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Abstract

This work considers three main topics. In Chapter 2, we deal with König-Egerváry

graphs. We will give two new characterizations of König-Egerváry graphs as well as

prove a related lower bound for the independence number of a graph. In Chapter 3,

we study joint degree vectors (JDV). A problem arising from statistics is to determine

the maximum number of non-zero elements of a JDV. We provide reasonable lower

and upper bounds for this maximum number. Lastly, in Chapter 4 we study a

problem in chemical graph theory. In particular, we characterize extremal cases for

the number of maximal matchings in two linear polymers of chemical interest: the

polyspiro chains and benzenoid chains. We also enumerate maximal matchings in

several classes of these linear polymers and use the obtained results to determine the

asymptotic behavior of these matchings.
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Chapter 1

Introduction

This work concerns the results from [45, 13, 17], each addressing problems from

different areas within graph theory. In this chapter, we give a brief introduction to

the topics considered.

1.1 König-Egerváry Graphs

Every n-vertex, simple graph G satisfies α(G) + µ(G) ≤ n, where α(G) is the in-

dependence number of G and µ(G) is the matching number of G. We say G is a

König-Egerváry graph if α(G) + µ(G) = n. The classical König-Egerváry theorem

implies that every bipartite graph is a König-Egerváry graph, however, there are

non-bipartite graphs which are König-Egerváry as well. Therefore, it is natural to

question whether a characterization of König-Egerváry graphs exists.

Deming [14] was one of the first to work toward a characterization of König-

Egerváry graphs, however, his result only applied to graphs with a perfect matching.

Around the same time, Sterboul [47] produced an equivalent result.

Larson [34] gave a characterization of König-Egerváry graphs involving critical

indepedent sets. Jarden, Levit, and Mandrescu [27, 28] questioned whether a more

global characterization existed, involving unions and intersections of critical inde-

pendent sets. In Chapter 2, we address their questions as well as answer a related

conjecture on the independence number of a graph.
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1.2 Network Models

Degree sequences and degree distributions have been subjects of study in graph theory

and many other fields in the past decades. In particular, in social network analysis,

they have been shown to possess a great expressive power in representing and statis-

tically modeling networks.

Joint degree distributions are a generalization of degree distributions that deal

with higher order induced subgraphs than just the nodes of the graph. Different

networks may have the same degree distribution (e.g. scale-free distribution for social

and biological networks) but different assortativity (social networks are assortative

while biological networks are disassortative). Joint degree distributions capture the

assortativity of networks, therefore they are of interest to network scientists.

A special case of the joint degree distribution is the bidegree distribution, which

describes the probability that a randomly selected edge of the graph connects vertices

of degree i and j. However, for this model the general conditions for the existence of

the maximum likelihood estimation (MLE) are not known. As a sufficient condition,

it is known that when there is only one observation of the network available, so

the parameters corresponding to zeros on the bidegree vector are not estimable [43].

This motivates us to find the maximum possible number of non-zero elements on

the bidegree vector of a graph, and consequently the maximum number of estimable

parameters with an observed network. However, this problem seems quite challenging.

In Chapter 3, we provide reasonable lower and upper bounds for this maximum

number.

1.3 Chemical Graph Theory

Chemical graphs are the representation of the structural formula of a chemical com-

pound using graph theory. The atoms of a compound are represented by vertices

2



in a graph and the bonds between molecules represented by edges connecting the

vertices (hydrogen-depleted chemical graphs have the hydrogen vertices deleted). For

instance, benzene (molecular formula C6H6) is an important building block of carbon

nanostructures and is represented by cycle graph on six vertices.

Of particular interest in chemical graphs are enumerative and structural results

of matchings, sets of edges of a graph that do not share a vertex. Matchings most

commonly serve as a model for bonding in chemical molecules. This idea is largely

based on the work of the famous chemist August Kekulé. In 1865, Kekulé [32] claimed

the structure of benzene consisted of a six-membered ring of carbon atoms with

alternating single and double bonds. In the chemical graph of benzene, the edges in

a perfect matching model possible locations for the double bonds. In the chemical

literature, perfect matchings in graphs are also refered to as Kekulé structures.

