ wi
∂φ

∂x

∣∣∣∣
Rm(t)

. (5.33)

5.1 The two phase Stefan problem in 1D 115

At the moving interface, the Stefan condition can replace the terms in equations involv-
ing φ . We may run into difficulties with this if um = 0 or changes sign at any point, so as in
[8] we will add a constant to the whole domain when constructing the algorithm. Equations
(5.30) and (5.32) become

cSi θ̇S +
∫

RS(t)
u

∂wi

∂x
∂φ

∂x
dx =−

∫
RS(t)

κS
∂wi

∂x
∂u
∂x

dx+ wiκS
∂u
∂x

∣∣∣∣
Rm(t)

− wiκS
∂u
∂x

∣∣∣∣
R f

+
um

λ

(
kSwi

∂uS

∂x

∣∣∣∣
Rm(t)

− kLwi
∂uL

∂x

∣∣∣∣
Rm(t)

)
(5.34)

cLi θ̇L +
∫

Rm(t)
u

∂wi

∂x
∂φ

∂x
dx =−

∫
RL(t)

κL
∂wi

∂x
∂u
∂x

dx+ wiκL
∂u
∂x

∣∣∣∣
R f

− wiκL
∂u
∂x

∣∣∣∣
Rm(t)

− um

λ

(
kSwi

∂uS

∂x

∣∣∣∣
Rm(t)

− kLwi
∂uL

∂x

∣∣∣∣
Rm(t)

)
. (5.35)

We can then sum equations (5.34) and (5.35) over RS(t) and RL(t) respectively, to give
us the rate of change of total ’mass’, θS and θL, in each phase. Providing that we have
chosen a set of basis functions wi that form a partition of unity, the full integral terms will
sum to zero and the values of ci will sum to 1. We obtain

θ̇S = κS
∂u
∂x

∣∣∣∣
Rm(t)

− κS
∂u
∂x

∣∣∣∣
R f

+
um

λ

(
kS

∂uS

∂x

∣∣∣∣
Rm(t)

− kL
∂uL

∂x

∣∣∣∣
Rm(t)

)
(5.36)

θ̇L = κL
∂u
∂x

∣∣∣∣
R f

− κL
∂u
∂x

∣∣∣∣
Rm(t)

− um

λ

(
kS

∂uS

∂x

∣∣∣∣
Rm(t)

− kL
∂uL

∂x

∣∣∣∣
Rm(t)

)
. (5.37)

To recover the nodal velocities we first solve the four equations (5.34), (5.35), (5.36) and
(5.37) to give θ̇ and φ in each phase. The Dirichlet boundary conditions (5.7) and (5.8) on
the velocities correspond to zero Neumann boundary conditions on φ . We then return to our
definition of φ (5.20), now written in weak form,

∫
R(t)

wiẋ dx =
∫

R(t)
wi

∂φ

∂x
dx (5.38)

with weight function wi. The system of equations (5.38) can be solved for ẋ. For the
interface itself, it is more accurate to replace this derived system with the Stefan condition

5.1 The two phase Stefan problem in 1D 116

directly, i.e., for the interface, the velocity ẋm is given by

λ wiẋm|Rm(t) = kSwi
∂uS

∂x

∣∣∣∣
Rm(t)

− kLwi
∂uL

∂x

∣∣∣∣
Rm(t)

. (5.39)

The boundary conditions (5.7) and (5.8) that give ẋ = 0 on the external boundary, together
with the Stefan condition (5.39) are strongly imposed on (5.38). In doing so we note that
there is a compatibility condition on the sum over equation (5.38), given by

∫
R(t)

ẋ dx =
∫

R(t)

∂φ

∂x
dx = [φ]R(t) . (5.40)

Having obtained ẋ, we move the interior points of the domain. We also update θS and θL

from θ̇S (5.36) and θ̇L (5.37).
We can then recover u. Equations (5.27) and (5.28) allow us to determine the (constant)

mass fractions cSi and cLi using the initial conditions. We can rewrite (5.27) and (5.28) for
t = 0 to give

cSi =
1

θS(0)

∫
RS(0)

wi(x,0)u(x,0) dx (5.41)

cLi =
1

θL(0)

∫
RL(0)

wi(x,0)u(x,0) dx. (5.42)

We may then use the same equations to recover u, given θS and θL at the new time step
and with the weight functions having moved with the domain. For the solid phase, u can be
recovered from (5.14) in the form

∫
RS(t)

wi(x, t)u(x, t) dx = cSiθS(t) (5.43)

and for the liquid phase, u can be recovered from∫
RL(t)

wi(x, t)u(x, t) dx = cLiθL(t). (5.44)

In each case the Dirichlet boundary conditions including the temperature at the interface are
strongly imposed.

5.1 The two phase Stefan problem in 1D 117

5.1.1 Construction of the finite element form

We solve the derived system using a finite element method. Since we have Dirichlet bound-
ary conditions on equation (5.38) for the velocity, and also on (5.43) and (5.44) for the
temperature, we use the modified piecewise linear weight functions wi = W̃i of 4.2.1. We
define an approximation to each of our variables in terms of a weighted linear combination
of the Wj. These are given in Appendix A.

We also define the weightings ci of (5.14) in terms of the same W̃i. These are

∑
j∈ZS

[∫
R(t)

W̃iWj dx
]

US j = c̃iSθS(t) (5.45)

∑
j∈ZL

[∫
R(t)

W̃iWj dx
]

UL j = c̃iLθL(t). (5.46)

Here ZS and ZL are the sets of nodes in the solid and liquid phases respectively. We can now
express the system in finite element form. We make substitutions as necessary from equa-
tions (A.5) to (A.14) into equations (5.34) and (5.35) so that all our variables are expressed
in terms of their piecewise linear approximations. We obtain

c̃iS θ̇S + ∑
j∈ZS

[∫
RS(t)

US
∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈ZS

[∫
RS(t)

κS
∂W̃i

∂x
∂Wj

∂x
dx
]

US j + W̃iκS
∂US

∂x

∣∣∣∣
Rm(t)

− W̃iκS
∂US

∂x

∣∣∣∣
R f

+
Um

λ

(
kSW̃i

∂US

∂x

∣∣∣∣
Rm(t)

− kLW̃i
∂UL

∂x

∣∣∣∣
Rm(t)

)
(5.47)

c̃iL θ̇L + ∑
j∈ZL

[∫
Rm(t)

UL
∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈ZL

[∫
RL(t)

κL
∂W̃i

∂x
∂Wj

∂x
dx
]

UL j + W̃iκL
∂UL

∂x

∣∣∣∣
R f

− W̃iκL
∂UL

∂x

∣∣∣∣
Rm(t)

− Um

λ

(
kSW̃i

∂US

∂x

∣∣∣∣
Rm(t)

− kLW̃i
∂UL

∂x

∣∣∣∣
Rm(t)

)
. (5.48)

In matrix form (5.47) is
K̃(US) ΦS = f̃ S (5.49)

where K̃(US) is the weighted stiffness matrix of 3.1.2 constructed with modified basis func-
tions, and ΦS is the vector containing the values of ΦS j , and f̃ S is a vector with entries f̃Si

5.1 The two phase Stefan problem in 1D 118

given by

f̃Si =− c̃iS θ̇S − ∑
j∈ZS

[∫
RS(t)

κS
∂W̃i

∂x
∂Wj

∂x
dx
]

US j + W̃iκS
∂US

∂x

∣∣∣∣
Rm(t)

− W̃iκS
∂US

∂x

∣∣∣∣
R f

+
Um

λ

(
kSW̃i

∂US

∂x

∣∣∣∣
Rm(t)

− kLW̃i
∂UL

∂x

∣∣∣∣
Rm(t)

)
. (5.50)

Similarly, (5.48) can be expressed as

K̃(U)L ΦL = f̃ L (5.51)

with the vector f̃ L containing entries f̃Li given by

f̃Li =− c̃iL θ̇L − ∑
j∈ZL

[∫
RL(t)

κL
∂W̃i

∂x
∂Wj

∂x
dx
]

UL j + W̃iκL
∂UL

∂x

∣∣∣∣
R f

− W̃iκL
∂UL

∂x

∣∣∣∣
Rm(t)

− Um

λ

(
kSW̃i

∂US

∂x

∣∣∣∣
Rm(t)

− kLW̃i
∂UL

∂x

∣∣∣∣
Rm(t)

)
. (5.52)

The matrix systems can be solved to obtain ΦL and ΦR. Since the weighted stiffness ma-
trices K̃(U)S and K̃(U)L are singular, we have an infinity of solutions available and we set
Φ = 0 at the interface node to reduce the system in order to give a unique solution. Note that
the expressions for θ̇S (5.36) and θ̇L (5.37) can be obtained and solved in a straightforward
manner by simply summing over the rows of (5.49) and (5.51).
To recover ẋ, we use the approximation

Ẋ = ∑
j

Ẋ jWj. (5.53)

We substitute this into equation (5.38) to obtain the finite element form

∑
j∈ZS∪ZL

[∫
R(t)

W̃iWj dx
]

Ẋ j = ∑
j∈ZS∪ZL

[∫
R(t)

W̃i
∂Wj

∂x
dx
]

Φ j (5.54)

or in matrix form,
MẊ = BΦ. (5.55)

We impose the velocity on the interface obtained from (5.39), and we impose Ẋ = 0 on the
external boundaries. Since we are using modified weight functions we will not interfere with
the compatibility condition (5.40) by doing so. We solve (5.55) for the remaining velocities.

5.1 The two phase Stefan problem in 1D 119

As in [33], we now move the nodes using Heun’s scheme [30]. Using the same scheme, we
update the values of θS and θL from the values of θ̇S (5.36) and θ̇L (5.37). The final step is
the recovery of U . We can obtain U on the updated grid from the relative conservation of
mass equations (5.45) and (5.46). These can be expressed in matrix form as

M̃US = c̃Si
θS(t) (5.56)

and
M̃UL = c̃Li

θL(t). (5.57)

In the initial set up, we set t = 0 and use (5.56) and (5.57) to find the constant vectors c̃Si

and c̃Li
. Then for each subsequent time step we proceed as follows. We take θS and θL at

the new time step. We calculate the mass matrix M̃ for the updated grid. We can then obtain
the updated US and UL from inversions of (5.56) and (5.57) respectively.

Algorithm 11

The finite element solution of the Stefan problem given by equations (5.1) and with an
interface condition given by (5.2) on the moving mesh in 1-D therefore consists of the
following steps. We first add a constant to the domain so that we avoid any zero or negative
values for U . Having obtained the values of c̃Si and c̃Li from (5.56) and (5.57):

1. Find the velocity potential by solving equation (5.49) and (5.51) for the Φ j(t) values;

2. Find the node velocity by solving equation (5.55) for the Ẋ j(t) values;

3. Generate the co-ordinate system at the next time-step by solving (3.18) using Heun’s
approximation;

4. Update the values of θS and θL from the values of θ̇S (5.36) and θ̇L (5.37);

5. Find the solution U(t +dt) by solving the conservation equations (5.56) and (5.57).

5.1.2 Results

We are able to replicate the results given visually in [8], with suitable node movement
and interface movement. This lends confidence that the use of modified basis functions
throughout is appropriate. Since an exact solution is available, we are able to calculate the
order of convergence for both solution accuracy and interface position. Figure 5.1 shows

5.1 The two phase Stefan problem in 1D 120

Fig. 5.1 Comparison of L2 errors in the solution and the magnitudes of the errors in the
interface node position for the two-phase Stefan problem in one space dimension, at T = 0.5.
We observe an order of convergence of p ≈ 2.

the convergence of the L2 errors at T = 0.5 as the mesh resolution is increased. Both the
normalised solution error and the interface position error have an order of convergence of
approximately p = 2. This is consistent with the order of convergence given in [8] and
demonstrates that this method is an acceptable alternative.

5.2 The two phase model of competition-diffusion 121

5.2 The two phase model of competition-diffusion

We now turn our attention to competition-diffusion models, in particular the Lotka-Volterra
systems of theoretical ecology. As described in Chapter 2, there are many variations. After
considering the Stefan problem, we find the 2003 paper by Hilhorst et al. [31] of particular
interest. In [31] it is demonstrated that where competition is strong enough to spatially
segregate two populations, the Lotka-Volterra PDE system can be reduced to a form that is
similar to the Stefan problem. Two major differences remain. Firstly, in the competition
system, we have logistic growth terms. Secondly, in the competition system there is a
parameter set equal to zero that is the equivalent of the latent heat coefficient of the Stefan
problem. In physical terms, one species does not transform into another. This means that
the competition system has an interface condition that does not directly give an interface
velocity. This presents a challenge when attempting the same approach as we used for the
Stefan problem, because in the Stefan problem the interface velocity is taken directly from
the interface condition. However, we feel that the approach in [8] is an excellent way to
model the competition system, because not only will it allow us to fully track the evolution
of the interface between species, it provides a framework for keeping particular mesh nodes
attached to particular species. This means that the internal dynamics of a species can be
assigned to particular nodes rather than a particular space, and the dynamics for any given
location will automatically be those of the correct species.

We therefore proceed to model the system set out by Hilhorst et al. [31], using a method
developed from [8], in one dimension. We present a solution for determining the interface
velocity, and furthermore demonstrate that the method in [8] can be extended to include
logistic growth terms.

We have a two component reaction-diffusion system given by the Lotka-Volterra system,

∂u1

∂ t
= δ1

∂ 2u1

∂x2 + f (u1,u2)u1 t > 0,x ∈ [a,b] (5.58)

∂u2

∂ t
= δ2

∂ 2u2

∂x2 +g(u1,u2)u2 t > 0,x ∈ [a,b] (5.59)

5.2 The two phase model of competition-diffusion 122

where δ1, δ2 are constant diffusion coefficients, and with, in general

f (u1,u2) = r1

(
1− u1 +K1u2

k1

)
(5.60)

g(u1,u2) = r2

(
1− u2 +K2u1

k2

)
. (5.61)

Here u1 and u2 are the population densities of two competing species, the k are the respective
carrying capacities of the species, the K are the species specific competition rates, and r is
a reproductive rate parameter. The Hilhorst paper [31] demonstrates that this system can be
reduced, if we have two species completely segregated, to

f (u1,u2) = r1(1−u1/k1) (5.62)

g(u1,u2) = r2(1−u2/k2). (5.63)

The resulting system represents the limit where the K values are very large; the competition
rate is high enough that the two species cannot coexist in space. In the area populated by
species 1, u2 = 0, and in the area populated by species 2, u1 = 0. At the interface, we have
a condition that gives the relationship between the fluxes of the two species. In essence,
the species both flow into the interface and annihilate each other in a ratio according to the
competition coefficient, µ . This condition is given by [31] as

µδ1
∂u1

∂x
=−δ2

∂u2

∂x
(5.64)

where µ =K2/K1. We will call µ the interspecies competition rate. We work with Neumann
boundary conditions on the external boundaries, which will be fixed,

∂u1

∂x

∣∣∣∣
a
= 0 t > 0 (5.65)

∂u2

∂x

∣∣∣∣
b
= 0 t > 0. (5.66)

Because the annihilation is complete, we also have a Dirichlet condition at the interface, m;

u|m = 0 t > 0. (5.67)

5.2 The two phase model of competition-diffusion 123

Fig. 5.2 Initial conditions for the competition system, with population density U1 of species
1 (on the left) and U2 of species 2 (on the right). The interface node has zero population and
must always satisfy the interface condition

The initial conditions are not given in [31], but we select suitable initial conditions and
physical parameters such that the interface condition is satisfied at t = 0, and so that we
have one species in growth and one in decline. The initial conditions are shown in figure
(5.2). We begin by writing the driving Lotka-Volterra equations (5.58) and (5.59) in the
weak forms,

∫
R(t)

wi
∂u1

∂ t
dx =

∫
R(t)

δ1wi
∂ 2u1

∂x2 dx+
∫

R(t)
wir1u1

(
1− u1

k1

)
dx (5.68)

∫
R(t)

∂u2

∂ t
dx =

∫
R(t)

δ2wi
∂ 2u2

∂x2 dx+
∫

R(t)
wir2u2

(
1− u2

k2

)
dx. (5.69)

We then define the total population of a species as θ , given by

θ(t) =
∫

R(t)
u dx (5.70)

where R(t) is the moving domain inhabited by that species. We write a relative conservation

5.2 The two phase model of competition-diffusion 124

principle in terms of θ , as
1

θ(t)

∫
R(t)

u dx = 1. (5.71)

We write this in a weighted form, introducing the weight function wi,

1
θ(t)

∫
R(t)

wiu dx = ci (5.72)

or ∫
R(t)

wiu dx = ciθ(t) = ci

∫
R(t)

u dx (5.73)

where ci is independent of time. The constant ci is determined by the choice of weighting
wi. All of the weightings together should be chosen to provide a partition of unity. We
differentiate (5.73) with respect to time using the Leibnitz integral rule on our moving frame
R(t),

d
dt

[∫
R(t)

wiu dx
]
=
∫

R(t)

(
∂ (wiu)

∂ t
+

∂

∂x
(wiuẋ)

)
dx. (5.74)

We impose the condition that the basis functions wi move with the domain. Hence the basis
functions also have velocity ẋ and therefore

∂wi

∂ t
+ ẋ

∂wi

∂x
= 0 (5.75)

hence
d
dt

[∫
R(t)

wiu dx
]
=
∫

R(t)
wi

(
∂u
∂ t

+
∂

∂x
(uẋ)

)
dx (5.76)

or
d
dt

[∫
R(t)

wiu dx
]
−
∫

R(t)
wi

∂

∂x
(uẋ) dx =

∫
R(t)

wi
∂u
∂ t

dx. (5.77)

We write this in terms of θ̇ and the constants ci to give

ciθ̇ −
∫

R(t)
wi

∂

∂x
(uẋ) dx =

∫
R(t)

wi
∂u
∂ t

dx. (5.78)

We introduce the velocity potential φ , defined by

ẋ =
∂φ

∂x
(5.79)

so that
ciθ̇ −

∫
R(t)

wi
∂

∂x

(
u

∂φ

∂x

)
dx =

∫
R(t)

wi
∂u
∂ t

dx (5.80)

5.2 The two phase model of competition-diffusion 125

or, after integration by parts,

ciθ̇ +
∫

R(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂R(t)

=
∫

R(t)
wi

∂u
∂ t

dx. (5.81)

We substitute in a weak form of the driving PDE, either (5.68) or (5.69), depending on the
phase under consideration. For either phase p ∈ [1,2]

cpθ̇p +
∫

Rp(t)
up

∂wi

∂x
∂φ

∂x
dx−

[
upwi

∂φ

∂x

]
∂Rp(t)

=
∫

Rp(t)
wiδp

∂ 2up

∂x2 dx

+
∫

Rp(t)
wiuprp

(
1−

up

kp

)
dx. (5.82)

Again integrating by parts, this time on the right hand side

cpθ̇ +
∫

Rp(t)
up

∂wi

∂x
∂φ

∂x
dx−

[
upwi

∂φ

∂x

]
∂Rp(t)

=−
∫

Rp(t)
δp

∂wi

∂x
∂up

∂x
dx+

[
wiδp

∂up

∂x

]
∂Rp(t)

+
∫

Rp(t)
wiuprp

(
1−

up

kp

)
dx. (5.83)

We now consider each species separately, on their respective domains.We have R1 with
boundary ∂R1 = [0,m], and R2 with boundary ∂R2 = [m,1]. The masses of equation (5.70)
are defined in terms of each species as

θ1(t) =
∫

R1(t)
u1 dx (5.84)

θ2(t) =
∫

R2(t)
u2 dx. (5.85)

The weak forms are then
c1iθ1(t) =

∫
R1(t)

wiu1 dx (5.86)

c2iθ2(t) =
∫

R2(t)
wiu2 dx. (5.87)

5.2 The two phase model of competition-diffusion 126

Equation (5.83) can be written now for each phase separately. For species 1 it becomes

c1i θ̇1 +
∫

R1(t)
u1

∂wi

∂x
∂φ

∂x
dx−

[
u1wi

∂φ

∂x

]
∂R1(t)

=−
∫

R1(t)
δ1

∂wi

∂x
∂u1

∂x
dx+

[
wiδ1

∂u1

∂x

]
∂R1(t)

+
∫

R1(t)
wiu1r1

(
1− u1

k1

)
dx. (5.88)

At the external boundaries ∂u
∂x = 0 (5.65), and also ∂φ

∂x = 0 because the boundaries are fixed.
Together with the condition that u = 0 (5.67) on the interface boundary, we see that certain
terms will be equal to zero. The resulting equation for the velocity potentials for species 1
is given by

c1i θ̇1 +
∫

R1(t)
u1

∂wi

∂x
∂φ

∂x
dx =−

∫
R1(t)

δ1
∂wi

∂x
∂u1

∂x
dx+ wiδ1

∂u1

∂x

∣∣∣∣
m(t)

+
∫

R1(t)
wiu1r1

(
1− u1

k1

)
dx (5.89)

and the velocity potentials for species 2 are given by

c2i θ̇2 +
∫

R2(t)
u2

∂wi

∂x
∂φ

∂x
dx−

[
u2wi

∂φ

∂x

]
∂R2(t)

=−
∫

R2(t)
δ2

∂wi

∂x
∂u2

∂x
dx+

[
wiδ2

∂u2

∂x

]
∂R2(t)

+
∫

R2(t)
wiu2r2

(
1− u2

k2

)
dx. (5.90)

Again we may use the boundary conditions and set certain terms to zero. The equation for
species 2 is then

c2i θ̇2 +
∫

R2(t)
u2

∂wi

∂x
∂φ

∂x
dx =−

∫
R2(t)

δ2
∂wi

∂x
∂u2

∂x
dx− wiδ2

∂u2

∂x

∣∣∣∣
m(t)

+
∫

R2(t)
wiu2r2

(
1− u2

k2

)
dx. (5.91)

We have now reached the stage where, if this were the Stefan problem, we would use the
Stefan condition at the interface to give the velocity of the interface node. We recall that the
Stefan interface condition is given by

kS
∂uS

∂x
− kL

∂uL

∂x
= λ ẋ (5.92)

and hence gives ẋ, the velocity of the interface directly. In contrast, the interface condition

5.2 The two phase model of competition-diffusion 127

(5.64) for the competition system is

µδ1
∂u1

∂x
=−δ2

∂u2

∂x
(5.93)

which is equivalent to the Stefan condition with λ = 0 and does not contain the velocity
ẋ. Note also that the Stefan condition is relevant to a situation where the gradients of u

either side of the interface are of the same sign in general. In contrast, equation (5.64) is
relevant to an interface where the gradients either side are of opposite polarity. Since u = 0
on the interface and we can’t have a negative mass, we are in effect considering ’v’ shaped
interfaces. We note that whilst the interface velocity is not given by (5.64), the expression
does implicitly contain information about the location of the interface. In particular, if we
know the position of the mesh points adjacent to the interface and also the values of u at
those points, we may use the fact that u = 0 at the interface to infer an interface position that
satisfies (5.64). We select an interface position such that the values of ∂u

∂x either side of the
interface are in the ratio −µ . We proceed as follows. At a given time step tN we write the
interface condition (5.64) in a finite difference form

µδ1
uN

1m
−uN

1m−1

xm − xN
m−1

=−δ2
uN

2m+1
−uN

2m

xN
m+1 − xm

(5.94)

where the subscript m denotes the interface node, and the xi are the spatial co-ordinates of
the nodes. We have that um = 0, and so we can obtain an expression for the position of the
interface node, xm,

xN+1
m =

(µδ1uN
1m−1

xN
m+1 +δ2uN

2m+1
xN

m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)
. (5.95)

If we had used Euler integration for the time integration then we could have simply im-
posed this new interface position directly, but here it is more helpful to calculate a velocity.
This grants more flexibility in the chosen time integration scheme. Here we use the finite
difference approximation

ẋN+1
m =

(
(µδ1uN

1m−1
xN

m+1+δ2uN
2m+1

xN
m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)
− xN

m

)
dt

. (5.96)

Note that through this method it is only possible to generate an adapted interface position
once a distortion of the interface condition already exists. This interface condition cannot
predict where the interface ought to move to in anticipation of a forthcoming violation of

5.2 The two phase model of competition-diffusion 128

the interface condition. We must allow the solution around the interface to evolve first, and
then adapt the interface position in response to that. We cannot generate the position of
the interface that satisfies (5.64) at the same time as we find the node velocities elsewhere,
because we must solve the system for u on the updated grid before we can see where the
interface ought to be positioned. After we have solved for u, we can obtain the interface
position resulting from those u values, but we cannot impose it on the system straightaway.
We would violate conservation of mass by doing so. Instead, we determine the new position
at the next time step. A concern this raises is whether the interface position is effectively
imposed one time step behind where it should be. The condition (5.64) is always slightly
violated, since it is this violation that drives the interface movement. Philosophically, we
can reconcile this difficulty by considering that there ought to be a force driving a movement
of the interface before the interface starts to respond. In the real world, would our species
retreat in anticipation of competition, or else compete and then accept the resulting boundary
change? The subtleties of this interaction, and its timing or lag, are not considered in the
Lotka-Volterra equations. We can therefore be confident that the explicit nature of our
system does not violate any conditions of the system, and indeed it may better reflect reality
than a predictive approach. Should we determine that a problem does exist in this regard, a
suitable solution would be to use an implicit time integration method, which would accord
the ability to reassign the interface movement to the prior time step if so desired.

With this treatment of the interface node in mind, we do not calculate (5.89) and (5.91)
for the interface node itself. Instead, once in the finite element framework we will use
modified basis functions either side of the interface that will allow strong imposition of the
interface position. In taking this approach we will obtain versions of (5.89) and (5.91) for
all nodes except the interface node. The mass from the interface node is assigned to the
adjacent nodes through the modified basis functions, so mass conservation is preserved.

We note that we require the rate of change of mass, θ̇ , in each phase. This can be
obtained by summing over all i in equations (5.89) and (5.91) as appropriate. With a choice
of wi forming a partition of unity, and recalling that ∑i cpi = 1, we obtain for the sum over
equation (5.89)

θ̇1 = δ1
∂u1

∂x

∣∣∣∣
m(t)

+
∫

R(t)
u1r1

(
1− u1

k1

)
dx (5.97)

and for the sum over equation (5.91)

θ̇2 =− δ2
∂u2

∂x

∣∣∣∣
m(t)

+
∫

R(t)
u2r2

(
1− u2

k2

)
dx. (5.98)

5.2 The two phase model of competition-diffusion 129

To recover the nodal velocities we first solve (5.97) and (5.98) for θ̇ in each phase. We
then solve (5.89) and (5.91) to give φ in each phase, but not on the interface node due to
the modified basis functions we will use. We then return to our definition of φ (5.79), now
written in distributed form,

∫
R(t)

wiẋ dx =
∫

R(t)
wi

∂φ

∂x
dx (5.99)

which can be solved for ẋ. Having obtained ẋ, we move the domain using the explicit
Euler integration scheme. We also update θ1 and θ2 from θ̇1 (5.97) and θ̇2 (5.98) using the
same time integration procedure. For the interface itself, we calculate the new position by
correcting the interface condition at the prior time step. We obtain the resultant interface
velocity by solving equation (5.96) with u = 0 in the interface node.

We may now recover u. We determine the constant partial masses c1i and c2i from (5.86)
and (5.87) and the initial conditions. We obtain, for t = 0

c1i =
1

θ1(0)

∫
R1(0)

wi(x,0)u(x,0) dx (5.100)

c2i =
1

θ2(0)

∫
R2(0)

wi(x,0)u(x,0) dx. (5.101)

We then use (5.86) and (5.87) again, to recover u1 and u2. We require θ1 and θ2 at the
new time step. We move the weight functions with the domain. For species 1, u1 can be
recovered from

∫
R1(t)

wi(x, t)u1(x, t) dx = c1i(x)θ1(t) (5.102)

and for species 2, u2 can be recovered from∫
R2(t)

wi(x, t)u2(x, t) dx = c2i(x)θ2(t). (5.103)

In each case the Dirichlet condition that u = 0 at the interface is strongly imposed, and the
Neumann condition at the external boundaries is also strongly imposed.

We solve the derived system using a finite element method. We have Dirichlet boundary
conditions on equation (5.99) for the velocity, at both the interface and external boundaries.
For the values of u1 and u2, given by equations (5.102) and (5.103), we have a Dirichlet
condition at the interface only. At the external boundaries we have Neumann boundary
conditions instead. However, all these conditions are compatible with using the modified

5.2 The two phase model of competition-diffusion 130

piecewise linear weight functions wi = W̃i of 4.2.1, with a modified weight function at each
external boundary, and also at each side of the interface. We may then strongly impose the
values of the velocity and u1 and u2 at the interfaces and external boundaries. The values
of u1 and u2 at the external boundaries can be transferred from their adjacent nodes because
we have the Neumann conditions.

5.2.1 Construction of the finite element form

We begin the finite element method implementation by defining an approximation to each
of our variables in terms of a weighted linear combination of the Wj. These are given in
Appendix A. The weightings cpi of (5.102) and (5.103) are likewise defined in terms of W̃i.
We obtain

∑
j∈Z1

[∫
R(t)

W̃iWj dx
]

U1 j = c̃1iθ1(t) (5.104)

∑
j∈Z2

[∫
R(t)

W̃iWj dx
]

U2 j = c̃2iθ2(t) (5.105)

where Zi is the set of nodes in phase i. We may rewrite the system in finite element form. We
take the approximations (A.1) to (A.9) as necessary, and also (5.104) to (5.105), and make
substitutions as necessary into equations (5.89) and (5.91). We obtain the following, with all
variables now expressed in terms of their piecewise linear approximations. Equation (5.89)
becomes

c̃1i θ̇1 + ∑
j∈Z1

[∫
R1(t)

U1
∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈Z1

[∫
R1(t)

δ1
∂W̃i

∂x
∂Wj

∂x
dx
]

U1 j

+ W̃iδ1
∂U1

∂x

∣∣∣∣
Rm(t)

+ ∑
j∈Z1

[∫
R1(t)

W̃iWjr1 dx
]

U1 j −
∫

R1(t)

r1

k1
W̃iU2

1 dx (5.106)

and equation (5.91) becomes

c̃2i θ̇2 + ∑
j∈Z2

[∫
R2(t)

U2
∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈Z2

[∫
R2(t)

δ2
∂W̃i

∂x
∂Wj

∂x
dx
]

U2 j

− W̃iδ2
∂U2

∂x

∣∣∣∣
Rm(t)

+ ∑
j∈Z2

[∫
R2(t)

W̃iWjr2 dx
]

U2 j −
∫

R2(t)

r2

k2
W̃iU2

2 dx. (5.107)

5.2 The two phase model of competition-diffusion 131

In matrix form (5.106) is expressed as

K̃(U1) Φ1 = f̃ 1 (5.108)

where K̃(U1) is the weighted stiffness matrix of Chapter 3, section 3.1.2, constructed with
the modified basis functions W̃i, and Φ1 is the vector containing the values of Φ1 j , and f̃ 1 is
a vector with entries f̃1i given by

f̃1i =− c̃1i θ̇1 − ∑
j∈Z1

[∫
R1(t)

δ1
∂W̃i

∂x
∂Wj

∂x
dx
]

U1 j

+ W̃iδ1
∂U1

∂x

∣∣∣∣
Rm(t)

+ ∑
j∈Z1

[∫
R1(t)

W̃iWjr1 dx
]

U1 j −
∫

R1(t)

r1

k1
W̃iU2

1 dx. (5.109)

Similarly, (5.107) can be expressed as

K̃(U2)Φ2 = f̃ 2 (5.110)

with the vector f̃ 2 containing entries f̃2i given by

f̃2i =− c̃2i θ̇2 − ∑
j∈Z2

[∫
R2(t)

δ2
∂W̃i

∂x
∂Wj

∂x
dx
]

U2 j

− W̃iδ2
∂U2

∂x

∣∣∣∣
Rm(t)

+ ∑
j∈Z2

[∫
R2(t)

W̃iWjr2 dx
]

U2 j −
∫

R2(t)

r2

k2
W̃iU2

2 dx. (5.111)

The nonlinear terms in (5.109) and (5.111) are evaluated exactly using Simpson’s rule
(4.64). The matrix systems can be solved to obtain Φ1 and Φ2. Since the weighted stiff-
ness matrices K̃(U1) and K̃(U2) are singular, we have an infinity of solutions available and
we set Φ = 0 at a selected node to collapse the system to give a single solution. Note that
the expressions for θ̇1 (5.97) and θ̇2 (5.98) can be obtained and solved in a straightforward
manner by simply summing over the rows of (5.108) and (5.110). Equation (5.97) becomes

θ̇1 = δ1
∂U1

∂x

∣∣∣∣
Rm

+
∫

R(t)
u1r1

(
1− u1

k1

)
dx (5.112)

and equation (5.98) becomes

θ̇2 =− δ2
∂U2

∂x

∣∣∣∣
Rm

+
∫

R(t)
u2r2

(
1− u2

k2

)
dx, (5.113)

5.2 The two phase model of competition-diffusion 132

for which the nonlinear terms may be computed exactly using Simpson’s rule (4.64). To
recover Ẋ , we use the approximation

Ẋ = ∑
j∈Z1∪Z2

Ẋ jWj. (5.114)

We substitute this into equation (5.99) to obtain the finite element form

∑
j∈Z1∪Z2

[∫
R(t)

W̃iWj dx
]

Ẋ j = ∑
j∈Z1∪Z2

[∫
R(t)

W̃i
∂Wj

∂x
dx
]

Φ j (5.115)

or in matrix form
M̃Ẋ = B̃(u)Φ. (5.116)

We impose v = 0 on the external boundaries. We impose the interface velocity obtained
from (5.96). Since we are using modified weight functions we will not interfere with the
compatibility condition (5.40) by doing so. We solve (5.116) for the remaining velocities.
We move the nodes using Euler’s scheme. Using the same scheme, we update the values
of θ1 and θ2 from the values of θ̇1 (5.112) and θ̇2 (5.113). We may now recover the values
of U1 and U2. We can obtain U on the updated grid from the relative conservation of mass
equations (5.104) and (5.105). In matrix form these are

M̃1U1 = c̃1i
θ1(t) (5.117)

and
M̃2U2 = c̃2i

θ2(t). (5.118)

At the initial set up, we set t = 0 and use (5.117) and (5.118) to find the constants c̃1i
and

c̃2i
. Then for each subsequent time step we proceed as follows. We take θ1 and θ2 at the

new time step. We calculate the mass matrix M̃ for the updated grid. We can then obtain the
updated U1 and U2 from inversions of (5.117) and (5.118) respectively.

Algorithm 12

The finite element solution of the competition problem given by equations (5.58) and (5.59)
and with an interface condition given by (5.64) on the moving mesh in 1-D therefore consists
of the following steps. We obtain the constant values of c̃1i and c̃2i from (5.117) and (5.118),
and for each time step:

1. Find the velocity potential by solving equation (5.108) and (5.110) for the Φ j(t) val-

5.2 The two phase model of competition-diffusion 133

ues;

2. Find the internal node velocity by solving equation (5.116) for the Ẋ j(t) values;

3. Find the interface node velocity by solving equation (5.96) for the Ẋm(t) value;

4. Generate the co-ordinate system at the next time-step t + dt by solving (3.18) using
Euler’s approximation;

5. Update the values of θ1 and θ2 from the values of θ̇1 (5.112) and θ̇2 (5.113);

6. Find the solutions U1(t + dt) and U2(t + dt) by solving the conservation equations
(5.117) and (5.118).

5.2.2 Results

We find that the model is stable and robust. Even using the simplest Euler integration
scheme, we observe minimal oscillations affecting the smoothness of results. Figure 5.3
shows convergence in the solution of second or third order as ∆x → 0. This estimate is
obtained by comparison of the result generated by each grid spacing with a high-resolution
(641 node) result, since no absolute result is available. This order of convergence is at least
as high as that reported for the very similar method in [8].

In the body of work concerning Lotka-Volterra equations, there are a vast range of pa-
rameter values in use, because there are so many varied but suitable examples of the type
of competition that is described. We therefore select a conservatively representative set of
parameters, chosen to demonstrate some of the interesting behaviours that this model is able
to describe. We may choose a set of parameters that favour species 1, as shown in figure
5.4. In this case we see an increasing interface velocity in the initial stages, followed by a
long steady phase where the interface velocity is approximately constant (figure 5.5). As
we approach the annihilation of species 2, the interface velocity increases again (figure 5.6).
This is due to the low mass of species 2 affecting its ability to grow. The movement of the
interface is given in figure 5.7.

We then investigate alternative parameter choices. We may restrict the growth of species
1 by lowering its carrying capacity, k1. We observe that in this scenario neither species is
dominant, even though all the competition and diffusion characteristics are unchanged. This
scenario is shown in figure 5.8.

Alternatively, we may adjust the diffusion characteristics of the system. By allowing
species 2 to diffuse at a higher rate, we observe that species 2 is able to make territorial

5.2 The two phase model of competition-diffusion 134

gains due to this alone (figure 5.9). However, as time goes on, the growth and competition
characteristics become increasingly important. We see species 1 becoming more dominant
over time, so that the interface velocity actually reverses direction. This is fascinating in-
terface behaviour! Figure 5.10 shows the evolution of the system at t = 12.3, and figure
5.11 shows the movement of the interface with the direction reversal. These results give
confidence that this model is likely to be able to satisfy the requirements of modelling a
wide variety of competition systems. It is stable to a large choice of set-up parameters and
is able to produce complex behaviours without problems.

Fig. 5.3 Comparison of L2 errors in the solution of algorithm 12. We observe an order of
convergence of p ≈ 3.

5.2 The two phase model of competition-diffusion 135

Fig. 5.4 Result of competition model at t = 1.7. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100,
r1 = r2 = 1 and λ = 3. We run the model with a time step of dt = 0.0001 for 17000
iterations and plot the results every dt = 0.1. We see the internal dynamics of the species
driving population density and interface fluxes, and the position of the interface responding
to those fluxes. The initial conditions are shown in red, with species 1 in blue and species 2
in green.

5.2 The two phase model of competition-diffusion 136

Fig. 5.5 Result of competition model at t = 6.0. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100,
r1 = r2 = 1 and λ = 3. We run the model with a time step of dt = 0.0001 for 60000 iterations
and plot the results every ∆t = 0.1. The interface continues to evolve and the masses of the
species are now limited by the respective carrying capacities. The initial conditions are
shown in red, with species 1 in blue and species 2 in green

5.2 The two phase model of competition-diffusion 137

Fig. 5.6 Result of competition model at t = 8.8. Here we use δ1 = δ2 = 0.01, k1 = k2 = 100,
r1 = r2 = 1 and λ = 3. We run the model with a time step of dt = 0.0001 for 122000
iterations and plot the results every dt = 0.1. Final step before node crossing occurs. We
observe that whilst species 2 initially grew in mass, it will now be wiped out by competition
with species 1.

5.2 The two phase model of competition-diffusion 138

Fig. 5.7 Movement of interface position xm for competition model with parameters δ1 =
δ2 = 0.01, k1 = k2 = 100, r1 = r2 = 1 and λ = 3. We run the model with a time step of
dt = 0.0001. We see the interface increase in velocity after a slower initial phase where both
species are experiencing population growth. We see the interface velocity accelerate as we
approach an annihilation event.

5.2 The two phase model of competition-diffusion 139

Fig. 5.8 Result of competition model at t = 8, considering the effect of altered carrying
capacities. Here we use δ1 = δ2 = 0.01, k1 = 50,k2 = 150, r1 = r2 = 1 and λ = 3. We
run the model with a time step of dt = 0.0001 for 80000 iterations and plot the results
every dt = 0.1. We see that with differently chosen carrying capacities we find the interface
position is approximately steady and these two species are in balance.

5.2 The two phase model of competition-diffusion 140

Fig. 5.9 Result of competition model at t = 3.5, considering the effect of an increased dif-
fusion rate for species 2. Here we use δ1 = 0.01,δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and
λ = 3. We run the model with a time step of dt = 0.0001 for 35000 iterations, and plot the
results every dt = 0.1. We observe that species 2 is able to make initial territory gains due
to its high diffusion rate, even though the competition rate is unaltered.

5.2 The two phase model of competition-diffusion 141

Fig. 5.10 Result of competition model at t = 12.3, considering the effect of an increased
diffusion rate for species 2. Here we use δ1 = 0.01,δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1
and λ = 3. We run the model with a time step of dt = 0.0001 for 123000 iterations, and
plot the results every dt = 0.1. We see that the initial diffusion-driven gains by species 2
are reversed, and that the overall growth characteristics are dominating so that species 1 is
gaining territory.

5.2 The two phase model of competition-diffusion 142

Fig. 5.11 Position of interface, xm, showing interface movement for the competition model
at up to t = 12.3, considering the effect of an increased diffusion rate for species 2 (cf. figure
5.7). Here we use δ1 = 0.01,δ2 = 0.05, k1 = k2 = 100, r1 = r2 = 1 and λ = 3. We run the
model with a time step of dt = 0.0001 for 123000 iterations, and plot the results every
dt = 0.1. Due to the growth characteristics we can see interesting temporal effects. Here
the interface velocity has actually reversed directions as the system changes from diffusion
dominated to growth dominated.

Chapter 6

Aggregation models

In [28] and [29], Grindrod presents a new consideration for population modelling. He points
out that the derivation of the Lotka-Volterra competition models and similar single-species
dispersion models rests on the assumption that the dispersal of individuals is due to ran-
dom diffusive motion. This assumption is difficult to justify, since it is readily apparent
that in the real world, individuals group together to improve their chances of survival, do
not voluntarily overcrowd themselves to death, and deliberately avoid predators. Grindrod
therefore introduces an element of deterministic behaviour to his model. In the Grindrod
models, we assume that the random motion of individuals is biased by an optimal velocity
ν . This velocity is selected so as to increase an individual’s expected rate of reproduction.
On average, the population is dispersing in the ideal direction. Grindrod produces results
obtained from this model as derived for a single species, and demonstrates that from an ini-
tially random seeding of individuals, clusters are formed. This work is of interest to us for
three reasons. Firstly, the aggregation model has not previously been constructed in finite
element form, on either a static or moving grid. Secondly, the model has not previously been
implemented for a two species competitive environment. Thirdly, the assumptions made by
Hilhorst in [31] require a zero population condition on the interface that is entirely driven
by high competition rates. Whilst we would need a high competition interface in any multi-
phase scenario, having intelligent aggregation as a component of the model would seem to
add somewhat more justification to the imposition of a zero population interface condition.
We derive the MMFEM algorithms for single species in one and two dimensions. We also
derive a fixed mesh finite element model for two species in two dimensions, for a conserva-
tive population case and a non-conservative population case. We then implement a selection
of the algorithms and examine the results for the 2-D models.

6.1 Population clustering models for a single species 144

6.1 Population clustering models for a single species

Following [28] and [29], we investigate a model for aggregation of individuals in a competi-
tive environment. We have a new term E that describes the projected net rate of reproduction
per individual at x, at time t. This is a constructed term comparable to the logistic term in
a Lotka-Volterra equation. The crucial difference here compared to a standard population
model is that we assume that individuals seek to maximise their chances of survival, and
so will seek to move towards maximum E. We use a form for E that incorporates the as-
sumption that survival chances depend only on population density, u(x, t). Overcrowding
or loneliness means a death rate higher than birth rate, and in between there is an optimum
population density. In order to look particularly at clustering effects, we will not take births
and deaths into account, i.e. we assume that births and deaths take place on a much longer
time scale than clustering of individuals, so

E(u) = (u−a)(1−u), a ∈ (0,1). (6.1)

Our other parameters are,

δ=a nonnegative constant representing the random dispersion of individuals;
ε=a small positive constant.