There is a large and growing literature concerning perfect matchings and max-

imum matchings in chemical graphs, however, maximal matchings are less studied

than their maximum counterparts. Maximal matchings serve as models of adsorption

of dimers to a substrate or a molecule; when that process is random, it is clear that

the substrate can get ‘’clogged‘’ by a number of dimers way below the theoretical

maximum.

In Chapter 4, we consider the number of maximal matchings in two types of con-

nected, plane graphs with underlying hexagonal substructure: hexagonal chain cacti

(also known as polyspiro chains in the chemical literature) and benzenoid chains. In

both types of graphs, every face is a hexagon (except the unbounded one). We char-

acterize extremal structures for the number of maximal matchings in these graphs.

We also enumerate maximal matchings in several classes of these linear polymers and

use the obtained results to determine the asymptotic behavior of these matchings.

3



Chapter 2

König-Egerváry Theory

2.1 Introduction

The König-Egerváry theorem is a classical result in graph theory that states in a

bipartite graph, the size of a maximum matching equals the cardinality of a minimum

vertex cover. For a graph G, let α(G) be the independence number and µ(G) be the

matching number. It is well-known that any n-vertex graph G satisfies the inequality

α(G) + µ(G) ≤ n. (2.1)

The König-Egerváry theorem is equivalent to the statement that equality holds in

(2.1) for all bipartite graphs, however the converse of this statement is not true, see

G1 in Figure 2.2 for an example. In 1979, Deming [14] generalized the König-Egerváry

theorem by defining a König-Egerváry graph to be a graph G such that equality holds

in (2.1). In the same year, Sterboul [47] studied such graphs as well.

In this chapter G is a simple graph with vertex set V (G), |V (G)| = n, and

edge set E(G). The set of neighbors of a vertex v is NG(v) or simply N(v) if there

is no possibility of ambiguity. If X ⊆ V (G), then the set of neighbors of X is

N(X) = ∪u∈XN(u), G[X] is the subgraph induced by X, and Xc is the complement

of the subset X. For sets A,B ⊆ V (G), we use A\B to denote the vertices belonging

to A but not B. For such disjoint A and B we let (A,B) denote the set of edges such

that each edge is incident to both a vertex in A and a vertex in B.

A matching M is a set of pairwise non-incident edges of G. A matching of maxi-

mum cardinality is a maximum matching and µ(G) is the cardinality of such a maxi-
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mum matching. For a set A ⊆ V (G) and matching M , we say A is saturated by M if

every vertex of A is incident to an edge in M . For two disjoint sets A,B ⊆ V (G), we

say there is a matching M of A into B if M is a matching of G such that every edge

of M belongs to (A,B) and each vertex of A is saturated. An M-alternating path is

a path that alternates between edges in M and those not in M . An M-augmenting

path is an M -alternating path which begins and ends with an edge not in M .

A set S ⊆ V (G) is independent if no two vertices from S are adjacent. An

independent set of maximum cardinality is a maximum independent set and α(G) is

the cardinality of such a maximum independent set. For a graph G, let Ω(G) denote

the family of all its maximum independent sets, let

core(G) =
⋂
{S : S ∈ Ω(G)}, and corona(G) =

⋃
{S : S ∈ Ω(G)}.

See [36, 7, 44] for background and properties of core(G) and corona(G).

For a graph G and a set X ⊆ V (G), the difference of X is d(X) = |X| − |N(X)|

and the critical difference d(G) is max{d(X) : X ⊆ V (G)}. Zhang [52] showed that

max{d(X) : X ⊆ V (G)} = max{d(S) : S ⊆ V (G) is an independent set}. The set

X is a critical set if d(X) = d(G). The set S ⊆ V (G) a critical independent set

if S is both a critical set and independent. A critical independent set of maximum

cardinality is called a maximum critical independent set. Note that for some graphs

the empty set is the only critical independent set, for example odd cycles or complete

graphs. See [52, 9, 35, 34] for more background and properties of critical independent

sets.