We assume that individuals will move in a random walk biased by an optimal velocity,
ν . A relationship between E(u) and ν is constructed with ν as a local average of ∇E(u). For
convenience we use a substitution ∇q = ν . The chosen form has the advantage of allowing
us to impose zero flux boundary conditions on ν to prevent individuals moving across the
boundary S of the domain Ω. As in [29] we define the relationship between E(u) and q to
be

E(u) =−ε∇
2q+q. (6.2)

Conceptually, q is a measure of the attractiveness of a location for an individual, taking
into account not just survival chances at that point but also in the local area. The size of
the area we define as local is important and is controlled by the parameter ε . The average
velocity, v, is the sum of the optimal velocity and a diffusive term,

v =−δ
∇u
u

+ν . (6.3)

6.1 Population clustering models for a single species 145

We may now derive the PDE giving population density time dependence. We have

∂u
∂ t

=−∇.(uv)

=−∇.(−δ∇u+uν)

= δ∇
2u−∇ · (uν)

= δ∇
2u−∇ · (u∇q) (6.4)

with boundary conditions

n̂.∇u = 0 x ∈ ∂Ω, t ≥ 0, (6.5)

n̂.ν = 0 x ∈ ∂Ω, t ≥ 0, ν = ∇q. (6.6)

6.1.1 1D population clustering model for a single species

We examine the 1D analogues of the equations described in section 6.1.

∂u
∂ t

= δ
∂ 2u
∂x2 − ∂

∂x

(
u

∂q
∂x

)
(6.7)

E(u) =−ε
∂ 2q
∂x2 +q (6.8)

E(u) = (u−a)(1−u). (6.9)

We have the boundary conditions

∂u
∂x

= 0 x = A,B, t ≥ 0, (6.10)

∂q
∂x

= 0 x = A,B, t ≥ 0 (6.11)

where A and B are fixed. We derive the moving-mesh, finite element model for this system.
We consider the system with no births or deaths, so we have a true conservation of mass.
Over the domain x ∈ [A,B], ∫ B

A
udx = constant. (6.12)

6.1 Population clustering models for a single species 146

We define the distributed conservation principle, for a weight function wi,∫ B

A
wiudx = constant (6.13)

hence
d
dt

∫ B

A
wiu dx = 0. (6.14)

By the Reynolds Transport Theorem, we can say that

∫ B

A

∂

∂ t
(wiu)dx+

∫ B

A

∂

∂x
(ẋwiu)dx = 0 (6.15)

∫ B

A

[
wi

∂u
∂ t

+u
∂wi

∂ t
+wi

∂

∂x
(uẋ)+uẋ

∂wi

∂x

]
dx = 0. (6.16)

Assuming the weight functions wi move with the domain

∂wi

∂ t
+ ẋ

∂wi

∂x
= 0 (6.17)

hence ∫ B

A
wi

∂

∂x
(uẋ) dx =−

∫ B

A
wi

∂u
∂ t

dx. (6.18)

Substituting from equation (6.7),

∫ B

A
wi

∂

∂x
(uẋ) dx =−

∫ B

A
wi

[
δ

∂ 2u
∂x2 − ∂

∂x

(
u

∂q
∂x

)]
dx (6.19)

and after integration by parts we obtain

[wiẋu]BA −
∫ B

A

∂wi

∂x
(uẋ) dx =

∫ B

A
δ

∂wi

∂x
∂u
∂x

dx−
∫ B

A

∂wi

∂x
u

∂q
∂x

dx+
[

wiu
∂q
∂x

]B

A
−
[

δwi
∂u
∂x

]B

A

(6.20)

or, because we have fixed boundaries,

−
∫ B

A

∂wi

∂x
(uẋ) dx =

∫ B

A
δ

∂wi

∂x
∂u
∂x

dx−
∫ B

A

∂wi

∂x
u

∂q
∂x

dx+
[

wiu
∂q
∂x

]B

A
−
[

δwi
∂u
∂x

]B

A
. (6.21)

6.1 Population clustering models for a single species 147

We make the velocity potential substitution ẋ = ∂φ

∂x . We obtain

−
∫ B

A
u

∂wi

∂x
∂φ

∂x
dx =−

[
δwi

∂u
∂x

]B

A
+
∫ B

A
δ

∂wi

∂x
∂u
∂x

dx+
[

wiu
∂q
∂x

]B

A
−
∫ B

A
u

∂q
∂x

∂wi

∂x
dx.

(6.22)
We note the presence of the zero flux boundary conditions (6.10), hence the two non-integral
terms on the right hand side will be equal to zero. The equation to be solved for φ is then

−
∫ B

A
u

∂wi

∂x
∂φ

∂x
dx =

∫ B

A
δ

∂wi

∂x
∂u
∂x

dx−
∫ B

A
u

∂q
∂x

∂wi

∂x
dx. (6.23)

This expression requires known q. We return to the definition (6.8). We write this in weak
form, ∫ B

A
wiE(u) dx =−ε

∫ B

A
wi

∂ 2q
∂x2 dx+

∫ B

A
wiq dx. (6.24)

Integrating by parts on the right hand side, we obtain

∫ B

A
wiE(u) dx =−ε

[
wi

∂q
∂x

]B

A
+ ε

∫ B

A

∂wi

∂x
∂q
∂x

dx+
∫ B

A
wiq dx. (6.25)

Noting again the zero flux boundary condition on q, we may simplify this to

∫ B

A
wiE(u) dx = ε

∫ B

A

∂wi

∂x
∂q
∂x

dx+
∫ B

A
wiq dx (6.26)

which may be solved for q.

6.1.2 Construction of the finite element form

We use the unmodified piecewise linear basis functions wi = Wi, since we have only Neu-
mann conditions to consider. We define our finite element variables U , Q and E in terms
of the piecewise linear approximations U = ∑ j WjU j, Q = ∑ j WjQ j, E = ∑ j WjE j. Note
that although E is itself a nonlinear function of U , we simply calculate discrete values of
E(U) at nodes only and accept a linear approximation between nodes. We make this re-
mark since elsewhere in the thesis, nonlinear terms are treated more robustly, but we do
not expect this simpler approximation to be of significance here. After substituting in these
approximations, equation (6.26) becomes

N+1

∑
j=0

[∫ B

A
WiWjdx

]
E j =

N+1

∑
j=0

[
ε

∫ B

A

∂Wi

∂x
∂Wj

∂x
dx
]

Q j +
N+1

∑
j=0

[∫ B

A
WiWjdx

]
Q j. (6.27)

6.1 Population clustering models for a single species 148

In terms of the standard mass and stiffness matrices this is

εKQ+MQ = ME (6.28)

for vectors Q containing the values of Q j, and E containing the values of E j. To solve this
we first obtain the values of E(u) from equation (6.9). We can now obtain Q from the steady
state system

Q = (εK +M)−1ME. (6.29)

We now require φ , which can be obtain from equation (6.23). We make the same piecewise
linear approximations and, after substitution, obtain

−
N+1

∑
j=0

[∫ B

A
U

∂Wi

∂x
∂Wj

∂x
dx
]

Φ j =
N+1

∑
j=0

[∫ B

A
δ

∂Wi

∂x
∂Wj

∂x
dx
]

U j −
N+1

∑
j=0

[∫ B

A
U

∂Wi

∂x
∂Wj

∂x
dx
]

Q j.

(6.30)

We solve for the vector Φ = {Φ j} using the matrix form

K(U)Φ = δKU −K(U)Q (6.31)

with K(U) analogous to the stiffness matrix, and given by

K(U)i j =
∫ xi+1

xi−1

U
∂Wi

∂x
∂Wj

∂x
dx. (6.32)

Once Φ is recovered, we obtain Ẋ and U in the manner now standard in this thesis. Briefly,
we use the weak form of the definition for the velocity potential ẋ = ∂φ/∂x, which is

∫ B

A
wiẋ dx =

∫ B

A
wi

∂φ

∂x
dx. (6.33)

We select the weight functions wi =Wi and using the piecewise linear approximations Ẋ =

∑ j WjẊ j and Φ = ∑ j WjΦ j we make substitutions to obtain

N+1

∑
j=0

[∫ B

A
WiWj dx

]
Ẋ j =

N+1

∑
j=0

[∫ B

A
Wi

∂Wj

∂x
dx
]

Φ j. (6.34)

In matrix form this is
MẊ = BΦ j (6.35)

6.1 Population clustering models for a single species 149

where Ẋ and Φ j are the vectors containing the unknown velocities Ẋ j and the known Φ j, and
M and B are the symmetric mass matrix and an asymmetric matrix respectively, as defined
in section 3.1.2.

In this way, (6.35) can be solved to obtain the Ẋ j values. We then perform the time
integration step using any chosen scheme. Once the grid position has been recalculated, the
basis functions are likewise moved and the matrices defined by them are recalculated.

We recover U from the conservation principle (6.13)

∫ B

A
wiu dx = constant. (6.36)

Making the substitution for the approximation U = ∑ j WjU j we obtain

N+1

∑
j=0

[∫ B

A
WiWjdx

]
U j = ci (6.37)

where ci is given by

ci(x) =
∫ B

A
Wi(x,0)U(x,0) dx (6.38)

for the initial data U(x,0). Then (6.37) is equivalent to the mass matrix system

MU = c (6.39)

where c is the vector containing the ci, and M is the mass matrix for the new time step. We
may then solve (6.39) for U using the updated M. Whilst we do not implement this model
in this form, preferring to focus on the two dimensional model, the derivation is useful for a
later two phase version with an interface condition.

6.1 Population clustering models for a single species 150

6.1.3 2D population clustering model for a single species

For the 2D model, we remind ourselves of the driving PDE system. This is

∂u
∂ t

= δ∇
2u−∇.(u∇q) (6.40)

E(u) =−ε∇
2q+q (6.41)

E(u) = (u−a)(1−u) (6.42)

with boundary conditions on the fixed boundary S

n̂.∇u = 0 x ∈ S, t ≥ 0, (6.43)

n̂.ν = 0 x ∈ S, t ≥ 0. (6.44)

In this single species system we consider the case where we have no births or deaths, so that
clustering effects are most apparent even if transient. We therefore have a true conservation
of mass. Over the domain x ∈ Ω the conservation principle is∫

Ω

udΩ = constant. (6.45)

We define the distributed form, for a weight function wi,∫
Ω

wiu dΩ = ci (6.46)

where the constant ci is determined by the choice of wi. Hence

d
dt

∫
Ω

wiu dΩ = 0. (6.47)

Using the Reynolds Transport Theorem, we can write

∫
Ω

∂

∂ t
(wiu) dΩ+

∫
Ω

∇x · (ẋwiu) dΩ = 0 (6.48)

leading to ∫
Ω

[
wi

∂u
∂ t

+u
∂wi

∂ t
+wi∇ · (uẋ)+uẋ ·∇wi

]
dΩ = 0. (6.49)

6.1 Population clustering models for a single species 151

We assume that the weight functions wi move with the domain, which gives

∂wi

∂ t
+ ẋ ·∇wi = 0 (6.50)

hence (6.49) is ∫
Ω

wi∇ · (uẋ) dΩ =−
∫

Ω

wi
∂u
∂ t

dΩ. (6.51)

We make a substitution from the driving PDE (6.40) to obtain∫
Ω

wi∇ · (uẋ) dΩ =−
∫

Ω

wi(δ∇
2u−∇ · (u∇q)) dΩ (6.52)

and after integration by parts we obtain∫
S

wiẋu · n̂ dS−
∫

Ω

∇wi · (uẋ) dΩ =
∫

Ω

δ∇wi ·∇u dΩ−
∫

Ω

∇wi ·u∇q dΩ

+
∫

S
wiu∇q · n̂ dS−

∫
S

δwi∇u · n̂ dS (6.53)

or, because we have fixed boundaries,

−
∫

Ω

∇wi · (uẋ) dΩ =
∫

Ω

δ∇wi ·∇u dΩ−
∫

ω

∇wi ·u∇q dΩ

+
∫

S
wiu∇q · n̂ dS−

∫
S

δwi∇u · n̂ dS. (6.54)

We make the velocity potential substitution ẋ = ∇φ . We obtain

−
∫

Ω

u∇wi ·∇φ dΩ =−
∫

S
δwi∇u · n̂ dS+

∫
Ω

δ∇wi ·∇u dΩ

+
∫

S
wiu∇q · n̂ dS−

∫
Ω

u∇q ·∇wi dΩ (6.55)

subject to zero flux conditions on the boundary (6.43), so the two boundary terms on the
right hand side will be equal to zero. We obtain the equation to be solved for φ ,

−
∫

Ω

u∇wi ·∇φ dΩ =
∫

Ω

δ∇wi ·∇u dΩ−
∫

Ω

u∇q ·∇wi dΩ. (6.56)

Before this can be solved we need a value for q and this can be obtained, in a similar way to
the 1D case, from the steady state equation (6.41),

E(u) =−ε∇
2q+q. (6.57)

6.1 Population clustering models for a single species 152

Writing this in weak form, we have∫
Ω

wiE(u) dΩ =−ε

∫
Ω

wi∇
2q dΩ+

∫
Ω

wiq dΩ. (6.58)

We integrate the right hand side by parts to obtain∫
Ω

wiE(u) dΩ =−ε

∫
S

wi∇q · n̂ dS+ ε

∫
Ω

∇wi ·∇q dΩ+
∫

Ω

wiq dΩ (6.59)

since ∇q · n̂ = 0 on S, the boundary term is equal to zero. We therefore have∫
Ω

wiE(u) dΩ = ε

∫
Ω

∇wi ·∇q dΩ+
∫

Ω

wiq dΩ. (6.60)

This allows us to obtain q once E(u) is known. We may obtain the values of E(u) from
equation (6.42).

6.1.4 Construction of the finite element form

In order to solve equations (6.56) and (6.60), we use the finite element method. We use
the unmodified two dimensional triangular weight functions wi = Wi described in Chap-
ter 3 (3.1.3), since we have no Dirichlet conditions to impose. We define our finite ele-
ment variables Q and E in terms of the same basis functions, using the approximations
Q(x, t) = ∑ j Wj(x)Q j(t) and E(x, t) = ∑ j Wj(x)E j(t). After making the substitutions for
these approximations, (6.60) becomes

N

∑
j=1

[∫
Ω

WiWj dΩ

]
E j =

N

∑
j=1

[
ε

∫
Ω

∇Wi ·∇Wj dΩ

]
Q j +

N

∑
j=1

[∫
Ωi

WiWj dΩ

]
Q j. (6.61)

In terms of mass and stiffness matrices M and K this is written as

εKQ+MQ = ME (6.62)

for vectors Q containing Qi and E containing Ei. Rearranging, we obtain Q from the steady
state system

Q = (εK +M)−1ME (6.63)

where E is given by the definition (6.42). Similarly, we make substitutions into equation
(6.56), defining our variables in terms of piecewise linear approximations based on the
Wi. In addition to the approximation Q(x, t) = ∑ j Wj(x)Q j(t) already given, we require

6.1 Population clustering models for a single species 153

U(x, t) = ∑ j Wj(x)U j(t) as the approximation for u, and Φ(x, t) = ∑ j Wj(x)Φ j(t) as the
approximation for φ . Equation (6.56) becomes

−
N

∑
j=1

[∫
Ω

∇Wi ·∇WjU dΩ

]
Φ j =

N

∑
j=1

[
δ

∫
Ω

∇Wi.∇Wj dΩ

]
U j +

N

∑
j=1

[∫
Ω

∇Wi · (U∇Wj)dΩ

]
Q j

(6.64)

or in matrix form
K(U)Φ = δKU +K(U)Q (6.65)

where K(U) is the weighted stiffness matrix given by (3.69). Equation (6.65) is now suf-
ficient to recover Φ. We then calculate Ẋ, perform the time integration and lastly recover
U from the conservation of mass equation. This process is described fully in Chapter 3 but
briefly, the definition of φ is

ẋ = ∇φ (6.66)

for which a weak form is ∫
Ω

wiẋ dΩ =
∫

Ω

wi∇φ dΩ. (6.67)

Using again the piecewise linear approximations wi =Wi(x), Ẋ(x, t) =∑
N
j=1 Ẋ j(t)Wj(x) and

∇Φ(x, t) = ∑
N
j=1 Φ j(t)∇Wj(x) we obtain

N

∑
j=1

[∫
Ω

WiWj dΩ

]
Ẋ j =

N

∑
j=1

[∫
Ω

Wi∇Wj dΩ

]
Φ j. (6.68)

Hence in matrix form, (6.68) can be solved for Ẋ using

MẊ = BΦ (6.69)

where Ẋ = {Ẋi}, M is the symmetric mass matrix, and B is an asymmetric matrix with
elements Bi j =

∫
Ω

Wi∇Wj dΩ. Having found Ẋ, the nodes are repositioned using the forward
Euler scheme. We recover U using our distributed mass conservation principle (6.13). Using
the piecewise linear Wi that together form a partition of unity, equation (6.13) is, for each
node i,

ci =
∫

Ω

WiU dΩ.

6.1 Population clustering models for a single species 154

Using the piecewise linear approximation U(x, t) = ∑ j U j(t)Wj(x) we obtain

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U j = ci (6.70)

which is equivalent to the mass matrix system

MU = ci. (6.71)

This equation is used to calculate the initial (and constant) values of ci, using the initial
values of U j and X j. After repositioning the nodes we may recover U j(t) from the mass
matrix system (6.71).

Algorithm 13

The finite element solution of the single species aggregation model defined by equations
(6.40), (6.41) and (6.42) on the moving mesh in 2-D therefore consists of the following
steps. We obtain the constant values of ci from (6.71) calculated at t = 0, and then for each
time step:

1. Calculate the reproductive potential by solving equation (6.42) for E(u);

2. Find the values of Q by solving equation (6.63);

3. Find the velocity potential by solving equation (6.65) for the Φ j(t) values;

4. Find the node velocity by solving equation (6.69) for the Ẋ(t) values;

5. Generate the co-ordinate system at the next time-step t + dt by solving (3.18) using
Euler’s approximation;

6. Find the solution U(t +dt) by solving the conservation equation (6.71).

6.1.5 Results

In common with [29], we use a random seeding to provide the initial conditions for the
model. The random seeding is selected from a normal distribution with a mean of 0.3 and
a standard deviation of 0.01. The model is stable and robust. We are able to run the model
sometimes to a blow up and sometimes to a solution where population growth and decline
become approximately balanced. The outcome depends on the initial values of u, and also

6.1 Population clustering models for a single species 155

on the parameters δ and ε . We are familiar from the diffusion models with the parameter δ

and its effects. As the parameter controlling the rate of diffusion, it has a smoothing effect
when large. The parameter ε is less familiar. From the definition contained within (6.41),
it is apparent that the intention for ε is to define the scale of the clusters that need to form.
We find that we can see this scaling effect in the results, with the number and size of clus-
ters reduced as ε increases. We notice that the patterns formed in u (where approximately
balanced states are reached) tend to approximate eigenmodes of the Laplacian ∇2, and that
these are consistent for given parameters. This is of relevance and interest to the work of
Grindrod [29], in which he approaches his models from a patterns and waves perspective.
However, with our focus elsewhere we make this remark in passing only.

An example solution is given in figure 6.1, for parameters ε = 0.005 and δ = 0.01.
This setup produces four clusters from the initially random seeding. The clusters are under
development in this snapshot and we have not yet reached an approximately balanced pop-
ulation. We can see the difference that an alternative choice of ε produces in figure (6.2).
With ε = 0.001 and δ = 0.01 we observe six clusters forming. If the model is allowed to
continue, we reach an approximately steady-state solution (figure 6.3). We observe that the
reproductive potential E(u) is very low in the centre of the clusters, due to overcrowding.
This low E(u) tends to disperse individuals away from the centre of the cluster. However,
the population densities at the edges of the cluster are low enough to draw individuals in,
and so eventually the two effects become balanced and the approximately balanced solution
is observed.

6.1 Population clustering models for a single species 156

Fig. 6.1 A solution after 350 iterations at t = 0.35 of the 2D population equations, with
ε = 0.005 and δ = 0.01. This solution has not yet reached a balance, but is approximating
the 4th eigenmode of the Laplacian.

6.1 Population clustering models for a single species 157

Fig. 6.2 A solution after 10 iterations at t = 0.01 of the 2D population equations, with
ε = 0.001 and δ = 0.01. This solution has not yet reached a balance, but is approximating
the 20th eigenmode of the Laplacian.

6.1 Population clustering models for a single species 158

Fig. 6.3 An approximately balanced solution of the 2D population equations, with ε = 0.001
and δ = 0.01. plotting (from left to right) u, q and E(u). Whilst there is overcrowding in the
centres of the clusters, giving a dramatically negative E(u), the rate of population decline
resulting from that is balanced by the attraction of the cluster to individuals nearby. These
two effects mean that the shape of the solution does not evolve further, with only minor
local effects observed.

6.2 Population clustering models for two competitive species 159

6.2 Population clustering models for two competitive species

We now consider reaction-aggregation-diffusion models with two species. We consider the
case where the species share a domain, so that we may examine clustering into species
specific groups and the resulting claiming of territory. This may be of use in informing
suitable starting conditions for a two phase model of competition.

A finite element formulation for the fixed mesh case

We begin with the Lotka-Volterra competition equations of Chapter 2, section 2.2, for two
competing species with population densities u1 and u2. Following [29], we also have an
aggregation term so that the driving PDEs are

∂u1

∂ t
= δ1∇

2u1 −∇ · (u1v1)+ ru1E1 (6.72)

∂u2

∂ t
= δ2∇

2u2 −µ∇ · (u2v2)+ ru2E2 (6.73)

where E1 and E2 are net reproduction rates for each species. The r is a coefficient control-
ling the timescale upon which births and deaths operate, so that we may examine potentially
transient clustering effects by setting r = 0 or alternatively look at the longer term evolu-
tion of the system by setting r = 1 . The v1 and v2 are optimal velocities for individuals’
movements, defined (following [29]) in terms of E. For simplicity of analysis we define
quantities q1 and q2 such that

∇q1 = v1 (6.74)

∇q2 = v2. (6.75)

The relationship between velocity and survivability is defined indirectly in terms of q1 and
q2 as

ε1∇
2q1 +q1 = E1 (6.76)

ε2∇
2q2 +q2 = E2. (6.77)

Overall movement is therefore controlled by a combination of a diffusive or random walk
element, with a maximum survivability bias. Following [29] we will examine a system
where inter and intra-species competition are important, but where low population densities

6.2 Population clustering models for two competitive species 160

do not in themselves reduce survivability, in contrast with the single-species models. We
define the logistic equations

E1 = A−au1 −bu2 (6.78)

E2 = B−a∗u1 −b∗u2. (6.79)

The parameters a, b, a∗ and b∗ replace the rate parameters K, k and κ of chapter 5. There is
no functional difference; the convention of [29] is merely to select a form for the parameters
that gives optimal mathematical clarity rather then optimal ecological relatability.

The driving PDEs we work with are then, with the velocity defined in terms of q,

∂u1

∂ t
= δ1∇

2u1 −∇ · (u1∇q1)+ ru1E1 (6.80)

∂u2

∂ t
= δ2∇

2u2 −µ∇ · (u2∇q2)+ ru2E2 (6.81)

with boundary conditions

n̂.∇u = 0 x ∈ ∂Ω, t ≥ 0, (6.82)

n̂.∇q = 0 x ∈ ∂Ω, t ≥ 0. (6.83)

6.2.1 The conservative population case

In order to understand the nature of the behaviour we first derive a finite element model
on a static mesh. In order to understand the clustering effects, we consider the case where
births and deaths happen on a much longer timescale than individual movements. For this
conservation of population we simply set r = 0, so that the driving PDEs (6.80) and (6.81)
become

∂u1

∂ t
= δ1∇

2u1 −∇ · (u1∇q1) (6.84)

and
∂u2

∂ t
= δ2∇

2u2 −µ∇ · (u2∇q2). (6.85)

In common with all our population models we have zero flux boundary conditions, i.e.

n̂ ·∇u = 0 and n̂ ·∇q = 0. We consider the fixed domain Ω with boundary S. Combining

6.2 Population clustering models for two competitive species 161

(6.78) and (6.76) we obtain

A−au1 −bu2 = ε1∇
2q1 +q1. (6.86)

We write this in weak form, using a weight function wi to give∫
Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ =
∫

Ω

wiε1∇
2q1 dΩ+

∫
Ω

wiq1 dΩ. (6.87)

After integration by parts on the right-hand side we obtain∫
Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ

= ε1

∫
S

wi∇q1 · n̂ dS− ε1

∫
Ω

∇wi ·∇q1 dΩ+
∫

Ω

wiq1 dΩ. (6.88)

The first term on the right hand side is equal to zero at the domain boundaries due to the
zero flux boundary conditions, and so can be removed here to give∫

Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ =−ε1

∫
Ω

∇wi ·∇q1 dΩ+
∫

Ω

wiq1 dΩ. (6.89)

Equation (6.89) will give us q1 in terms of u1 and u2. In exactly the same way, from (6.79)
and (6.77) we obtain∫

Ω

wiB dΩ−
∫

Ω

wia∗u1 dΩ−
∫

Ω

wib∗u2 dΩ =−ε2µ

∫
Ω

∇wi ·∇q2 dΩ+µ

∫
Ω

wiq2 dΩ

(6.90)
which gives us q2 in terms of u1 and u2. We may now turn our attention to finding a suitable
form of the PDEs defining ∂u1/∂ t (6.84) and ∂u2/∂ t (6.85). Equation (6.84) is

∂u1

∂ t
= δ1∇

2u1 −∇ · (u1∇q1)

or
∂u1

∂ t
= δ1∇

2u1 −u1∇
2q1 −∇q1 ·∇u1. (6.91)

We rewrite this in weak form to obtain∫
Ω

wi
∂u1

∂ t
dΩ = δ1

∫
Ω

wi∇
2u1 dΩ−

∫
Ω

wiu1∇
2q1 dΩ−

∫
Ω

wi∇q1 ·∇u1 dΩ (6.92)

6.2 Population clustering models for two competitive species 162

and after integration by parts we have

∫
Ω

wi
∂u1

∂ t
dΩ = δ1

∫
S

wi∇u1 · n̂dS−δ1

∫
Ω

∇wi ·∇u1 dΩ

−
∫

Ω

wiu1∇
2q1 dΩ−

∫
Ω

wi∇q1 ·∇u1 dΩ (6.93)

the first term on the right hand side of which is equal to zero at the domain boundaries due
to the zero flux boundary conditions (6.82), leaving

∫
Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ−
∫

Ω

wiu1∇
2q1 dΩ−

∫
Ω

wi∇q1 ·∇u1 dΩ. (6.94)

Turning our attention to the second term on the right hand side, again we integrate by parts
and obtain ∫

Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ−
∫

S
wiu1∇q1 · n̂ dS

+
∫

Ω

∇(wiu1) ·∇q1 dΩ−
∫

Ω

wi∇q1 ·∇u1 dΩ. (6.95)

Again the boundary integral is zero from the boundary condition (6.82). Therefore we can
reduce this to∫

Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ+
∫

Ω

∇(wiu1) ·∇q1 dΩ−
∫

Ω

wi∇q1 ·∇u1 dΩ.

(6.96)
By the product rule, this becomes

∫
Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ+
∫

Ω

u1∇wi ·∇q dΩ

+
∫

Ω

wi∇u1 ·∇q1 dΩ−
∫

Ω

wi∇q1 ·∇u1 dΩ (6.97)

which simplifies to

∫
Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ+
∫

Ω

u1∇wi ·∇q1 dΩ. (6.98)

Equation (6.98) determines ∂u1
∂ t in terms of q1 and u1, and is ready for finite element substi-

tutions to be made. We follow the same process for ∂u2/∂ t as we did for ∂u1/∂ t. Equation

6.2 Population clustering models for two competitive species 163

(6.85), the driving PDE for ∂u2/∂ t, is

∂u2

∂ t
= δ2∇

2u2 −µ∇ · (u2∇q2) (6.99)

or
∂u2

∂ t
= δ2∇

2u2 −µu2∇
2q2 −µ∇q2 ·∇u2. (6.100)

In weak form we rewrite this as∫
Ω

wi
∂u2

∂ t
dΩ = δ2

∫
Ω

wi∇
2u2 dΩ−µ

∫
Ω

wiu2∇
2q2 dΩ−µ

∫
Ω

wi∇q2 ·∇u2 dΩ. (6.101)

The process that follows is identical to the u1 case, as set out from equations (6.92) to (6.98),
with only the choice of parameters by way of a difference. We arrive at the weak form

∫
Ω

wi
∂u2

∂ t
dΩ =−δ2

∫
Ω

∇wi ·∇u2 dΩ+µ

∫
Ω

u2∇wi ·∇q2 dΩ. (6.102)

Equation (6.102) determines ∂u2
∂ t in terms of q1 and u1, and is ready for finite element sub-

stitutions to be made.

6.2.2 Construction of the finite element form

Since we have Neumann conditions on the boundaries, we select the standard two dimension
triangular weight functions Wi of (3.1.3). We use these functions as our weight functions
and also define approximations to our variables using these functions as basis functions.
Our approximations are

U1(x, t) =
N

∑
j=1

Wj(x)U1 j(t) (6.103)

U2(x, t) =
N

∑
j=1

Wj(x)U2 j(t) (6.104)

Q1(x, t) =
N

∑
j=1

Wj(x)Q1 j(t) (6.105)

and

Q2(x, t) =
N

∑
j=1

Wj(x)Q2 j(t). (6.106)

6.2 Population clustering models for two competitive species 164

We substitute these approximations into (6.89) and obtain

∫
Ω

WiA dΩ−a
N

∑
j=1

[∫
Ω

WiWj dΩ

]
U1 j −b

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U2 j

=−ε1

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
Q1 j +

N

∑
j=1

[∫
Ω

WiWj dΩ

]
Q1 j . (6.107)

We may write (6.107) in terms of our mass and stiffness matrices M and K to obtain

MA−aMU1 −bMU2 =−ε1KQ1 +MQ1. (6.108)

Here A is a vector with all entries equal to A. We may rewrite this in terms of Q1

Q1 = (−ε1K +M)−1M(A−aU1 −bU2). (6.109)

In exactly the same manner, we substitute the approximations (6.103) to (6.106) into (6.90)
and obtain

∫
Ω

WiB dΩ−a∗
N

∑
j=1

[∫
Ω

WiWj dΩ

]
U1 j −b∗

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U2 j

=−ε2

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
Q2 j +

N

∑
j=1

[∫
Ω

WiWj dΩ

]
Q2 j (6.110)

which is, in matrix form

Q2 = (−ε2K +M)−1M(B−a∗U1 −b∗U2). (6.111)

Here B is a vector with all entries equal to B. Equations (6.109) and (6.111) can be solved
to obtain Q1 and Q2.

We now tackle the solution of ∂U1
∂ t by constructing equation (6.98) in finite element

form. We again choose wi =Wi and make substitutions for the approximations (6.103) and
(6.104), together with the derivatives

∂U1

∂ t
= U̇1 =

N

∑
j=1

WjU̇1 j (6.112)

∂U2

∂ t
= U̇2 =

N

∑
j=1

WjU̇2 j . (6.113)

6.2 Population clustering models for two competitive species 165

Thus (6.98) can be rewritten in the form

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U̇1 j =−δ1

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
U1 j +

N

∑
j=1

[∫
Ω

U1∇Wi ·∇Wj dΩ

]
Q1 j .

(6.114)

In matrix form this is
MU̇1 =−δ1KU1 +K(U1)Q1 (6.115)

where the entries of matrix K(U1) are those of the weighted stiffness matrix and are given
by

K(U1)i j =
∫

Ω

U1∇Wi ·∇Wj dΩ. (6.116)

The process for assembly of the weighted stiffness matrix is outlined in section 3.1.2. We
make finite element approximation substitutions into equation (6.98) to obtain the expres-
sion for ∂U2

∂ t in exactly the same manner. We arrive at the matrix form

MU̇2 =−δ2KU2 +µK(U2)Q2. (6.117)

Equations (6.115) and (6.117) allow us to solve for U̇1 and U̇2. A suitable time integration
procedure can then be chosen to obtain U1 and U2.

Algorithm 14

Randomly seed a distribution of u1 and u2 near to a pre-chosen population density, usually
0.4 for U1 and 0.3 for U2. An example of such a starting point is shown in figure 6.10. Then
proceed as follows until desired time is reached:

1. Obtain Q1(t) and Q2(t) from (6.109) and (6.111);

2. Find U̇1(t) and U̇2(t) using equations (6.115) and (6.117);

3. Generate values of U1(t + dt) and U2(t + dt) at the next time step using the values
U̇1(t) and U̇2(t) in forward Euler time integration.

6.2 Population clustering models for two competitive species 166

6.2.3 Results

The model has been encoded on the square domain defined by −0.2 ≤ x ≤ 0.2, −0.2 ≤ y ≤
0.2. We set 21 by 21 regularly spaced nodes, creating a mesh containing 512 triangular
elements. The default variables used for the simulations are (from [29]):

A = 1

B = 1.5

a = 1

b = 2

a∗ = 3

b∗ = 1

ε1 = 0.025

ε2 = 0.025

δ1 = 0.1

δ2 = 0.1

µ = 1.

The initial population is generated randomly. Boundary nodes are set at u1 = 0.4,
u2 = 0.3 for t = 0,x ∈ ∂Ω. Internal nodes are assigned a random value for u1 from a set with
a mean of 0.4 and a standard deviation of 0.01. For u2 the random values are assigned from
a set with a mean of 0.3 and a standard deviation of 0.01. These values are chosen so that E1

and E2 are zero (neutral survivability) at the boundaries, and have small perturbations from
neutral elsewhere. These random perturbations seed the evolution of the population densi-
ties towards preferred locations. One such set of preferred locations is shown in figure 6.4.
At t = 0.7, the two species have separated almost completely in space and four clusters are
formed, each species inhabiting two corners of the domain with one favoured corner each.
In figure 6.5, the same simulation is run to t = 0.7 with a different random initial seeding
and this time only two larger clusters are formed. For the parameters used in this initial sim-
ulation, all the outputs fall broadly into one of these two categories. By experimenting with
parameters, we are able to affect the number and size of clusters that are formed. Figure 6.6
shows a simulation at t = 0.7 with ε1 = ε2 = 0.01. The clusters produced are more compact
and the four corners of the domain are more evenly populated. Running further simulations

6.2 Population clustering models for two competitive species 167

with these parameters always produces this four-corner pattern. However, the question of
which species inhabit which diagonal pair of corners is determined by the random seeding.

The simulations run smoothly with an initial diffusion dominated phase lasting to ap-
proximately t = 0.05, whilst groupings are established and peak population densities are re-
duced, then a much longer group growth stage where populations tend towards their groups
containing maximum sustainable density, i.e. u1 = 1 and u2 = 1.5. Between groups popula-
tions are approximately zero, and the habitat appropriated by each species is clearly defined.
Steady state is reached at around t = 0.7. These simulations are robust to significant exper-
imentation with parameters and so provide a useful tool for understanding the behaviour
described by the model.

6.2.4 The non-conservative population case

We now consider the evolution of a system that allows births and deaths to take place. This
is non mass conserving so the treatment is slightly different. The equations for q1, q2, E1

and E2, and the boundary conditions are unchanged from the conservative case. These are
given as

ε1∇
2q1 +q1 = E1 (6.118)

ε2∇
2q2 +q2 = E2 (6.119)

E1 = A−au1 −bu2 (6.120)

E2 = B−a∗u1 −b∗u2 (6.121)

with boundary conditions

∇u · n̂ = 0 x ∈ ∂Ω, t ≥ 0 (6.122)

∇q · n̂ = 0 x ∈ ∂Ω, t ≥ 0. (6.123)

However, for the time dependent PDEs we have a different system. We set the reproduction
parameter r = 1, so that (6.80) and (6.81) become

∂u1

∂ t
= δ1∇

2u1 −∇ · (u1∇q1)+u1E1 (6.124)

6.2 Population clustering models for two competitive species 168

Fig. 6.4 A conservative, static mesh, two species simulation at t = 0.7 with ε1 = ε2 = 0.025
and δ1 = δ2 = 0.1. Initial seeding is random, so no two results are identical.

6.2 Population clustering models for two competitive species 169

Fig. 6.5 An alternative result from the conservative, static mesh, two species simulation
t = 0.7, the only difference being in the initial random population seeding. The parameters
are identical to those for figure 6.4, ε1 = ε2 = 0.025 and δ1 = δ2 = 0.1 .

6.2 Population clustering models for two competitive species 170

Fig. 6.6 A result from the conservative, static mesh, two species simulation t = 0.7 with
an alternative choice for ε . Here ε1 = ε2 = 0.01 and δ1 = δ2 = 0.1 as before. Note the
difference in q1 and q2 now that the scale over which diffusion is important is reduced.

6.2 Population clustering models for two competitive species 171

∂u2

∂ t
= δ2∇

2u2 −µ∇ · (u2∇q2)+u2E2. (6.125)

This means that we have an extra term to consider in constructing the appropriate weak form
for finite element substitutions. The weak form of (6.124) is∫

Ω

wi
∂u1

∂ t
dΩ = δ1

∫
Ω

wi∇
2u1 dΩ−

∫
Ω

wiu1∇
2q1 dΩ−

∫
Ω

wi∇q1 ·∇u1 dΩ+
∫

Ω

wiu1E1 dΩ

(6.126)

where wi is part of a set of weight functions that together form a partition of unity. We treat
the first three terms on the right hand side in the same manner as in the conservative case,
given by equations (6.92) to (6.98). We obtain the simpler weak form

∫
Ω

wi
∂u1

∂ t
dΩ =−δ1

∫
Ω

∇wi ·∇u1 dΩ+
∫

Ω

u1∇wi ·∇q1 dΩ+
∫

Ω

wiu1E1 dΩ (6.127)

and similarly, from (6.125) we obtain the weak form

∫
Ω

wi
∂u2

∂ t
dΩ =−δ2

∫
Ω

∇wi ·∇u2 dΩ+
∫

Ω

µu2∇wi ·∇q2 dΩ+
∫

Ω

wiu2E2 dΩ. (6.128)

6.2.5 Construction of the finite element form

We choose the piecewise linear weight functions wi = Wi. We use the piecewise linear
approximations (6.103) to (6.106). We also use a similar choice for E1 and E2, defined as

E1(x, t) =
N

∑
j=1

Wj(x)E1 j(t) (6.129)

E2(x, t) =
N

∑
j=1

Wj(x)E2 j(t). (6.130)

Substituting these choices into (6.127) we obtain

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U̇1 j =−δ1

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
U1 j

+
N

∑
j=1

[∫
Ω

U1∇Wi ·∇Wj dΩ

]
Q1 j +

∫
Ω

WiU1E1 dΩ. (6.131)

6.2 Population clustering models for two competitive species 172

The matrix form is then

MU̇1 =−δ1KU1 +K(U1)Q1 +N1 (6.132)

where N1 =
∫

Ω
WiU1E1 dΩ, a nonlinear term which can be evaluated using Gaussian quadra-

ture (see Appendix B). This matrix form may be rearranged to give

U̇1 = M−1(−δ1KU1 +K(U1)Q1 +N1 (6.133)

which is the non-conservative finite element form giving U̇1.
Similarly, substituting the piecewise linear approximations into (6.128) we obtain the

equivalent form for U̇2,

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U̇2 j =−δ2

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
U2 j

+
N

∑
j=1

[∫
Ω

µU2∇Wi ·∇Wj dΩ

]
Q2 j +

∫
Ω

WiU2E2 dΩ. (6.134)

The matrix form is then

MU̇2 =−δ2KU2 +µK(U2)Q2 +N2. (6.135)

The nonlinear term N2 is given by N2 =
∫

Ω
WiU2E2 dΩ. This can be calculated in the same

exact way as for N1. We may rearrange this matrix form to give

U̇2 = M−1(−δ2KU2 +µK(U2)Q2 +N2. (6.136)

Algorithm 15

Randomly seed a distribution of u1 and u2 near to a pre-chosen population density, usually
0.4 for u1 and 0.3 for u2. An example of such a starting point is shown in figure 6.10. Then
proceed as follows until desired time is reached:

1. Obtain Q1(t) and Q2(t) from (6.109) and (6.111);

2. Find U̇1(t) and U̇2(t) using equations (6.133) and (6.136);

3. Generate values of U1(t + dt) and U2(t + dt) at the next time step using the values

6.2 Population clustering models for two competitive species 173

U̇1(t) and U̇2(t) in forward Euler time integration.

6.2.6 Results

We use the same grid and default variables as in the conservative case, given in section 6.2.3.
The initialisation is also unchanged from the conservative case. Boundary nodes are set at
u1 = 0.4, u2 = 0.3 for t = 0,x ∈ ∂Ω. Internal nodes are assigned a random value for u1 at
t = 0 from a set with a mean of 0.4 and a standard deviation of 0.01. For u2 at t = 0 the
random values are assigned from a set with a mean of 0.3 and a standard deviation of 0.01.
Again the simulations run smoothly with the short initial diffusion dominated phase then
the much longer group growth stage. Steady state, or at least a phase of very slow change, is
reached at approximately t = 0.7 with no significant change thereafter to at least t = 25. The
results shown here show a single simulation at different stages. We show progress of clusters
forming at t = 0.5 (figure 6.7), smaller clusters becoming extinct at t = 1.0 (figure 6.8) and
a straighter interface forming at t = 1.5 (figure 6.9). Compared to the conservative case, we
see that only the larger groupings survive, which is to be expected if threatened populations
are now allowed to suffer deaths. We also see the formation of a clear and increasingly
straight interface between the two populations. As regards our aim of generating a system
that truly tends towards a zero population species interface suitable for a spatially segregated
multi-phase model, this is a success.

6.2 Population clustering models for two competitive species 174

Fig. 6.7 An example result from the non-conservative static mesh at t = 0.5. Random seed-
ing is used to produce the initial conditions. In this case two clusters of each species are
formed.

6.2 Population clustering models for two competitive species 175

Fig. 6.8 An example result from the non-conservative static mesh at t = 1.0. Random seed-
ing is used to produce the initial conditions. As the reproductive terms make impact, the
number of clusters is reduced to one per species.

6.2 Population clustering models for two competitive species 176

Fig. 6.9 An example result from the non-conservative static mesh at t = 1.5. Random seed-
ing is used to produce the initial conditions. The clusters become more established and the
interface becomes straighter.

6.2 Population clustering models for two competitive species 177

6.2.7 A change in the resource space

An interesting consideration is how changing the resource space affects the dynamics of
the group. This is particularly relevant when we move on to restricting each species to
its own domain. We can see how the shape of the interface will come into play, as well
as our later look at the effect of the interface as it is moving. The variables A and B are
the carrying capacities for species 1 and species 2 respectively, and can be considered to
represent the maximum resource a species can access. In this simulation, we look at the
effect of removing the resource from a part of the domain after a period of time during which
groupings have become established. We allow the simulation to run as normal to t = 1.0
(figures 6.10 and 6.11), with the usual random population seeding, and then we reduce A

and B to zero in one quadrant of the domain (figures 6.12 and 6.13). After the removal of
resource, overcrowding in the inhabited areas is apparent. Note the change of scale on the
u1 and u2 axes in figures 6.12 and 6.13. This overcrowding takes a long time to resolve
because although the survivability is reduced at the centre of the crowd, the population at
the edge of the crowd is both growing and moving towards the centre. The observed trend
suggests that a steady state balanced population would be reached at something of the order
of t = 200.