Finding a maximum independent set is a well-known NP-hard problem. Zhang

[52] first showed that a critical independent set can be found in polynomial time.

Butenko and Trukhanov [9] showed that every critical independent set is contained

in a maximum independent set, thereby directly connecting the problem of finding a

critical independent set to that of finding a maximum independent set.

5



Returning to consider König-Egerváry graphs, we adopt the convention that the

empty graph K0, without vertices, is a König-Egerváry graph. In [34] it was shown

that König-Egerváry graphs are closely related to critical independent sets.

Theorem 2.1. [34] A graph G is König-Egerváry if, and only if, every maximum

independent set in G is critical.

Theorem 2.2. [34] For any graph G, there is a unique set X ⊆ V (G) such that all

of the following hold:

(i) α(G) = α(G[X]) + α(G[Xc]),

(ii) G[X] is a König-Egerváry graph,

(iii) for every non-empty independent set S in G[Xc], |N(S)| ≥ |S|, and

(iv) for every maximum critical indendent set I of G, X = I ∪N(I).

Larson in [35] showed that a maximum critical independent set can be found in poly-

nomial time. So the decomposition in Theorem 2.2 of a graph G into X and Xc is also

computable in polynomial time. Figure 2.1 gives an example of this decomposition,

where both the sets X and Xc are non-empty. Recall, for some graphs the empty set

is the only critical independent set, so for such graphs the set X would be empty. If

a graph G is a König-Egerváry graph, then the set Xc would be empty. We adopt

the convention that if K0 is empty graph, then α(K0) = 0.

G

a

b

c

d

e

f g

h

ij

Figure 2.1 G has maximum critical independent set I = {a, b, c}. Theorem 2.2
gives that X = {a, b, c, d, e} and Xc = {f, g, h, i, j}.

6



In [37, 28] the following concepts were introduced: for a graph G,

ker(G) =
⋂
{S : S is a critical independent set in G},

diadem(G) =
⋃
{S : S is a critical independent set in G}, and

nucleus(G) =
⋂
{S : S is a maximum critical independent set in G}.

However, the following result due to Larson allows us to use a more suitable definition

for diadem(G).

Theorem 2.3. [35] Each critical independent set is contained in some maximum

critical independent set.

For the remainder of this paper we define

diadem(G) =
⋃
{S : S is a maximum critical independent set in G}.

Note that if G is a graph where the empty set is the only critical indepedent set (in-

cluding the case G = K0, the empty graph), then ker(G), diadem(G), and nucleus(G)

are all empty. See Figure 2.2 for examples of the sets ker(G), diadem(G), and

nucleus(G).

G1

a

b

c

d

e

f

g

G2

a

b

c

d

e

f

g

h

i

j

Figure 2.2 G1 is a König-Egerváry graph with
ker(G1) = {a, b} ( core(G1) = nucleus(G1) = {a, b, d} and
diadem(G1) = corona(G1) = {a, b, c, d, f}. G2 is not a König-Egerváry graph and
has ker(G2) = core(G2) = {a, b} ( nucleus(G2) = {a, b, d} and
diadem(G2) = {a, b, c, d, f} ( corona(G) = {a, b, c, d, f, g, h, i, j}.
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In [27, 28], the following necessary conditions for König-Egerváry graphs were

given:

Theorem 2.4. [27] If G is a König-Egerváry graph, then

(i) diadem(G) = corona(G), and

(ii) | ker(G)|+ | diadem(G)| ≤ 2α(G).

Theorem 2.5. [28] If G is a König-Egerváry graph, then | nucleus(G)|+| diadem(G)| =

2α(G).

In [27] it was conjectured that condition (i) of Theorem 2.4 is sufficient for König-

Egerváry graphs and in [28] it was conjectured the necessary condition in Theorem

2.5 is also sufficient. The purpose of this paper is to affirm these conjectures by

proving the following new characterizations of König-Egerváry graphs.