6.2 Population clustering models for two competitive species 178

Fig. 6.10 An example with changing resource space, showing random population seeding at
t = 0.0. At this stage, resource distribution is homogenous.

6.2 Population clustering models for two competitive species 179

Fig. 6.11 An example with changing resource space, showing random population seeding at
t = 1.0. At this stage, resource distribution is still homogenous.

6.2 Population clustering models for two competitive species 180

Fig. 6.12 An example with changing resource space, showing random population seeding at
t = 1.5. At this stage, resource distribution is non-homogenous and species 2 is subject to a
falling population.

6.2 Population clustering models for two competitive species 181

Fig. 6.13 An example with changing resource space, showing random population seeding at
t = 2.0. At this stage, resource distribution is non-homogenous, but species 2 has adapted
to a new domain and is forming a smaller cluster.

Chapter 7

A combined model with a moving
interface

7.1 The two phase model of competition-diffusion-aggregation

We propose a model for a two component reaction-diffusion-aggregation system based on
the Lotka-Volterra competition system, which will additionally incorporate the aggregation
characteristics proposed by Grindrod [29] and the interface condition proposed by Hilhorst
[31]. We construct the model in such a way that we will be able to utilise the two phase
MMFEM of Baines, Hubbard et al. [8], with an adapting mesh based on a relative con-
servation principle. The PDE system that defines the basis of the model is given by the
reaction-diffusion-aggregation PDEs from [29]. See Chapter 6, section 6.2 for a more de-
tailed background. In Chapter 6 we derived a model based upon the same PDEs for two
species sharing a domain, but here we are concerned with a truly two phase model. The
driving PDEs are

∂u1

∂ t
= δ1∇

2u1 −∇(u1∇q1)+ ru1E1 t > 0,x ∈ Ω1(t) (7.1)

and
∂u2

∂ t
= δ2∇

2u2 −ρ∇(u2∇q2)+ ru2E2 t > 0,x ∈ Ω2(t). (7.2)

We use a fixed domain Ω bounded externally by Se, but Ω is divided into two subdomain
classes Ω1 and Ω2 which are separated by the moving interface(s) Sm(t). The 1-D analogies

7.1 The two phase model of competition-diffusion-aggregation 183

are given by

∂u1

∂ t
= δ1

∂ 2u1

∂x2 − ∂

∂x

(
u1

∂q1

∂x

)
+ ru1E1 t > 0,x ∈ (α,m(t)) (7.3)

and

∂u2

∂ t
= δ2

∂ 2u2

∂x2 −ρ
∂

∂x

(
u2

∂q2

∂x

)
+ ru2E2 t > 0,x ∈ (m(t),β) (7.4)

for a domain with fixed boundaries α and β but with a moving interface between species
m(t). The parameters E1 and E2 are the net reproduction rates for each species, given by the
logistic equations

E1 = A−au1 −bu2 (7.5)

E2 = B−a∗u1 −b∗u2. (7.6)

We can see that this system also has parallels with the competition-diffusion model of Chap-
ter 5. This system differs from that in Chapter 5 in the additional consideration of an ag-
gregation component (the term containing ρ). We note that the parameters used in the
expressions (7.5) and (7.6) for the reproduction rate E are named differently to the com-
petition diffusion model, but we can see that no material difference exists. For simplicity
we adopt the naming conventions used by Hilhorst where we extend her work, and have
followed the naming conventions used by Grindrod where we extend his work. This model
is a combination model drawing together both of those threads, but we will use the Grindrod
naming conventions as the driving PDEs come from his work.

The aggregating behaviour is defined by the PDEs

ε1∇
2q1 +q1 = E1 (7.7)

ε2∇
2q2 +q2 = E2 (7.8)

for which the 1-D analogies are

ε1
∂ 2q1

∂x2 +q1 = E1 (7.9)

7.2 1-D competition-aggregation-diffusion in a two phase model 184

ε2
∂ 2q2

∂x2 +q2 = E2. (7.10)

7.2 1-D competition-aggregation-diffusion in a two phase
model

We have boundary conditions given by

∂u
∂x

= 0 x = α,β

∂q
∂x

= 0

u = 0 x = m(t) (7.11)

and we work in the high competition limit defined by Hilhorst [31], so that the species
cannot exist in the opposite species’ domain. Formally,

u1 = 0 x ∈ [m(t),β]

u2 = 0 x ∈ [α,m(t)]. (7.12)

The interface condition is taken from [31], and is

µδ1
∂u1

∂x

∣∣∣∣
m(t)

= −δ2
∂u2

∂x

∣∣∣∣
m(t)

(7.13)

where, once parameter naming conventions are compared between [31] and [29], µ =

aa∗/bb∗. We will call µ the interspecies competition rate. We work with Neumann bound-
ary conditions on the external boundaries, which will be fixed. We use parameter choices
from [29] which are given in Chapter 6, section 6.2.3. In order to set suitable initial con-
ditions, we consider the results of the shared-domain clustering models of Chapter 6. We
note the steady state solutions that arise from the Chapter 6 models, and construct initial
conditions that approximate those steady state results. These are given by figure 7.1. We
begin by redefining the driving Lotka-Volterra based equations (7.3) and (7.4) in weak form,
incorporating the weight function wi,

∫
β

α

wi
∂u1

∂ t
dx =

∫
β

α

δ1wi
∂ 2u1

∂x2 dx−
∫

β

α

wi
∂

∂x

(
u1

∂q1

∂x

)
dx+

∫
β

α

wir1u1E1 dx (7.14)

7.2 1-D competition-aggregation-diffusion in a two phase model 185

Fig. 7.1 Initial conditions for the two-phase reaction-diffusion-aggregation model. The am-
plitudes are taken from the steady state results arising from the shared domain model of
Chapter 6. Species 1 in on the left and species 2 is on the right.

7.2 1-D competition-aggregation-diffusion in a two phase model 186

∫
β

α

wi
∂u2

∂ t
dx =

∫
β

α

δ1wi
∂ 2u2

∂x2 dx−
∫

β

α

wiρ
∂

∂x

(
u2

∂q2

∂x

)
dx+

∫
β

α

wir2u2E2 dx. (7.15)

We substitute the definitions for E1 (7.5) and E2 (7.6), noting that because we have the high
competition limit, the terms containing b and a∗ are equal to zero. We obtain

∫ m(t)

α

wi
∂u1

∂ t
dx =

∫ m(t)

α

δ1wi
∂ 2u1

∂x2 dx−
∫ m(t)

α

wi
∂

∂x

(
u1

∂q1

∂x

)
dx

+
∫ m(t)

α

wir1u1(A−au1) dx (7.16)

and ∫
β

m(t)
wi

∂u2

∂ t
dx =

∫
β

m(t)
δ1wi

∂ 2u2

∂x2 dx−
∫

β

m(t)
wiρ

∂

∂x

(
u2

∂q2

∂x

)
dx

+
∫

β

m(t)
wir2u2(B−b∗u2) dx. (7.17)

We do not have a mass conserving system, so instead we use the idea of conserving relative
mass. We define the total population of a species as θ , given by

θ(t) =
∫

R(t)
udx (7.18)

where R(t) is the moving domain inhabited by that species. A relative conservation principle
can now be defined in terms of θ . We introduce the weight function wi,

1
θ(t)

∫
R(t)

wiudx = ci (7.19)

or ∫
R(t)

wiudx = ciθ(t) = ci

∫
R(t)

udx. (7.20)

The constant ci is determined by the choice of wi. We require that wi is part of a set which
forms a partition of unity. We now have, in equation (7.20), our distributed conservation of
mass principle. Using the Leibnitz integral rule, we differentiate (7.20) with respect to time
on our moving frame R(t),

d
dt

[∫
R(t)

wiudx
]
=
∫

R(t)

(
∂ (wiu)

∂ t
+

∂

∂x
(wiuẋ)

)
dx. (7.21)

7.2 1-D competition-aggregation-diffusion in a two phase model 187

We impose the condition that the basis functions wi move with the domain. Hence the basis
functions also have velocity ẋ. By analogy with advection, we write,

∂wi

∂ t
+ ẋ

∂wi

∂x
= 0 (7.22)

hence
d
dt

[∫
R(t)

wiudx
]
=
∫

R(t)
wi

(
∂u
∂ t

+
∂

∂x
(uẋ)

)
dx (7.23)

or
d
dt

[∫
R(t)

wiudx
]
−
∫

R(t)
wi

∂

∂x
(uẋ)dx =

∫
R(t)

wi
∂u
∂ t

dx. (7.24)

In terms of θ̇ and the constants ci, equation (7.24) becomes

ciθ̇ −
∫

R(t)
wi

∂

∂x
(uẋ)dx =

∫
R(t)

wi
∂u
∂ t

dx. (7.25)

We introduce the velocity potential φ defined by

ẋ =
∂φ

∂x
(7.26)

so that
ciθ̇ −

∫
R(t)

wi
∂

∂x

(
u

∂φ

∂x

)
dx =

∫
R(t)

wi
∂u
∂ t

dx (7.27)

or, after integration by parts

ciθ̇ +
∫

R(t)
u

∂wi

∂x
∂φ

∂x
dx−

[
uwi

∂φ

∂x

]
∂R(t)

=
∫

R(t)
wi

∂u
∂ t

dx. (7.28)

This equation holds for either of our species. We now construct a form unique to each
species. We make the species specific definitions of total mass (cf. equation (7.18)),

θ1(t) =
∫ m(t)

α

u1 dx (7.29)

θ2(t) =
∫

β

m(t)
u2 dx. (7.30)

The weak forms are then

c1iθ1(t) =
∫ m(t)

α

wiu dx (7.31)

7.2 1-D competition-aggregation-diffusion in a two phase model 188

c2iθ2(t) =
∫

β

m(t)
wiu dx. (7.32)

Then equation (7.28) becomes, for species 1,

c1i θ̇1 +
∫ m(t)

α

u1
∂wi

∂x
∂φ

∂x
dx−

[
u1wi

∂φ

∂x

]m(t)

α

=
∫ m(t)

α

wi
∂u1

∂ t
dx. (7.33)

We now substitute (7.16). We obtain

c1i θ̇1 +
∫ m(t)

α

u1
∂wi

∂x
∂φ

∂x
dx−

[
u1wi

∂φ

∂x

]m(t)

α

=
∫ m(t)

α

δ1wi
∂ 2u1

∂x2 dx

−
∫ m(t)

α

wi
∂

∂x

(
u1

∂q1

∂x

)
dx+

∫ m(t)

α

wir1u1(A−au1) dx. (7.34)

Integration by parts on the right leads to

c1i θ̇1 +
∫ m(t)

α

u1
∂wi

∂x
∂φ

∂x
dx−

[
u1wi

∂φ

∂x

]m(t)

α

=−
∫ m(t)

α

δ1
∂wi

∂x
∂u1

∂x
dx+

[
wiδ1

∂u1

∂x

]m(t)

α

+
∫ m(t)

α

u1
∂wi

∂x
∂q1

∂x
dx−

[
wiu1

∂q1

∂x

]m(t)

α

+
∫ m(t)

α

wir1u1(A−au1) dx. (7.35)

We note the zero Neumann boundary conditions (7.11) on q1 and u1 at the external bound-
ary, and the Dirichlet boundary condition (7.12) on u1 at the interface. We also note the
fixed external boundaries which mean that ∂φ

∂x = 0 on α . These conditions mean that most
of the boundary terms in (7.35) are equal to zero. The remaining expression is

c1i θ̇1 +
∫ m(t)

α

u1
∂wi

∂x
∂φ

∂x
dx =−

∫ m(t)

α

δ1
∂wi

∂x
∂u1

∂x
dx+ wiδ1

∂u1

∂x

∣∣∣∣
m(t)

+
∫ m(t)

α

u1
∂wi

∂x
∂q1

∂x
dx+

∫ m(t)

α

wir1u1(A−au1) dx. (7.36)

Likewise, equation (7.33) becomes, for species 2,

c2i θ̇2 +
∫

β

m(t)
u2

∂wi

∂x
∂φ

∂x
dx−

[
u2wi

∂φ

∂x

]β

m(t)
=
∫

β

m(t)
wi

∂u2

∂ t
dx. (7.37)

7.2 1-D competition-aggregation-diffusion in a two phase model 189

After substitution of (7.17), equation (7.37) becomes

c2i θ̇2 +
∫

β

m(t)
u2

∂wi

∂x
∂φ

∂x
dx−

[
u2wi

∂φ

∂x

]β

m(t)
=
∫

β

m(t)
δ1wi

∂ 2u2

∂x2 dx

−
∫

β

m(t)
wiρ

∂

∂x

(
u2

∂q2

∂x

)
dx+

∫
β

m(t)
wir2u2(B−b∗u1) dx. (7.38)

Integration by parts on the right leads to

c2i θ̇2 +
∫

β

m(t)
u1

∂wi

∂x
∂φ

∂x
dx−

[
u2wi

∂φ

∂x

]β

m(t)
=−

∫
β

m(t)
δ2

∂wi

∂x
∂u2

∂x
dx+

[
wiδ2

∂u2

∂x

]β

m(t)

+
∫

β

m(t)
ρu2

∂wi

∂x
∂q2

∂x
dx−

[
wiρu2

∂q2

∂x

]β

m(t)
+
∫

β

m(t)
wir2u2(B−b∗u2) dx. (7.39)

After considering the boundary conditions (7.11) and (7.12) the remaining expression is

c2i θ̇2 +
∫

β

m(t)
u2

∂wi

∂x
∂φ

∂x
dx =−

∫
β

m(t)
δ1

∂wi

∂x
∂u2

∂x
dx− wiδ2

∂u2

∂x

∣∣∣∣
m(t)

+
∫

β

m(t)
ρu2

∂wi

∂x
∂q2

∂x
dx+

∫
β

m(t)
wir2u2(B−b∗u2) dx. (7.40)

We may solve (7.36) and (7.40) for φ given q1, q2, θ1 and θ2. This will allow us to subse-
quently recover the nodal velocities. To obtain q1 and q2, we refer to equations (7.5) and
(7.6), (7.9) and (7.10). Combining (7.9) and (7.5) we obtain

A−au1 −bu2 = ε1
∂ 2q1

∂x2 +q1. (7.41)

We write this in weak form, using a weight function wi to give

∫
α

β

wiAdx−
∫

α

β

wiau1 dx−
∫

α

β

wibu2 dx =
∫

α

β

wiε1
∂ 2q1

∂x2 dx+
∫

α

β

wiq1 dx. (7.42)

After integration by parts on the right-hand side we obtain

∫
α

β

wiA dx−
∫

α

β

wiau1 dx−
∫

α

β

wibu2 dx= ε1

[
wi

∂q1

∂x

]α

β

−ε1

∫
α

β

∂wi

∂x
∂q1

∂x
dx+

∫
α

β

wiq1 dx.

(7.43)

7.2 1-D competition-aggregation-diffusion in a two phase model 190

We have zero flux external boundary conditions (7.11), so the first term on the right is equal
to zero, leaving

∫
α

β

wiA dx−
∫

α

β

wiau1 dx−
∫

α

β

wibu2 dx =−ε1

∫
α

β

∂wi

∂x
∂q1

∂x
dx+

∫
α

β

wiq1 dx. (7.44)

Equation (7.44) will give us q1 in terms of u1 and u2. In exactly the same way, from (7.10)
and (7.6) we obtain∫

α

β

wiB dx−
∫

α

β

wia∗u1 dx−
∫

α

β

wib∗u2 dx =−ε2

∫
α

β

∂wi

∂x
∂q2

∂x
dx+

∫
α

β

wiq2 dx (7.45)

which gives us q2 in terms of u1 and u2. In order to solve (7.36) and (7.40) we will also
require the rate of change of mass, θ̇ , for each species. Equations (7.36) and (7.40) will
provide these. Recalling that ∑i cpi = 1, we sum over all i in equation (7.36) and obtain

∑
i

c1i θ̇1 +
∫ m(t)

α
∑

i

[
u1

∂wi

∂x
∂φ

∂x

]
dx =−

∫ m(t)

α
∑

i

[
δ1

∂wi

∂x
∂u1

∂x

]
dx+∑

i
wiδ1

∂u1

∂x

∣∣∣∣
m(t)

+
∫ m(t)

α
∑

i

[
∂wi

∂x
∂q1

∂x

]
dx+

∫ m(t)

α
∑

i
[wir1u1(A−au1)] dx (7.46)

or

θ̇1 = δ1
∂u1

∂x

∣∣∣∣
m(t)

+
∫ m(t)

α

r1u1(A−au1) dx (7.47)

and for the sum over equation (7.36)

θ̇2 =− δ2
∂u2

∂x

∣∣∣∣
m(t)

+
∫

β

m(t)
r2u2(B−b∗u2) dx. (7.48)

We are now in a position to solve (7.36) and (7.40) for φ . We do not have an expression
for the interface velocity that is neatly compatible with being an integral part of (7.36)
and (7.40), as was possible with the Stefan model. However, we may obtain the interface
velocity and then impose it as a Dirichlet condition on the velocity solution ẋ. At a given
time step tN we write the interface condition (7.13) in a finite difference form

µδ1

uN
1m(t)

−uN
1m−1

xm(t)− xN
m−1

=−δ2

uN
2m+1

−uN
2m(t)

xN
m+1 − xm(t)

(7.49)

where the subscript m denotes the interface node, and the xi are the spatial co-ordinates of
the nodes. We have that um(t) = 0, and so we can obtain an expression for the position of

7.2 1-D competition-aggregation-diffusion in a two phase model 191

the interface node, xm(t),

xN+1
m(t) =

(µδ1uN
1m−1

xN
m+1 +δ2uN

2m+1
xN

m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)
. (7.50)

We use the finite differences approximation to calculate the interface velocity

ẋN+1
m(t) =

(
(µδ1uN

1m−1
xN

m+1+δ2uN
2m+1

xN
m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)
− xN

m(t)

)
dt

. (7.51)

This velocity can then be imposed on the interface when the velocity is recovered from φ .
We return to our definition of φ (7.26), now written in distributed form,

∫
R(t)

wiẋdx =
∫

R(t)
wi

∂φ

∂x
dx. (7.52)

This system of equations can be solved for ẋ. For the interface itself, we calculate the
new position by correcting the interface condition at the prior time step. We obtain the
resultant interface velocity by solving equation (7.51) with u = 0 imposed at the interface
node. Having obtained ẋ, we move the domain using Euler integration. We also update θ1

and θ2 from θ̇1 (7.47) and θ̇2 (7.48) using the same time integration procedure. We may
now recover u. We determine the constant partial masses c1i and c2i from (7.31) and (7.32)
and the initial conditions. We obtain, for t = 0

c1i =
1

θ1(0)

∫ m(t)

α

wi(x,0)u1(x,0) dx (7.53)

c2i =
1

θ2(0)

∫
β

m(t)
wi(x,0)u2(x,0) dx. (7.54)

Having obtained c1i and c2i and having moved the weight functions wi with the domain, we
also use (7.31) and (7.32) to recover u1 and u2. To do so we require θ1 and θ2 (from (7.47)
and (7.48)) at the new time step. For species 1, u1 can be recovered from

∫ m(t)

α

wi(x, t)u1(x, t) dx = c1iθ1(t) (7.55)

7.2 1-D competition-aggregation-diffusion in a two phase model 192

and u2 can be recovered from

∫
β

m(t)
wi(x, t)u2(x, t) dx = c2iθ2(t). (7.56)

In each case the Dirichlet condition that u = 0 at the interface is strongly imposed, and the
Neumann condition at the external boundaries is also strongly imposed.

7.2.1 Construction of the finite element form

We solve this system for u using a finite element method. The boundary conditions are var-
ied, but are all compatible with using the modified piecewise linear weight functions wi = W̃i

of 4.2.1, with a modified weight function at each external boundary, and also at each side
of the interface. We have Dirichlet boundary conditions on the velocity (equation (7.52)) at
both the interface and external boundaries. For the values of u1 and u2, given by equations
(7.55) and (7.56), we have a Dirichlet condition at the interface only. At the external bound-
aries we have Neumann boundary conditions instead. However, all these conditions are
compatible with strongly imposing the boundary values in the manner that results from the
use of modified weight functions. This avoids the need to transfer between basis function
definitions via the ALE equation, as we did for the Fisher’s equation in Chapter 4. This is
helpful because that particular step introduces an extra source of numerical error. We there-
fore strongly impose the values of the velocity and u1 and u2 at the interfaces and external
boundaries. The values of u1 and u2 at the external boundaries can be transferred from their
adjacent nodes because we have the Neumann condition.

We must begin by solving for q1 and q2. To construct the finite element form for this
step, we select appropriate weight and basis functions. We do not require modified weight
functions at this stage for several reasons. Firstly, we do not have Dirichlet conditions to
impose on q1 and q2. Secondly, the solution of q1 and q2 is not part of the conservation-
based ALE equation, so there is no necessity to use the same basis functions across both
systems. Thirdly, in solving for q1 and q2 we treat the domain as a single system rather than
separating into species specific domains, so the interface requires no special consideration.
We define a weighted linear combination of the standard basis functions Wi for each of our
variables. We do not repeat those definitions here but instead refer to Appendix A, equations

7.2 1-D competition-aggregation-diffusion in a two phase model 193

(A.1) to (A.4). We substitute those approximations into equation (7.44) and obtain

∫
β

α

WiA dx−a
N+1

∑
j=0

[∫
β

α

WiWj dx
]

U1 j −b
N+1

∑
j=0

[∫
β

α

WiWj dx
]

U2 j

=−ε1

N+1

∑
j=0

[∫
β

α

∂Wi

∂x
∂Wj

∂x
dx
]

Q1 j +
N+1

∑
j=0

[∫
β

α

WiWjdx
]

Q1 j . (7.57)

In terms of our mass and stiffness matrices M and K, equation (7.57) can be rewritten as

MA−aMU1 −bMU2 =−ε1KQ1 +MQ1. (7.58)

Here A is a vector with all entries equal to the resource parameter A. This construction is
helpful should we later wish to incorporate spatial variability in resources. We may rewrite
(7.58) in terms of Q1 j

Q1 = (−ε1K +M)−1M(A−aU1 −bU2). (7.59)

For species 2 we make the same piecewise linear approximations. We substitute the approx-
imations (A.1) to (A.4) defined in Appendix A into (7.45) and obtain

∫
β

α

WiB dx−a∗
N+1

∑
j=0

[∫
β

α

WiWj dx
]

U1 j −b∗
N+1

∑
j=0

[∫
β

α

WiWj dx
]

U2 j

=−ε2

N+1

∑
j=0

[∫
β

α

∂Wi

∂x
∂Wj

∂x
dx
]

Q2 j +
N+1

∑
j=0

[∫
β

α

WiWjdx
]

Q2 j (7.60)

which is, in matrix form

Q2 = (−ε2K +M)−1M(B−a∗U1 −b∗U2). (7.61)

Where B is a vector with all entries equal to the resource parameter B. Equations (7.59) and
(7.61) can be solved to obtain Q1 and Q2. We now tackle the solution of u1 and u2, and must
use the modified weight functions W̃i of Chapter 4 (figure 4.4) to do so. This will allow us
to impose a velocity on the interface and on the external boundaries without violating the
principle of relative conservation of mass. We take the relevant approximations from (A.1)
to (A.14) and make substitutions as necessary into equations (7.36) and (7.40). We obtain

7.2 1-D competition-aggregation-diffusion in a two phase model 194

the following form for equation (7.36),

c̃1i θ̇1 + ∑
j∈Z1

[∫ m(t)

α

U1
∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈Z1

[∫ m(t)

α

δ1
∂W̃i

∂x
∂Wj

∂x
dx
]

U1 j

+ W̃iδ1
∂U1

∂x

∣∣∣∣
m(t)

+ ∑
j∈Z1

[∫ m(t)

α

U1
∂W̃i

∂x
∂Wj

∂x
dx
]

Q1 j

+ ∑
j∈Z1

[∫ m(t)

α

r1AW̃iWj dx
]

U1 j −
∫ m(t)

α

r1aW̃iU2
1 dx (7.62)

where Zi is the set of nodes populated by species i. Likewise equation (7.40) becomes

c̃2i θ̇2 + ∑
j∈Z2

[∫
β

m(t)
U2

∂W̃i

∂x
∂Wj

∂x
dx
]

Φ j =− ∑
j∈Z2

[∫
β

m(t)
δ2

∂W̃i

∂x
∂Wj

∂x
dx
]

U2 j

− W̃iδ2
∂U2

∂x

∣∣∣∣
m(t)

+ ∑
j∈Z2

[∫
β

m(t)
ρU2

∂W̃i

∂x
∂Wj

∂x
dx
]

Q2 j

+ ∑
j∈Z2

[∫
β

m(t)
W̃iWjr2Bdx

]
U2 j −

∫
β

m(t)
r2b∗W̃iU2

2 dx. (7.63)

In matrix form (7.62) can be expressed as

K̃(U1) Φ1 = f̃ 1. (7.64)

Here K̃(U1) is the weighted stiffness matrix of Chapter 3, section 3.1.2 constructed with the
modified weight functions W̃i, and Φ1 is the vector containing the values of Φ1 j , and f̃ 1 is a
vector with entries f̃1i given by

f̃1i =− c̃1i θ̇1 − ∑
j∈Z1

[∫ m(t)

α

δ1
∂W̃i

∂x
∂Wj

∂x
dx
]

U1 j + W̃iδ1
∂U1

∂x

∣∣∣∣
m(t)

+ ∑
j∈Z1

[∫ m(t)

α

U1
∂W̃i

∂x
∂Wj

∂x
dx
]

Q1 j + ∑
j∈Z1

[∫ m(t)

α

r1AW̃iWj dx
]

U1 j (7.65)

−
∫ m(t)

α

r1aW̃iU2
1 dx. (7.66)

For species 2, (7.63) can be expressed as

K̃(U2)Φ2 = f̃ 2 (7.67)

7.2 1-D competition-aggregation-diffusion in a two phase model 195

with the vector f̃ 2 containing entries f̃2i given by

f̃2i =− c̃2i θ̇2 − ∑
j∈Z2

[∫
β

m(t)
δ2

∂W̃i

∂x
∂Wj

∂x
dx
]

U2 j − W̃iδ2
∂U2

∂x

∣∣∣∣
m(t)

+ ∑
j∈Z2

[∫
β

m(t)
ρU2

∂W̃i

∂x
∂Wj

∂x
dx
]

Q2 j + ∑
j∈Z2

[∫
β

m(t)
W̃iWjr2Bdx

]
U2 j (7.68)

−
∫

β

m(t)
r2b∗W̃iU2

2 dx. (7.69)

The nonlinear terms
∫ m(t)

α
r1aW̃iU2

1 dx and
∫ β

m(t) r2b∗W̃iU2
2 dx can be calculated exactly using

Simpson’s rule (4.64). The matrix systems can be solved to obtain Φ1 and Φ2. Noting that
the weighted stiffness matrices K̃(U1) and K̃(U2) are singular, we have an infinity of solu-
tions available. We therefore set Φ = 0 at any one node to obtain a single solution. Note that
the expressions for θ̇1 (7.47) and θ̇2 (7.48) can be obtained and solved in a straightforward
manner by simply summing over the rows of (7.64) and (7.67).
To recover Ẋ , we use the approximation

Ẋ(x, t) =
N

∑
j=1

Ẋ j(t)Wj(x, t). (7.70)

We substitute this into equation (7.52) to obtain the finite element form

∑
j∈Z1∪Z2

[∫
R(t)

W̃iWjdx
]

Ẋ j =
N

∑
j=1

[∫
R(t)

W̃i
∂Wj

∂x
dx
]

Φ j. (7.71)

In matrix form this is
M̃Ẋ = B̃Φ. (7.72)

We impose ẋ = 0 on the external boundaries, and we impose the interface velocity obtained
from (7.51). The use of modified basis functions means that we will not interfere with the
conservation of mass by doing so. We may then solve (7.72) for the remaining velocities.

Time integration

We move the nodes using Euler’s scheme. Using the same scheme, we update the values of
θ1 and θ2 from the values of θ̇1 (7.47) and θ̇2 (7.48).

7.2 1-D competition-aggregation-diffusion in a two phase model 196

Obtaining the solution U1 and U2

We may now recover the values of U1 and U2. We can obtain U on the updated grid from the
relative conservation of mass equations (7.55) and (7.56). After substitution for the finite
element approximation, in matrix form these are

M̃1U1 = c̃1i
θ1(t) (7.73)

and
M̃2U2 = c̃2i

θ2(t). (7.74)

At the initial set up, we set t = 0 and use (7.73) and (7.74) to find the vectors c̃1i
and c̃2i

.
Then for each subsequent time step we move the mesh and recalculate θ1(t) and θ2(t). On
the updated grid, we calculate the mass matrix M̃(t). We can then obtain the updated U1

and U2 from inversions of (7.73) and (7.74) respectively.

Algorithm 15

The finite element solution of the competition problem given by equations (7.3) and (7.4)
and with an interface condition given by (7.13) on the moving mesh in 1-D therefore consists
of the following steps. We obtain the constant values of c̃1i

and c̃2i
from (7.73) and (7.74),

and for each time step:

1. Find the velocity biases Q1 and Q2 from (7.59) and (7.61);

2. Find the velocity potential by solving equations (7.64) and (7.67) for the Φ j(t) values;

3. Find the internal node velocity by solving equation (7.72) for the Ẋ j(t) values;

4. Find the interface node velocity by solving equation (7.51) for the Ẋm(t) value;

5. Generate the co-ordinate system at the next time-step t + dt by solving (3.18) using
Euler’s approximation

6. Update the values of θ1 and θ2 from the values of θ̇1 (7.47) and θ̇2 (7.48);

7. Find the solutions U1(t + dt) and U2(t + dt) by solving the conservation equations
(7.73) and (7.74).

7.2 1-D competition-aggregation-diffusion in a two phase model 197

Fig. 7.2 Comparison of L2 errors in the solution of algorithm 15. We observe an order of
convergence of p ≈ 2 in space, with time steps held constant at ∆t = 10−7.

7.2.2 Results

We find that the model is robust and the oscillations commonly found in finite element
implementations, which are caused by the central differences approach, are minimal. Figure
7.2 shows convergence in the solution of approximately second order in space, as ∆x → 0
and with time steps held constant at ∆t = 10−7. This estimate is obtained by comparison of
the result generated by each grid spacing with a high-resolution (641 node) result, since no
absolute result is available. This order of convergence is as reported for the similar method
in [8].

We are able to observe all the varied effects of diffusion, logistic growth or decline and
aggregation, and we are also able to generate sensible interface movement. We use the pa-
rameters from [29] in order to be confident that the choices are sensible. We are able to
make comparisons between the aggregating and non aggregating two-phase models. Figure
7.3 shows a non-aggregating model (with the q values set to zero); this is exactly equiva-

7.2 1-D competition-aggregation-diffusion in a two phase model 198

lent to the competition diffusion model in Chapter 5 (5.2). With this choice of parameters,
we observe no interface movement in the non aggregating model. The only development
observed is in the shape of the solution near the interface, which is driven by diffusion.
However, when we introduce aggregation, both species attempt to move away from the in-
terface, resulting in a differently shaped solution (figure 7.6). We can see from figure 7.4
that the survivability index E1 for species 1 is raised near the interface due to low popula-
tion density, but then is very low in the domain occupied by species 2. We see in figure
7.5 how the q value takes a longer range average, so that despite the low population den-
sity near the interface, species 1 has an ideal velocity away from the interface. In figure
7.6 we observe that as both species vacate the area close to the interface, the changed in-
terface dynamics favour species 2 and the interface moves to the left. Interestingly, in this
particular scenario the increased ’intelligence’ of the individuals does not help their longer
term survival, because these additional movements cause mild overcrowding which offsets
the reduced rate of competition at the interface. This suggests that the parameters given by
[29] are potentially not the most representative, when this full model with the interface is
constructed. With the large number of parameters at our disposal, the range of dynamics we
could produce is limitless and very varied. We argue therefore that this model could be of
real use to biologists in the field studying any spatially segregated competition system.

7.2 1-D competition-aggregation-diffusion in a two phase model 199

Fig. 7.3 The two phase competition model without aggregation at t = 0.24, using the pa-
rameters from Grindrod. Time steps are every 0.01s. We see stable population densities as
the external boundaries, and an evolving shape to the interface.

7.2 1-D competition-aggregation-diffusion in a two phase model 200

Fig. 7.4 The survivability index E1(u1,u2) for the two phase model with aggregation. The
survivability index E1(u1,u2) is constructed so that the low populations around the interface
are making it an attractive location for species 1.

7.2 1-D competition-aggregation-diffusion in a two phase model 201

Fig. 7.5 The velocity bias q1 for the two phase model with aggregation. The survivability
index E1(u1,u2) is constructed so that the low populations around the interface are making it
an attractive location for species 1, but the local averaging effect in q1 allows the individuals
to feel longer range effects. The domain populated by species 2 is unattractive enough to
override the low population draw, and so species one will move to the left. We see this here
in the negative gradient in q1.

7.3 2-D competition-aggregation-diffusion in a two phase model 202

Fig. 7.6 Population decline in the two phase model with aggregation at t = 0.16. Time steps
are every 0.01s. We observe decreased movement towards the interface compared to the
non-aggregating model. We see initially higher population densities a short distance away
from the interface as the individuals resist moving towards it. The resulting overcrowding
reduces overall survival rates, for this scenario.

7.3 2-D competition-aggregation-diffusion in a two phase
model

We now consider the two dimensional version of the combination model in two phases,
which is of additional interest because of the aggregating behaviour possible in 2-D. Re-
minding ourselves of the driving PDEs, we have

∂u1

∂ t
= δ1∇

2u1 −∇(u1∇q1)+ ru1E1 t > 0,x ∈ Ω1(t) (7.75)

and
∂u2

∂ t
= δ2∇

2u2 −ρ∇(u2∇q2)+ ru2E2 t > 0,x ∈ Ω2(t). (7.76)

7.3 2-D competition-aggregation-diffusion in a two phase model 203

We consider a fixed domain Ω bounded externally by Se, but with Ω divided into two subdo-
main classes Ω1 and Ω2 which are separated by the moving interface(s) Sm. The boundaries
S1 and S2 for each subdomain are therefore formed from Sm(t) together with a time-variable
section of Se. We also have the survival behaviour given by

E1 = A−au1 −bu2 (7.77)

E2 = B−a∗u1 −b∗u2. (7.78)

The aggregating behaviour is defined by the PDEs

ε1∇
2q1 +q1 = E1 (7.79)

ε2∇
2q2 +q2 = E2. (7.80)

We have the Neumann boundary conditions given by

∇u · n̂ = 0 x ∈ Se

∇q · n̂ = 0 x ∈ Se (7.81)

u = 0 x ∈ Sm.

The high competition limit defined by Hilhorst [31] is given in 2-D as

u1 = 0 x ∈ Ω2

u2 = 0 x ∈ Ω1. (7.82)

The interface condition is taken from [31], and is

µδ1∇u1 · n̂1 = δ2∇u2 · n̂2 x ∈ Sm (7.83)

where n̂k is defined to be the outward pointing normal for the related species k, so that at the
interface between species n̂1 =−n̂2. As in the 1-D case, µ , the interspecies competition rate
is given by µ = aa∗/bb∗. We use parameter choices from [29] which are given in Chapter
6, section 6.2.3. For the initial condition, we once more turn to the results of Chapter 6. We
take the steady state solution of a shared domain model, and then introduce an asymmetry

7.3 2-D competition-aggregation-diffusion in a two phase model 204

in the distribution of species 1. This asymmetry gives us the opportunity to explore the two
dimensional nature of the model. These initial conditions are shown in figure 7.7.

Fig. 7.7 Initial conditions for the 2-D competition-aggregation-diffusion model with two
phases and a moving interface. We have introduced an asymmetry in the distribution of
species 1 in order to fully explore the 2-D space.

The driving Lotka-Volterra based equations (7.75) and (7.76) are first rewritten in weak
form, incorporating the weight function wi,∫

Ω1(t)
wi

∂u1

∂ t
dΩ =

∫
Ω1(t)

δ1wi∇
2u1 dΩ−

∫
Ω1(t)

wi∇(u1∇q1) dΩ+
∫

Ω1(t)
wir1u1E1 dΩ

(7.84)

∫
Ω2(t)

wi
∂u2

∂ t
dΩ =

∫
Ω2(t)

δ2wi∇
2u2 dΩ−

∫
Ω2(t)

wiρ∇(u2∇q2) dΩ+
∫

Ω2(t)
wir2u2E2 dΩ.

(7.85)
We take the definitions for E1 (7.77) and E2 (7.78), and substitute them into (7.85). The
terms containing b and a∗ are equal to zero because we have no overlap between species.

7.3 2-D competition-aggregation-diffusion in a two phase model 205

We obtain ∫
Ω1(t)

wi
∂u1

∂ t
dΩ =

∫
Ω1(t)

δ1wi∇
2u1dΩ−

∫
Ω1(t)

wi∇ · (u1∇q1) dΩ

+
∫

Ω1(t)
wir1u1(A−au1) dΩ (7.86)

and ∫
Ω2(t)

wi
∂u2

∂ t
dΩ =

∫
Ω2(t)

δ2wi∇
2u2 dΩ−

∫
Ω2(t)

wiρ∇ · (u2∇q2) dΩ

+
∫

Ω2(t)
wir2u2(B−b∗u2) dΩ. (7.87)

We define the total population of a species k as θk, given by

θk(t) =
∫

Ωk(t)
uk dΩ (7.88)

where Ωk(t) is the moving domain inhabited by that species. Since mass is not conserved in
general, we will use the concept conserving relative mass. We write a relative conservation
principle in terms of θ , introducing the weight function wi,

1
θk(t)

∫
Ωk(t)

wiuk dΩ = cki (7.89)

or ∫
Ωk(t)

wiuk dΩ = ckiθ(t) = cki

∫
Ωk(t)

uk dΩ. (7.90)

Here the constant cki is determined by the choice of wi, which should be chosen to provide
a partition of unity. A distributed conservation of mass principle is now given by equation
(7.90). Note that

d
dt

[∫
Ωk(t)

wiuk dΩ

]
= cki θ̇k. (7.91)

We differentiate (7.90) with respect to time using the Leibnitz integral rule on our moving
frame Ωk(t) to give

d
dt

[∫
Ωk(t)

wiuk dΩ

]
=
∫

Ωk(t)

(
∂ (wiuk)

∂ t
+∇ · (wiukẋ)

)
dΩ. (7.92)

We require that the basis functions wi move with the domain. Hence the basis functions also

7.3 2-D competition-aggregation-diffusion in a two phase model 206

have velocity ẋ and therefore
∂wi

∂ t
+ ẋ ·∇wi = 0. (7.93)

We obtain
d
dt

[∫
Ωk(t)

wiuk dΩ

]
=
∫

Ωk(t)
wi

(
∂uk

∂ t
+∇ · (ukẋ)

)
dΩ (7.94)

or
d
dt

[∫
Ωk(t)

wiuk dΩ

]
−
∫

Ωk(t)
wi∇ · (ukẋ) dΩ =

∫
Ωk(t)

wi
∂uk

∂ t
dΩ. (7.95)

We write this in terms of θ̇k and the constants cki to give

cki θ̇k −
∫

Ωk(t)
wi∇ · (ukẋ) dΩ =

∫
Ωk(t)

wi
∂uk

∂ t
dΩ. (7.96)

We introduce the velocity potential φ , defined by

ẋ = ∇φ (7.97)

so that
cki θ̇k −

∫
Ωk(t)

wi∇ · (uk∇φ) dΩ =
∫

Ωk(t)
wi

∂uk

∂ t
dΩ (7.98)

or, after integration by parts

cki θ̇k +
∫

Ωk(t)
uk∇wi ·∇φ dΩ−

∫
Sk(t)

ukwi∇φ · n̂k dS =
∫

Ωk(t)
wi

∂uk

∂ t
dΩ. (7.99)

We turn our attention to each species individually. For species 1 equation (7.99) becomes

c1i θ̇1 +
∫

Ω1(t)
u1∇wi ·∇φ dΩ−

∫
S1(t)

u1wi∇φ · n̂1 dS =
∫

Ω1(t)
wi

∂u1

∂ t
dΩ. (7.100)

We substitute (7.86) to obtain

c1i θ̇1 +
∫

Ω1(t)
u1∇wi ·∇φ dΩ−

∫
S1(t)

u1wi∇φ · n̂1 dS =
∫

Ω1(t)
δ1wi∇

2u1 dΩ

−
∫

Ω1(t)
wi∇ · (u1∇q1)dΩ+

∫
Ω1(t)

wir1u1(A−au1) dΩ. (7.101)

7.3 2-D competition-aggregation-diffusion in a two phase model 207

Integration by parts on the right leads to

c1i θ̇1 +
∫

Ω1(t)
u1∇wi ·∇φ dΩ−

∫
S1(t)

u1wi∇φ · n̂1 dS =

−
∫

Ω1(t)
δ1∇wi ·∇u1dΩ+

∫
S1(t)

δ1wi∇u1 · n̂1 dS+
∫

Ω1(t)
u1∇wi ·∇q1 dΩ

−
∫

S1(t)
wiu1∇q1 · n̂1 dS+

∫
Ω1(t)

wir1u1(A−au1) dΩ. (7.102)

We now consider the boundary conditions. We have zero Neumann boundary conditions
(7.81) on q1 and u1 at the external boundary, and the Dirichlet boundary condition (7.82) on
u1 at the interface Sm. We also have fixed external boundaries, which mean that ∇φ = 0 on
Se. Certain of the boundary terms in (7.102) are therefore equal to zero along the external
boundaries, and other boundary terms are equal to zero everywhere. We can reduce (7.102)
to

c1i θ̇1 +
∫

Ω1(t)
u1∇wi ·∇φdΩ =−

∫
Ω1(t)

δ1∇wi ·∇u1 dΩ+
∫

Sm(t)
wiδ1∇u1 · n̂1 dS

+
∫

Ω1(t)
u1∇wi ·∇q1 dΩ+

∫
Ω1(t)

wir1u1(A−au1) dΩ. (7.103)

For species 2, we begin once more with equation (7.99). This becomes

c2i θ̇2 +
∫

Ω2(t)
u2∇wi ·∇φ dΩ−

∫
S2(t)

u2wi∇φ · n̂2 dS =
∫

Ω2(t)
wi

∂u2

∂ t
dΩ. (7.104)

We substitute (7.87) to obtain

c2i θ̇2 +
∫

Ω2(t)
u2∇wi ·∇φdΩ−

∫
S2(t)

u2wi∇φ · n̂2 dS =
∫

Ω2(t)
δ2wi∇

2u2dΩ

−
∫

Ω2(t)
wiρ∇ · (u2∇q2) dΩ+

∫
Ω2(t)

wir2u2(B−b∗u2) dΩ. (7.105)