Theorem 2.6. For a graph G, the following are equivalent:

(i) G is a König-Egerváry graph,

(ii) diadem(G) = corona(G), and

(iii) | diadem(G)|+ | nucleus(G)| = 2α(G).

The paper [27] gives an upper bound for α(G) in terms of unions and intersections

of maximum independent sets, proving

2α(G) ≤ | core(G)|+ | corona(G)|

for any graph G. It is natural to ask whether a similar lower bound for α(G) can

be formulated in terms of unions and intersections of critical independent sets. Jar-

den, Levit, and Mandrescu in [27] conjectured that for any graph G, the inequality

| ker(G)| + | diadem(G)| ≤ 2α(G) always holds. We will prove a slightly stronger

statement. By Theorem 2.3 we see that ker(G) ⊆ nucleus(G) holds implying that

| ker(G)| + | diadem(G)| ≤ | nucleus(G)| + | diadem(G)|. In section 2.4 we will prove

the following statement, resolving the cited conjecture:

8



Theorem 2.7. For any graph G,

| nucleus(G)|+ | diadem(G)| ≤ 2α(G).

It would be interesting to know whether the sets nucleus(G) and diadem(G), or their

sizes, can be computed in polynomial time.

2.2 Some structural lemmas

Here we prove several lemmas which will be needed in our proofs. Our results hinge

upon the structure of the set X as described in Theorem 2.2.

Lemma 2.8. Let I be a maximum critical independent set in G and set X = I∪N(I).

Then diadem(G) ∪N(diadem(G)) = X.

Proof. By Theorem 2.2 the set X is unique in G, that is, for any maximum critical

independent set S, X = S ∪N(S). Then diadem(G) = X follows by definition.

Lemma 2.9. Let I be a maximum critical independent set in G and set X = I∪N(I).

Then diadem(G) ⊆ diadem(G[X]) and nucleus(G[X]) ⊆ nucleus(G).

Proof. Let S be a maximum critical independent set in G. Using Theorem 2.2 we see

that S is a maximum independent set in G[X] and also G[X] is a König-Egerváry

graph. Then Theorem 2.1 gives that S must also be critical in G[X], which implies

that diadem(G) ⊆ diadem(G[X]).

Now let v ∈ nucleus(G[X]). Then v belongs to every maximum critical indepedent

set in G[X]. As remarked above, since every maximum critical independent set in G is

also a maximum critical independent set in G[X], then v belongs to every maximum

critical independent set in G. This shows that v ∈ nucleus(G) and nucleus(G[X]) ⊆

nucleus(G) follows.

Lemma 2.10. Suppose I is a non-empty maximum critical independent set in G,

set X = I ∪ N(I), let A = nucleus(G) \ nucleus(G[X]), and let S be a maximum
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independent set in G[X]. For S ′ ⊆ S ∩ N(A), if there exists A′ ⊆ A such that

N(A′) ∩ S ⊆ S ′, then |S ′| ≥ |A′|.

Proof. For S ′ ⊆ S ∩ N(A) suppose such an A′ exists. For sake of contradiction,

suppose that |S ′| < |A′|. Since A′ ⊆ nucleus(G), then A′ is an independent set. Also

since A′ ⊆ nucleus(G) ⊆ diadem(G), by Lemma 2.8 we have A′ ⊆ X. Furthermore,

since N(A′) ∩ S ⊆ S ′ then A′ ∪ (S \ S ′) is an independent set in G[X]. Now by

assumption |S ′| < |A′|, so A′ ∪ (S \ S ′) is an independent set in G[X] larger than S,

which cannot happen. Therefore we must have |S ′| ≥ |A′| as desired.

Lemma 2.11. Let I be a maximum critical independent set in G and set X =

I ∪N(I). Then

| nucleus(G)|+ | diadem(G)| ≤ | nucleus(G[X])|+ | diadem(G[X])|.

Proof. First note that if the set X is empty, then by Lemma 2.8 both sides of the

inequality are zero. So let us assume that X is non-empty. Now consider the set

A = nucleus(G)\nucleus(G[X]). If this independent set is empty, then nucleus(G) =

nucleus(G[X]) and there is nothing to prove since diadem(G) ⊆ diadem(G[X]) holds

by Lemma 2.9. If A is non-empty, for each v ∈ A there is some maximum independent

set S of G[X] which doesn’t contain v. Since S is a maximum independent set there

exists u ∈ N(v) ∩ S. Since v ∈ nucleus(G), then u does not belong to any maximum

critical independent set in G. Recall by Theorem 2.2 (ii) G[X] is a König-Egerváry

graph, so Theorem 2.1 gives that S is a maximum critical independent set in G[X]. It

follows that u ∈ diadem(G[X])\diadem(G), which shows each vertex in A is adjacent

to at least one vertex in diadem(G[X]) \ diadem(G).

Now we will show there is a maximum matching from A into diadem(G[X]) \

diadem(G) with size |A|. For sake of contradiction, suppose such a matching M has

less than |A| edges. Then there exists some vertex v ∈ A not saturated by M . By

the above, v is adjacent to some vertex u ∈ diadem(G[X]) \ diadem(G). Since M is
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maximum, u is matched to some vertex w ∈ A under M . Now let S be a maximum

independent set of G[X] containing u. We now restrict ourselves to the subgraph

induced by the edges (A ∩ N(S), S ∩ N(A)), noting this subgraph is bipartite since

both A ∩N(S) and S ∩N(A) are independent. In this subgraph, consider the set P

of all M -alternating paths starting with the edge vu. Note that all such paths must

start with the vertices v, u, then w. Also, such paths must end at either a matched

vertex in A ∩N(S) or an unmatched vertex in S ∩N(A).

We wish to show that there is some alternating path ending at an unmatched

vertex in S ∩N(A). For sake of contradiction, suppose all alternating paths end at a

matched vertex in A ∩N(S) and let V (P) denote the union of all vertices belonging

to such an alternating path. We aim to show this scenario contradicts Lemma 2.10.

Now clearly we must have N(V (P) ∩ A) ∩ S ⊆ V (P) ∩ S, else we could extend an

alternating path to any vertex in (N(V (P) ∩ A) ∩ S) \ (V (P) ∩ S). Also, since all

paths in P end at a matched vertex in A ∩ N(S), then every vertex of V (P) ∩ S is

matched under M , and such a situation should look as in Figure 2.3.

v

w u

V (P) ∩ A V (P) ∩ S

Figure 2.3 What the M -alternating paths could look like between V (P) ∩ A and
V (P) ∩ S, where solid lines represent matched edges in M and dotted lines
represent the unmatched edges.

From this it follows that |V (P) ∩ S| < |V (P) ∩ A|. The previous statements exactly

contradict Lemma 2.10, so there is some alternating path P ending at an unmatched

vertex x ∈ S ∩ N(A). This means that P is an M -augmenting path. A well-known
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theorem in graph theory states that a matching is maximum in G if, and only if,

there is no augmenting path [50]. So P being an M -augmenting path contradicts our

assumption that M is a maximum matching.

Therefore there is a matching M from A into diadem(G[X]) \ diadem(G). This

matching implies that | nucleus(G) \ nucleus(G[X])| ≤ | diadem(G[X]) \ diadem(G)|.

Since both nucleus(G[X]) ⊆ nucleus(G) and diadem(G) ⊆ diadem(G[X]) by Lemma

2.9, the lemma follows.

2.3 New characterizations of König-Egerváry graphs

Proof (of Theorem 2.6). First we prove (ii) ⇒ (i). Suppose that diadem(G) =

corona(G) holds and let I be a maximum critical independent set with X = I∪N(I).

We will use the decomposition in Theorem 2.2 to show that Xc must be empty and

hence, G = G[X] is a König-Egerváry graph. By Lemma 2.8 we have corona(G) =

diadem(G) ⊆ X, in other words every maximum independent set in G is con-

tained in X. This implies that |I| = α(G[X]) = α(G). Now by Theorem 2.2 (i),

α(G) = α(G[X]) + α(G[Xc]) showing that we must have α(G[Xc]) = 0. Now clearly

the result follows, since α(G[Xc]) = 0 implies that Xc must be empty.