Integration by parts on the right leads to

c2i θ̇2 +
∫

Ω2(t)
u2∇wi ·∇φ dΩ−

∫
S2(t)

u2wi∇φ · n̂2 dS =

−
∫

Ω2(t)
δ2∇wi ·∇u2dΩ+

∫
S2(t)

wiδ2∇u2 · n̂2 dS+
∫

Ω2(t)
ρu2∇wi ·∇q2 dΩ

+
∫

S2(t)
wiρu2∇q2 · n̂2 dS+

∫
Ω2(t)

wir2u2(B−b∗u2) dΩ. (7.106)

7.3 2-D competition-aggregation-diffusion in a two phase model 208

After considering the boundary conditions (7.81) and (7.82) the remaining expression is

c2i θ̇2 +
∫

Ω2(t)
u1∇wi ·∇φ dΩ =−

∫
Ω2(t)

δ2∇wi ·∇u2dΩ+
∫

Sm(t)
wiδ2∇u2 · n̂2 dS

+
∫

Ω2(t)
ρu2∇wi ·∇q2 dΩ+

∫
Ω2(t)

wir2u2(B−b∗u2) dΩ. (7.107)

If we have a given q1, q2, θ1 and θ2, we may solve (7.103) and (7.107) for φ . This will
allow us to subsequently recover the nodal velocities. In order to obtain q1 and q2, we refer
to equations (7.79) and (7.80), (7.77) and (7.78). Combining (7.77) and (7.79) we obtain

A−au1 −bu2 = ε1∇
2q1 +q1. (7.108)

We write this in weak form, using a weight function wi to give∫
Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ =
∫

Ω

wiε1∇
2q1 dΩ+

∫
Ω

wiq1 dΩ. (7.109)

After integration by parts on the right-hand side we obtain∫
Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ

= ε1

∫
Se

wi∇q1 · n̂1 dS− ε1

∫
Ω

∇wi ·∇q1 dΩ+
∫

Ω

wiq1 dΩ. (7.110)

The first term on the right hand side is equal to zero due to the zero flux external boundary
conditions (7.81), resulting in∫

Ω

wiA dΩ−
∫

Ω

wiau1 dΩ−
∫

Ω

wibu2 dΩ =−ε1

∫
Ω

∇wi ·∇q1dΩ+
∫

Ω

wiq1 dΩ. (7.111)

Equation (7.111) will give us q1 in terms of u1 and u2. In exactly the same way, from (7.78)
and (7.80) we obtain∫

Ω

wiB dΩ−
∫

Ω

wia∗u1 dΩ−
∫

Ω

wib∗u2 dΩ =−ε2

∫
Ω

∇wi ·∇q2 dΩ+
∫

Ω

wiq2 dΩ

(7.112)
which gives us q2 in terms of u1 and u2. We note that in order to solve (7.103) and (7.107)
we also require the rate of change of mass, θ̇ , for each species. This can be obtained by
summing over all wi equations (7.103) and (7.107) as appropriate. With a choice of wi

forming a partition of unity, and recalling that ∑i cpi = 1, we obtain for the sum over all wi

7.3 2-D competition-aggregation-diffusion in a two phase model 209

in equation (7.103),

∑
i

c1i θ̇1 +
∫

Ω1(t)
∑

i
[u1∇wi ·∇φ] dΩ =

−
∫

Ω1(t)
∑

i
[δ1∇wi ·∇u1] dΩ+

∫
Sm(t)

∑
i

wiδ1∇u1 · n̂1 dS

+
∫

Ω1(t)
∑

i
[∇wi ·∇q1] dΩ+

∫
Ω1(t)

∑
i
[wir1u1(A−au1)] dΩ (7.113)

or
θ̇1 =

∫
Sm(t)

δ1∇u1 · n̂1 dS+
∫

Ω1(t)
r1u1(A−au1) dΩ (7.114)

and for the sum over equation (7.107)

θ̇2 =
∫

Sm(t)
δ2∇u2 · n̂2 dS+

∫
Ω2(t)

r2u2(B−b∗u2) dΩ. (7.115)

We are now in a position to solve (7.103) and (7.107) for φ , and hence recover the nodal
velocities ẋ. However, we will also require a velocity for the interface which will need to be
recovered from (7.83) using a separate numerical approximation. The method is similar to
the 1-D version. For each point on the interface m for which we require a velocity, we take
a 1-D cross-section across the interface. The plane of the cross section is the plane defined
by the interface normal n̂1 (or its opposite, n̂2) at the point of interest, and the vertical
axis ẑ (see figure 7.9). We may then obtain the interface velocity from a finite differences
approximation of (7.83). We begin by rewriting (7.83) with a common normal n̂1, defined as
the normal to the interface that points from species 1 to species 2. Equation (7.83) becomes

µδ1∇u1 · n̂1 =−δ2∇u2 · n̂1. (7.116)

Along the line n̂1 we write, for a given time step tN , the finite difference form

µδ1

(
uN

1m
−uN

1m−1

xm −xN
m−1

)
· n̂1 =−δ2

(
u2N

m+1
−uN

2m

xN
m+1 −xm

)
· n̂1 (7.117)

where the subscript m denotes the interface, and the xi are the spatial co-ordinates of points
i along m. We have that um = 0, and so we can obtain an expression for the position of the
interface node, xm,

xN+1
m · n̂1 =

(
(µδ1uN

1m−1
xN

m+1 +δ2uN
2m+1

xN
m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)

)
· n̂1. (7.118)

7.3 2-D competition-aggregation-diffusion in a two phase model 210

Note that the point under consideration only has a velocity determined in the direction n̂1,
and so we will constrain its movement to that vector only. We use the finite differences
approximation to calculate the interface velocity

xN+1
m · n̂1 =

(
(µδ1uN

1m−1
xN

m+1+δ2uN
2m+1

xN
m−1)

(µδ1uN
1m−1

+δ2uN
2m+1

)
−xN

m

)
· n̂1

dt
. (7.119)

Note that for the solution of (7.119) we require a known solution u at a known position x
a short distance either side of the interface (positions m+1 and m−1). These are obtained
by calculating a spline interpolation through u at a set distance away from the interface. This
distance is chosen to be less than the smallest expected node spacing. For the purposes of
this experimental implementation we have chosen 1/10 of the initial (regular) grid spacing.
The spline interpolation is cubic and is performed in three stages (see figure 7.8) .

1. The lines of nodes running parallel to the interface are considered. A cubic spline is
used to interpolate values of u along the adjacent three rows of nodes on either side of
the interface.

2. The normal to the interface at a selected node is considered. Discrete values of u along
this normal are assigned from the intersections with the interpolated parallel rows.

3. A second cubic spline is used to interpolate values of u along this normal to the inter-
face. The value of u at the set distance from the interface is thus approximated.

Figure 7.9 shows the lines (red) for which values of u need to be calculated. The points
requiring u to be approximated through this method are defined by the intersection of these
red lines with the normal to the interface at every interface node.

7.3 2-D competition-aggregation-diffusion in a two phase model 211

Fig. 7.8 Diagram showing positions of cubic splines. Green lines are splines through nodes
adjacent to the interface. Green spots are values extracted using those splines for positions
along the normal to the interface. A second spline through the green spots allows the re-
quired value (purple spot) to be approximated.

Fig. 7.9 Diagram showing how the interface condition is calculated in 2-D. The blue plane is
the plane in which the calculation is performed. The purple spots are interpolated positions
and values of u. The central spot is a point on the interface which may only move in the
normal direction given by the vector n̂1.

We calculate the velocity at any point on the interface using (7.119). The velocities
elsewhere (and not on the interface) are recovered from φ . We obtain this velocity field

7.3 2-D competition-aggregation-diffusion in a two phase model 212

from the distributed form of the definition of φ (7.97), which is∫
Ωk(t)

wiẋdΩ =
∫

Ωk(t)
wi∇φ dΩ (7.120)

which we can solve for ẋ with the interface velocity strongly imposed. Having obtained ẋ,
we move the domain and together with it, all the weight functions wi. We also update θ1

and θ2 from θ̇1 (7.114) and θ̇2 (7.115). We may now recover u on the modified domain.
Using the initial conditions, we calculate the constant partial mass fractions c1i and c2i from
(7.89). We obtain, for t = 0

c1i =
1

θ1(0)

∫
Ω1

wi(x,0)u1(x,0) dΩ (7.121)

c2i =
1

θ2(0)

∫
Ω2

wi(x,0)u2(x,0) dΩ. (7.122)

We also use (7.89) to recover u1 and u2 on the new domain. To do so we require θ1 and θ2

from (7.114) and (7.115) at the new time step. For species 1, u1 can be recovered from∫
Ω1(t)

wi(x, t)u1(x, t) dΩ = c1iθ1(t) (7.123)

and u2 can be recovered from∫
Ω2(t)

wi(x, t)u2(x, t) dΩ = c2iθ2(t). (7.124)

Exactly as in the 1-D case, the Dirichlet conditions prescribing that u = 0 at the interface are
strongly imposed, and the Neumann conditions at the external boundaries are also strongly
imposed.

7.3.1 Construction of the finite element form

We solve this system for u using a finite element method. We choose modified basis func-
tions at both internal and external boundaries; the argument for that choice is identical to
the argument for the same choice in the 1-D case so we will not repeat it here. Instead we
refer to section 7.2.1 for the detailed reasoning. As in the 1-D case we are not required to
transfer between basis systems. We use the 2-D modified piecewise linear weight functions
wi = W̃i described in Chapter 4 (figure 4.11), and we strongly impose the values of both the
velocity and of u1 and u2 at the interfaces and external boundaries. The values of u1 and u2

7.3 2-D competition-aggregation-diffusion in a two phase model 213

at the external boundaries can be approximated from their near neighbours because we have
Neumann conditions in place.

Before we are able to solve for u1 and u2, we require a finite element approximation
to obtain a solution for q1 and q2 as the first step. We define an approximation to each of
our variables in terms of the standard basis functions Wi. We do not require modified basis
functions at this stage for the same reasons given for the 1-D case. We do not repeat those
definitions here but instead refer to Appendix A, equations (A.1) to (A.4). We substitute
those approximations into equation (7.111) and obtain

∫
Ω

WiA dΩ−a
N

∑
j=1

[∫
Ω

WiWj dΩ

]
U1 j −b

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U2 j

=−ε1

N

∑
j=1

[∫
Ω

∇Wi ·∇WjdΩ

]
Q1 j +

N

∑
j=1

[∫
Ω

WiWj dΩ

]
Q1 j . (7.125)

We may write (7.125) in terms of our mass and stiffness matrices M and K to obtain

MA−aMU1 j
−bMU2 j

= ε1KQ1 j
+MQ1 j

. (7.126)

which we may rewrite in terms of Q1 j

Q1 = (−ε1K +M)−1M(A−aU1 −bU2). (7.127)

Here A is a vector with all entries equal to A. In exactly the same manner, we substitute the
approximations (A.1) to (A.4) defined in Appendix A into (7.112) and obtain

∫
Ω

WiB dΩ−a∗
N

∑
j=1

[∫
Ω

WiWj dΩ

]
U1 j −b∗

N

∑
j=1

[∫
Ω

WiWj dΩ

]
U2 j (7.128)

=−ε2

N

∑
j=1

[∫
Ω

∇Wi ·∇Wj dΩ

]
Q2 j +

N

∑
j=1

[∫
Ω

WiWj dΩ

]
Q2 j (7.129)

which is, in matrix form

Q2 = (−ε2K +M)−1M(B−a∗U1 −b∗U2), (7.130)

where B is a vector with all entries equal to B. We can now recover Q1 and Q2 by solving
equations (7.127) and (7.130). We now consider the ALE system which will allow us to
obtain U1 and U2. For this system we must use the modified weight functions W̃i of Chapter 4

7.3 2-D competition-aggregation-diffusion in a two phase model 214

(figure 4.11). This will allow us to obey the principle of relative conservation of mass and yet
impose a velocity on the interface and on the external boundaries. We take equations (7.103)
and (7.107) and substitute into them the approximations (A.1) to (A.14) as necessary. We
obtain the following, with all variables now expressed in terms of their piecewise linear
approximations. Equation (7.103) becomes

c̃1i θ̇1 + ∑
j∈Z1

[∫
Ω1(t)

U1∇W̃i ·∇Wj dΩ

]
Φ j =− ∑

j∈Z1

[∫
Ω1(t)

δ1∇W̃i ·∇Wj dΩ

]
U1 j

+
∫

Sm(t)
W̃iδ1∇U1 · n̂1 dS+ ∑

j∈Z1

[∫
Ω1(t)

U1∇W̃i ·∇Wj dΩ

]
Q1 j

+ ∑
j∈Z1

[∫
Ω1(t)

r1AW̃iWj dΩ

]
U1 j −

∫
Ω1(t)

r1aW̃iU2
1 dΩ (7.131)

and equation (7.107) becomes

c̃2i θ̇2 + ∑
j∈Z2

[∫
Ω2(t)

U2∇W̃i ·∇Wj dΩ

]
Φ j =− ∑

j∈Z2

[∫
Ω2(t)

δ2∇W̃i∇Wj dΩ

]
U2 j

+
∫

Sm(t)
W̃iδ2∇U2 · n̂2 dS+ ∑

j∈Z2

[∫
Ω2(t)

ρU2∇W̃i ·∇Wj dΩ

]
Q2 j

+ ∑
j∈Z2

[∫
Ω2(t)

W̃iWjr2B dΩ

]
U2 j −

∫
Ω2(t)

r2b∗W̃iU2
2 dΩ (7.132)

where Zi is the set of nodes populated by species i. In matrix form (7.131) can be expressed
as

K̃(U1) Φ1 = f̃ 1 (7.133)

where K̃(U1) is the weighted stiffness matrix of Chapter 3, section 3.1.3, constructed with
the modified basis functions W̃i, and Φ1 is the vector containing the values of Φ1 j , and f̃ 1 is
a vector with entries f̃1i given by

f̃1i =−c̃1i θ̇1 − ∑
j∈Z1

[∫
Ω1(t)

δ1∇W̃i ·∇Wj dΩ

]
U1 j

+
∫

Sm(t)
W̃iδ1∇U1 · n̂1 dS+ ∑

j∈Z1

[∫
Ω1(t)

U1∇W̃i ·∇Wj dΩ

]
Q1 j

+ ∑
j∈Z1

[∫
Ω1(t)

r1AW̃iWj dΩ

]
U1 j −

∫
Ω1(t)

r1aW̃iU2
1 dΩ. (7.134)

7.3 2-D competition-aggregation-diffusion in a two phase model 215

Similarly, (7.132) can be expressed as

K̃(U2)Φ2 = f̃ 2 (7.135)

with the vector f̃ 2 containing entries f̃2i given by

f̃2i =−c̃2i θ̇2 − ∑
j∈Z2

[∫
Ω2(t)

δ2∇W̃i∇Wj dΩ

]
U2 j

+
∫

Sm(t)
W̃iδ2∇U2 · n̂2 dS+ ∑

j∈Z2

[∫
Ω2(t)

ρU2∇W̃i ·∇Wj dΩ

]
Q2 j

+ ∑
j∈Z2

[∫
Ω2(t)

W̃iWjr2B dΩ

]
U2 j −

∫
Ω2(t)

r2b∗W̃iU2
2 dΩ. (7.136)

The nonlinear terms in (7.134) and (7.136) can be calculated using Gaussian quadrature (see
Appendix B). We can now obtain Φ1 and Φ2 by solving these matrix systems. Since the
weighted stiffness matrices K̃(U1) and K̃(U2) are singular, we have an infinity of solutions
available and we set ∇Φ · n̂k = 0 at all external boundary nodes to obtain a single solution,
where n̂k is the normal to the boundary for either species k ∈ [1,2]. Note that summing over
the rows of (7.133) and (7.135) will give the expressions for θ̇1 (7.114) and θ̇2 (7.115).
To recover Ẋ, we use the approximation

Ẋ(x, t) = ∑
j∈Z1∪Z2

Ẋ j(t)Wj(x, t). (7.137)

To obtain the finite element form, we substitute this into equation (7.120),

∑
j∈Z1∪Z2

[∫
Ωk(t)

W̃iWj dΩ

]
Ẋ j = ∑

j∈Z1∪Z2

[∫
Ωk(t)

W̃i∇Wj dΩ

]
Φ j. (7.138)

In matrix form this is
M̃Ẋ = B̃Φ. (7.139)

We impose ẋ.n̂k = 0 on the external boundaries. We impose the interface velocity obtained
from (7.119). Since we are using modified basis functions we will not interfere with the
conservation of relative mass by doing so. We solve (7.139) for the remaining velocities.

7.3 2-D competition-aggregation-diffusion in a two phase model 216

Time integration

We move the nodes using Euler’s scheme. Using the same scheme, we update the values of
θ1 and θ2 from the values of θ̇1 (7.114) and θ̇2 (7.115).

Obtaining the solution U1 and U2

We may now recover the values of U1 and U2. The relative conservation of mass equations
(7.123) and (7.124) allow us to obtain U on the updated grid. We substitute the familiar
piecewise linear approximations (A.1) and (A.2) into (7.123) and (7.124), and obtain the
matrix forms

M̃1U1 = c̃1i
θ1(t) (7.140)

and
M̃2U2 = c̃2i

θ2(t). (7.141)

We begin by setting t = 0 and using (7.140) and (7.141) to find the constants c̃1i and c̃2i .
Then for each subsequent time step we proceed as follows. Having moved the grid, we take
θ1 and θ2 at the new time step. We calculate the mass matrix M̃ for the updated grid. We
can then obtain the updated U1 and U2 from inversions of (7.140) and (7.141) respectively.

Algorithm 16

The finite element solution of the competition problem given by equations (7.75) and (7.76)
and with an interface condition given by (7.83) on the moving mesh in 2-D therefore consists
of the following steps. We obtain the constant values of c1i and c2i from (7.140) and (7.141),
and for each time step:

1. Find the velocity biases Q1(t) and Q2(t) from (7.127) and (7.130);

2. Find the velocity potential by solving equations (7.133) and (7.135) for the Φ j(t)

values;

3. Find the internal node velocity by solving equation (7.139) for the Ẋ j(t) ;

4. Find the interface node velocity by solving equation (7.119) for the Ẋm(t) value;

5. Generate the co-ordinate system at the next time-step t + dt by solving (3.18) using
Euler’s approximation;

7.3 2-D competition-aggregation-diffusion in a two phase model 217

6. Update the values of θ1(t + dt) and θ2(t + dt) from the values of θ̇1(t) (7.114) and
θ̇2(t) (7.115);

7. Find the solutions U1(t + dt) and U2(t + dt) by solving the conservation equations
(7.140) and (7.141).

7.3.2 Results

The model is implemented in MATLAB on a square domain with 33 nodes along each side.
We are able to produce plausible behaviour. We are able to observe the moving interface ex-
hibiting different behaviour at different points along its length, according to the population
dynamics either side (see figure 7.10). The interface moves according to condition derived
from the high competition limit, and the population densities adjacent to the interface are
subject to significant increases or decreases because of this motion. Unfortunately, we run
into the problem of internal node tangling at the point when more interesting behaviour
begins to emerge. Figures 7.11 and 7.12 shown the state of the system shortly before this
occurs. This is likely to be a fundamental weakness of this complex implementation of
the MMFEM. The MMFEM keeps the node order and connectivity intact, no matter how
much movement is occurring, and so cannot easily cope with highly distorted grids. In this
particular MMFEM, we have an interface condition which is only indirectly related to the
dynamics of the majority of the system. The interface is free to make large and sudden
movnements because the calculation of its velocity takes place separately to that of the ve-
locities elsewhere. This freedom has the potential to have a negative impact on the stability
of the rest of the domain. It may be possible to find a set of parameters which are more
stable. It is certainly possible to run a steady state system but it is of little interest. How-
ever, to make useful progress from the point we have reached, the sensible approach would
be to further research the interface condition from both an ecological and a mathematical
perspective. In this way it may be possible to find a construction that could be completely
integrated into the MMFEM, in the manner demonstrated for the Stefan model of Chapter
5.

7.3.3 Further work

For the 2-D, two phase, MMFEM model of Lotka-Volterra competition with diffusion and
aggregation, the implementation suffers from node tangling. This may be addressed by some
of the existing methods of easing tangling, such as adding a viscosity term or introducing

7.3 2-D competition-aggregation-diffusion in a two phase model 218

repellant forces between nodes. Alternatively, a smarter way of incorporating the interface
condition may help. From an ecological perspective, there may be a different, simpler
interface condition that we could use, which may ease this difficulty.

Fig. 7.10 The solution of the 2-D competition-aggregation-diffusion model in two phases
with a moving interface at t = 2 × 10−5. The sum of both species is plotted, although
they are segregated completely with the population consisting of only species 1 to the left
of the interface and only species 2 to the right of the interface. We observe heterogenous
movement of the interface, which no longer aligns with y = 0. We observe a small building
of population density adjacent to it (near y = 0.05,x = −0.2) as a result. The parameters
used are δ1 = δ2 = 0.01, k1 = 1, k2 = 1/3, r1 = r2 = 1, A = 1.5, B = 2, a = 1, b = 2, a∗ = 3
b∗ = 1, and ε1 = ε2 = 0.001.

7.3 2-D competition-aggregation-diffusion in a two phase model 219

Fig. 7.11 The solution of the 2-D competition-aggregation-diffusion model in two phases
with a moving interface at t = 2.3×10−5. The heterogenous movement of the interface can
be clearly seen in this plan view. The parameters used are δ1 = δ2 = 0.01, k1 = 1, k2 = 1/3,
r1 = r2 = 1, A = 1.5, B = 2, a = 1, b = 2, a∗ = 3 b∗ = 1, and ε1 = ε2 = 0.001.

7.3 2-D competition-aggregation-diffusion in a two phase model 220

Fig. 7.12 The solution of the 2-D competition-aggregation-diffusion model in two phases
with a moving interface at t = 2.3×10−5. The heterogenous movement of the interface has
produced three distinct areas of high population density. Node tangling occurs soon after.
The parameters used are δ1 = δ2 = 0.01, k1 = 1, k2 = 1/3, r1 = r2 = 1, A = 1.5, B = 2,
a = 1, b = 2, a∗ = 3 b∗ = 1, and ε1 = ε2 = 0.001.

Chapter 8

Summary

We will now summarize the material covered in this thesis and discuss the next steps for this
research.

In Chapters 1 and 2, we introduced the concept of moving mesh methods and outlined
the various approaches. We discussed the history and development of a variety of velocity-
based methods which formed a pathway towards the moving mesh finite element method.
We then introduced the Lotka-Volterra competition equations.

In Chapter 3, we outlined, in general terms, the process for applying the MMFEM in
either 1 or 2 dimensions. We examined the existing body of work performed using the
MMFEM, looking at both classic examples and others that require modifications to the
method.

In Chapter 4, we began to demonstrate new applications for moving mesh methods.
We illustrated the equidistribution method with a model of a column of water undergoing
wind sheer at the surface, and which is also subject to Coriolis forces. We then illustrated
the MMFEM, applying it to the Fisher’s equation of blow-up or combustion. We built this
model in both 1 and 2 dimensions, and with both a free and fixed boundary. We compared
the fixed boundary model to a finite difference implementation, and found that we were able
to resolve the blow up peak at a higher, narrower stage. For the free boundary case we used
modified basis functions, and considered how best to construct a stiffness matrix in terms of
the modified basis functions. For this model, we also made a switch between basis systems
using the ALE form. We found that we resolved a higher peak, but we lost accuracy in the
time at which the blow-up occurs. We also applied the MMFEM to the Keller-Segel model,
which has both a substrate and a reactant, building this model in 2-D. We found that the
accuracy of this model is dependent on the shapes of the triangles in the mesh, which is
determined by the initial node distribution. For the better node distributions, the MMFEM

222

outperforms a radially symmetric finite difference model, but for poorly distributed initial
grids the finite difference model is the better choice.

In Chapter 5, we examined moving interface models, or two phase models. We recon-
structed the MMFEM for the Stefan problem, and we introduced a simplification of the
method compared to the previous work. We were able to replicate the results given visually
in previous work. We then applied this method for the first time to a Lotka-Volterra com-
petition system with a high competition limit, so that the species are completely spatially
segregated. As far as we know this was the first attempt at a numerical model of this par-
ticular system. We used an interface condition based on this high competition limit, which
required a novel implementation. This is one of the most successful models in the thesis,
producing interesting and realistic behaviour in a very stable model. We were able to im-
plement the model with a wide variety of creative parameter combinations, and observed
various effects dominating in turn as the populations evolve through time.

In Chapter 6, we turned again to population models, and in particular we examined the
introduction of an aggregating term to the Lotka-Volterra competition equations. We began
with a single species interacting with only itself, and built a MMFEM in 1 and 2 dimensions.
For the first time we were able to model the effects of the aggregation term in 2-D, and we
did so with a moving mesh. We then turned to systems with two competing species. We
built a non-moving, shared domain finite-element model in 2-D in order to understand the
behaviour of the system. The first model was a mass-conserving example. We then varied
the model to look at cases where the population is non-conservative, and also where we have
a change in the resource space. We were able to observe the development of the system from
a random dispersion of individuals, through to separate clusters containing a single species
each. In the conservative case, we saw that large and small groupings survived through to an
approximate steady state solution. By contrast in the non-conservative case, only the larger
groupings survived. At steady state these models produced segregated species separated
by an interface with approximately zero population density, which supports the conceptual
basis for developing a two-phase model for this system.

In Chapter 7, we combined the approaches and subject matter in chapters 5 and 6 into a
single population model. We used the two phase methodology from Chapter 5, including the
interface condition based on the high competition limit. Over the whole domain, we mod-
elled the aggregating behaviour from Chapter 6, which allows some intelligent determinism
by the individuals. We combined this together with the more traditional diffusion and logis-
tic behaviour of the standard Lotka-Volterra models within each phase. The 1-D implemen-
tation of this was successful. The 2-D implementation produced plausible behaviour, but

223

suffers from node tangling whenever more dynamic mesh movements are produced.
The potential exists for useful further work to extend the research in this thesis. In

particular, the population models and simulations in chapters 6 and 7 are novel, and are
also suitable for application to real-world situations. There are three useful dimensions for
further work.

• Validate existing models. It would be extremely interesting to compare the behaviour
of the models against an empirical data set. The models easily lend themselves to
adaptions in the sizes and shapes of the domains, alterations to the logistic terms
and of course changes to parameters, without the need for any further calculations.
This adaptability means there are a wide range of potential biological and ecological
systems which we could now test the models on, and a first priority would be to find
one or more data sets suitable for validating the model behaviour. A data set for
a species which shows competition-diffusion-aggregation behaviour (to validate the
new model in chapter 7) should be a particular aim of the search.

• Deploy existing models. The models in chapter 6 are also already suitable for tackling
certain questions, such as how changes in the resource space might alter behaviour.
For example, the impact could be modelled of a road or railway that divides a domain.

• Collaborate with domain experts. The further research should focus on collaboration
to understand the particular modelling requirements of real-world systems which can
be described in a similar manner to our model. The aim should be to understand
these requirements from both a mathematical and value perspective. The subsequent
development work should be in the direction of the research requirements of those
ecological systems which would most benefit from a study which has access to this
modelling capability.

Appendix A

Piecewise linear approximations

We make the following piecewise linear approximations in terms of the standard basis func-
tions Wi, which may be defined in 1 or 2 dimensions.

U1(x, t) =
N+1

∑
j=0

Wj(x, t)U1 j(t) (in 1D) U1(x, t) =
N

∑
j=1

Wj(x, t)U1 j(t) (in 2D)

(A.1)

U2(x, t) =
N+1

∑
j=0

Wj(x, t)U2 j(t) (in 1D) U2(x, t) =
N

∑
j=1

Wj(x, t)U2 j(t) (in 2D)

(A.2)

Q1(x, t) =
N+1

∑
j=0

Wj(x, t)Q1 j(t) (in 1D) Q1(x, t) =
N

∑
j=1

Wj(x, t)Q1 j(t) (in 2D)

(A.3)

Q2(x, t) =
N+1

∑
j=0

Wj(x, t)Q2 j(t) (in 1D) Q2(x, t) =
N

∑
j=1

Wj(x, t)Q2 j(t) (in 2D)

(A.4)

US(x, t) =
N+1

∑
j=0

Wj(x, t)US j(t) (in 1D) US(x, t) =
N

∑
j=1

Wj(x, t)US j(t) (in 2D)

(A.5)

225

UL(x, t) =
N+1

∑
j=0

Wj(x, t)UL j(t) (in 1D) UL(x, t) =
N

∑
j=1

Wj(x, t)UL j(t) (in 2D)

(A.6)

Φ(x, t) =
N+1

∑
j=0

Wj(x, t)Φ j(t) (in 1D) Φ(x, t) =
N

∑
j=1

Wj(x, t)Φ j(t) (in 2D)

(A.7)
with derivatives

∂U1

∂x
=

N+1

∑
j=0

∂Wj

∂x
U1 j (in 1D) ∇U1 =

N

∑
j=1

∇WjU1 j (in 2D) (A.8)

∂U2

∂x
=

N+1

∑
j=0

∂Wj

∂x
U2 j (in 1D) ∇U2 =

N

∑
j=1

∇WjU2 j (in 2D) (A.9)

∂Q1

∂x
=

N+1

∑
j=0

∂Wj

∂x
Q1 j (in 1D) ∇Q1 =

N

∑
j=1

∇WjQ1 j (in 2D) (A.10)

∂Q2

∂x
=

N+1

∑
j=0

∂Wj

∂x
Q2 j (in 1D) ∇Q2 =

N

∑
j=1

∇WjQ2 j (in 2D) (A.11)

∂US

∂x
=

N+1

∑
j=0

∂Wj

∂x
US j (in 1D) ∇US =

N

∑
j=1

∇WjUS j (in 2D) (A.12)

∂UL

∂x
=

N+1

∑
j=0

∂Wj

∂x
UL j (in 1D) ∇UL =

N

∑
j=1

∇WjUL j (in 2D) (A.13)

∂Φ

∂x
=

N+1

∑
j=0

∂Wj

∂x
Φ j (in 1D) ∇Φ =

N

∑
j=1

∇WjΦ j (in 2D) (A.14)

Appendix B

Gaussian quadrature

For a nonlinear term such as
fi =

∫
ωe

WiU2 dΩ (B.1)

we may write the contribution to fi from a triangular element ωe corresponding to the weight
function Wi as ∫

ωe

WiU2 dΩ =
∫

ωe

Wi

(
3

∑
j=1

U jWj

)2

dΩ. (B.2)

The right hand side may be evaluated using three point Gaussian quadrature. This is exact
for quadratics and has a higher order of accuracy than the approximation of any of the PDEs
in this thesis, so will not affect the numerical accuracy obtainable. Suitable sets of weights
and integration points are widely published, for example in [42]. A neat choice uses the
same piecewise linear weight functions Wi as are used throughout this work, those of figure
3.3. The locations of the integration points x1, x2 and x3 which correspond to these weights
are given in figure B.1. The values of U at these points can be calculated from the values of
U at the vertices xA, xB and xC as follows,

U1 =U(x1) =
2U(xA)

3
+

U(xB)

6
+

U(xC)

6
(B.3)

U2 =U(x2) =
U(xA)

6
+

2U(xB)

3
+

U(xC)

6
(B.4)

U3 =U(x3) =
U(xA)

6
+

U(xB)

6
+

2U(xC)

3
. (B.5)

227

Fig. B.1 Location of integration points x1, x2 and x3 for three point Gaussian quadrature for
triangle with vertices at xA, xB and xC. Each integration point lies 1/3 of the way along the
line connecting a vertex to the midpoint of the opposite edge.

228

Selecting piecewise linear weight function Wi =W1 centered at node A, we can now calculate
(B.2) as follows

∫
ωe

W1

(
3

∑
j=1

U jWj

)2

dΩ =
Areae

3

(
2U2

1
3

+
U2

2
6

+
U2

3
6

)
. (B.6)

Likewise, if Wi =W2 centered at node B, (B.2) becomes

∫
ωe

W2

(
3

∑
j=1

U jWj

)2

dΩ =
Areae

3

(
U2

1
6

+
2U2

2
3

+
U2

3
6

)
(B.7)

and if Wi =W3 centered at node C, (B.2) becomes

∫
ωe

W3

(
3

∑
j=1

U jWj

)2

dΩ =
Areae

3

(
U2

1
6

+
U2

2
6

+
2U2

3
3

)
. (B.8)

References

[1] Adjerid, S. and Flaherty, J. (1986). A moving finite element method with error esti-
mation and refinement for one-dimensional time dependent partial differential equations.
SIAM Journal on Numerical Analysis, 23(4):778–796.

[2] Baines, M. (1994). Moving finite elements. Oxford University Press, Inc.

[3] Baines, M. (1998). Grid adaptation via node movement. Applied Numerical Mathemat-
ics, 26(1):77–96.

[4] Baines, M. (2015). Explicit time-stepping for moving meshes. Journal of Mathematical
Study, 48(2):93–105.

[5] Baines, M., Hubbard, M., and Jimack, P. (2005). A moving mesh finite element al-
gorithm for the adaptive solution of time-dependent partial differential equations with
moving boundaries. Applied Numerical Mathematics, 54(3):450–469.

[6] Baines, M., Hubbard, M., and Jimack, P. (2011). Velocity-based moving mesh methods
for nonlinear partial differential equations. Communications in Computational Physics,
10(3):509–576.

[7] Baines, M., Hubbard, M., Jimack, P., and Jones, A. (2006). Scale-invariant moving
finite elements for nonlinear partial differential equations in two dimensions. Applied
Numerical Mathematics, 56(2):230–252.

[8] Baines, M., Hubbard, M., Jimack, P., and Mahmood, R. (2009). A moving-mesh finite
element method and its application to the numerical solution of phase-change problems.
Communications in Computational Physics, 6(3):595–624.

[9] Baines, M. and Lee, T. (2014). A large time-step implicit moving mesh scheme for
moving boundary problems. Numerical Methods for Partial Differential Equations,
30(1):321–338.

[10] Bird, N. (2014). A moving-mesh method for high order nonlinear diffusion. PhD
thesis, University of Reading, Department of Mathematics.

[11] Bonan, B., Baines, M., Nichols, N., and Partridge, D. (2016). A moving-point ap-
proach to model shallow ice sheets: a study case with radially symmetrical ice sheets.
The Cryosphere, 10(1):1–14.

[12] Brenner, S. and Scott, R. (2007). The mathematical theory of finite element methods,
volume 15. Springer Science & Business Media.

References 230

[13] Budd, C., Carretero-González, R., and Russell, R. (2005). Precise computations of
chemotactic collapse using moving mesh methods. Journal of Computational Physics,
202(2):463–487.

[14] Budd, C., Chen, J., Huang, W., and Russell, R. (1996). Moving mesh methods with
applications to blow-up problems for pdes. Pitman Research Notes in Mathematics Series
(1996), pages 1–18.

[15] Budd, C., Huang, W., and Russell, R. (2009). Adaptivity with moving grids. Acta
Numerica, 18:111–241.

[16] Budd, C. and Williams, J. (2006). Parabolic Monge–Ampère methods for blow-up
problems in several spatial dimensions. Journal of Physics A: Mathematical and General,
39(19):5425.

[17] Cao, W., Huang, W., and Russell, R. (2002). A moving mesh method based on the
geometric conservation law. SIAM Journal on Scientific Computing, 24(1):118–142.

[18] Cao, W., Huang, W., and Russell, R. (2003). Approaches for generating moving adap-
tive meshes: location versus velocity. Applied Numerical Mathematics, 47(2):121–138.

[19] Carlson, N. and Miller, K. (1998a). Design and application of a gradient-weighted
moving finite element code i: In one dimension. SIAM Journal on Scientific Computing,
19(3):728–765.

[20] Carlson, N. and Miller, K. (1998b). Design and application of a gradient-weighted
moving finite element code ii: In two dimensions. SIAM Journal on Scientific Computing,
19(3):766–798.

[21] Cole, S. (2009). Blow-up in a chemotaxis model using a moving mesh method. Mas-
ter’s thesis, University of Reading, Department of Mathematics.

[22] Conway, E. and Smoller, J. (1977). Diffusion and the predator-prey interaction. SIAM
Journal on Applied Mathematics, 33(4):673–686.

[23] Courant, R. (1994). Variational methods for the solution of problems of equilibrium
and vibrations. Lecture Notes in Pure and Applied Mathematics, pages 1–1.

[24] Edgington, M. (2011). Moving mesh methods for semi-linear problems. Master’s
thesis, University of Reading, Department of Mathematics.

[25] Ekman, V. W. (1905). On the influence of the earth’s rotation on ocean currents. Ark.
Mat. Astron. Fys., 2:1–53.

[26] Gilpin, M. (1973). Do hares eat lynx? The American Naturalist, 107(957):727–730.

[27] Griffiths, D. and Reed College (1999). Introduction to electrodynamics, volume 3.
prentice Hall Upper Saddle River, NJ.

[28] Grindrod, P. (1988). Models of individual aggregation or clustering in single and
multi-species communities. Journal of Mathematical Biology, 26(6):651–660.

References 231

[29] Grindrod, P. (1991). Patterns and waves: The theory and applications of reaction-
diffusion equations. Oxford University Press, USA.

[30] Heun, K. (1900). Neue methoden zur approximativen integration der differentialgle-
ichungen einer unabhängigen veränderlichen. Z. Math. Phys, 45:23–38.

[31] Hilhorst, D., Mimura, M., and Schätzle, R. (2003). Vanishing latent heat limit in
a stefan-like problem arising in biology. Nonlinear analysis: real world applications,
4(2):261–285.

[32] Huang, W., Ren, Y., and Russell, R. (1994). Moving mesh partial differential equations
(mmpdes) based on the equidistribution principle. SIAM Journal on Numerical Analysis,
31(3):pp. 709–730.

[33] Hubbard, M., Baines, M., and Jimack, P. (2009). Consistent Dirichlet boundary con-
ditions for numerical solution of moving boundary problems. Applied Numerical Math-
ematics, 59(6):1337–1353.

[34] Keller, E. and Segel, L. (1971). Model for chemotaxis. Journal of Theoretical Biology,
30(2):225–234.

[35] Larsson, S. and Sanz-Serna, J.-M. (1994). The behavior of finite element solutions
of semilinear parabolic problems near stationary points. SIAM journal on numerical
analysis, 31(4):1000–1018.

[36] Lee, T., Baines, M., and Langdon, S. (2015). A finite difference moving mesh method
based on conservation for moving boundary problems. Journal of Computational and
Applied Mathematics, 288:1–17.

[37] Lotka, A. (1920). Analytical note on certain rhythmic relations in organic systems.
Proceedings of the National Academy of Sciences, 6(7):410–415.

[38] Miller, K. and Miller, R. (1981). Moving finite elements. i. SIAM Journal on Numeri-
cal Analysis, 18(6):pp. 1019–1032.

[39] Miller, K. (1981). Moving finite elements. ii. SIAM Journal on Numerical Analysis,
18(6):pp. 1033–1057.

[40] Partridge, D. (2013). Numerical modelling of glaciers: Moving meshes and data as-
similation. PhD thesis, University of Reading, Department of Mathematics.

[41] Reddy, J. (1993). An introduction to the finite element method, volume 2. McGraw-Hill
New York.

[42] Reddy, J. (2014). An Introduction to Nonlinear Finite Element Analysis: with appli-
cations to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford.

[43] Reynolds, O., Brightmore, A., and Moorby, W. (1903). The sub-mechanics of the
universe, volume 3. University Press.

[44] Robertson, N. (2006). A moving Lagrangian mesh model of a lava dome volcano and
talus slope. Master’s thesis, University of Reading, Department of Mathematics.

References 232

[45] Strang, G. and Fix, G. (1973). An analysis of the finite element method, volume 212.
Prentice-hall Englewood Cliffs, NJ.

[46] Turner, M., Clough, R., Martin, H., and Topp, L. (1956). A technique for the precise
measurement of small fluid velocities. J. Fluid Mech, 23(9):805–823.

[47] Volterra, V. (1926). Fluctuations in the abundance of a species considered mathemati-
cally. Nature, 118:558–560.

[48] Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal
species living together. J. Cons. Int. Explor. Mer, 3(1):3–51.

[49] Weizhang, H. and Russell, R. (2010). Adaptive moving mesh methods, volume 174.
Springer Science & Business Media.

[50] Wells, B. (2004). A moving mesh finite element method for the numerical solution of
partial differential equations and systems. PhD thesis, University of Reading, Depart-
ment of Mathematics.

[51] Wells, B., Baines, M., and Glaister, P. (2005). Generation of arbitrary lagrangian–
eulerian (ale) velocities, based on monitor functions, for the solution of compressible
fluid equations. International Journal for Numerical Methods in Fluids, 47(10-11):1375–
1381.

[52] White, Jr, A. B. (1979). On selection of equidistributing meshes for two-point
boundary-value problems. SIAM Journal on Numerical Analysis, 16(3):472–502.

[53] Zhang, J. and Du, Q. (2009). Numerical studies of discrete approximations to the
allen-cahn equation in the sharp interface limit. SIAM Journal on Scientific Computing,
31(4):3042–3063.

	1 Introduction
	1.1 Mesh adaptation
	1.2 Scope of work
	1.3 Novel material

	2 Technical background
	2.1 Moving mesh methods
	2.1.1 Location-based methods
	2.1.2 Moving mesh partial differential equations (MMPDEs)
	2.1.3 Velocity-based methods
	2.1.4 Monitor functions

	2.2 Population Dynamics

	3 The MMFEM and existing applications
	3.1 The moving mesh finite element method
	3.1.1 Generating the weak forms of the PDE and associated equations
	3.1.2 Introducing the MMFEM framework in one dimension
	3.1.3 Introducing the MMFEM framework in two dimensions

	3.2 Existing applications of the MMFEM
	3.2.1 The porous medium equation
	3.2.2 A fourth order problem
	3.2.3 A Stefan problem
	3.2.4 Finite difference implementations

	3.3 Extensions to the MMFEM

	4 New applications for MMFEMs
	4.1 An Illustration of the Equidistribution Method: a vertical velocity profile
	4.1.1 Weak forms
	4.1.2 Equidistribution by arc length

	4.2 An Illustration of the Conservation Method: Fisher's Equation
	4.2.1 Fisher's Equation in 1D
	4.2.2 Fisher's Equation in 2D

	4.3 Keller-Segel model in 2D

	5 Moving interface models
	5.1 The two phase Stefan problem in 1D
	5.1.1 Construction of the finite element form
	5.1.2 Results

	5.2 The two phase model of competition-diffusion
	5.2.1 Construction of the finite element form
	5.2.2 Results

	6 Aggregation models
	6.1 Population clustering models for a single species
	6.1.1 1D population clustering model for a single species
	6.1.2 Construction of the finite element form
	6.1.3 2D population clustering model for a single species
	6.1.4 Construction of the finite element form
	6.1.5 Results

	6.2 Population clustering models for two competitive species
	6.2.1 The conservative population case
	6.2.2 Construction of the finite element form
	6.2.3 Results
	6.2.4 The non-conservative population case
	6.2.5 Construction of the finite element form
	6.2.6 Results
	6.2.7 A change in the resource space

	7 A combined model with a moving interface
	7.1 The two phase model of competition-diffusion-aggregation
	7.2 1-D competition-aggregation-diffusion in a two phase model
	7.2.1 Construction of the finite element form
	7.2.2 Results

	7.3 2-D competition-aggregation-diffusion in a two phase model
	7.3.1 Construction of the finite element form
	7.3.2 Results
	7.3.3 Further work

	8 Summary
	Appendix A Piecewise linear approximations
	Appendix B Gaussian quadrature
	References