To prove (iii)⇒ (i), again we will use the decomposition in Theorem 2.2 to show

that Xc must be empty and hence, G is a König-Egerváry graph. So suppose that

| diadem(G)| + | nucleus(G)| = 2α(G) and let I be a maximum critical independent

set in G with X = I ∪N(I). Lemma 2.11 implies that

2α(G) = | diadem(G)|+ | nucleus(G)| ≤ | diadem(G[X])|+ | nucleus(G[X])|.

Theorem 2.2 (ii) gives that G[X] is König-Egerváry , so by Corollary 2.5 we have

| diadem(G[X])| + | nucleus(G[X])| = 2α(G[X]) implying that α(G) ≤ α(G[X]). It

follows by Theorem 2.2 (i) we must have α(G) = α(G[X]), so again we know that

α(G[Xc]) = 0 which finishes this part of the proof.

12



The implications (i) ⇒ (ii) and (i) ⇒ (iii) are given in Theorem 2.4 and in

Theorem 2.5.

2.4 A bound on α(G)

Proof (of Theorem 2.7). Let I be a maximum critical independent set in G and X =

I ∪N(I). By Theorem 2.2 (ii), G[X] is a König-Egerváry graph so by Theorem 2.5

we have

| nucleus(G[X])|+ | diadem(G[X])| = 2α(G[X]) ≤ 2α(G).

Now by Lemma 2.11 we must have

| nucleus(G)|+ | diadem(G)| ≤ | nucleus(G[X])|+ | diadem(G[X])|

and the theorem follows.

Combining Theorem 2.7 and the inequality 2α(G) ≤ | core(G)| + | corona(G)|

proven in [27], the following corollary is immediate.

Corollary 2.12. For any graph G,

| nucleus(G)|+ | diadem(G)| ≤ 2α(G) ≤ | core(G)|+ | corona(G)|.

These upper and lower bounds are quite interesting. The fact that every critical

independent set is contained in a maximum independent set implies that diadem(G) ⊆

corona(G) for all graphs G. However, the graph G2 in Figure 2.2 has core(G2) (

nucleus(G2) while the graph G in Figure 2.1 has nucleus(G) = {a, b, c} ( core(G) =

{a, b, c, h}.

13



Chapter 3

Joint Degree Vectors

3.1 Introduction

Degree sequences and degree distributions have been subjects of study in graph theory

and many other fields in the past decades. In particular, in social network analysis,

they have been shown to possess a great expressive power in representing and statis-

tically modeling networks; see, e.g., [40] and [25].

Generally in this context, models are in exponential family form [4], and hence

known as exponential random graph models (ERGMs) [23, 49]. The degree sequences

and distributions, act as the sufficient statistics of ERGMs, i.e. the only information

that the ERGM gathers from an observed network. When the sufficient statistic is

the degree sequence of a network, the corresponding ERGM is known as the beta

model, properties of which have been extensively studied in the recent literature; see

[6], [10], and [42]. Degree distributions have also been used as sufficient statistics; see

[43].

Joint degree distributions are a generalization of degree distributions that deal

with higher order induced subgraphs than nodes of the graph. They are usually

represented in vector form and have been used as a class of network statistics. The

graphs generated from such distributions are called dK-graphs in the computer science

literature, where d indicates the number of nodes of the concerned subgraphs. The

class of dK-graphs was originally proposed by [39], formulated as a means to capture

increasingly refined properties of networks in a hierarchical manner based on higher
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order interactions among node degrees (see, e.g., [15]).

For the case of d = 2, the sufficient statistic of the ERGM is the special case of

the joint degree distribution, known as the bidegree distribution. This model has been

formalized in [43]. In essence, the bidegree distribution describes the probability that

a randomly selected edge of the graph connects vertices of degree k and l.

However, model selection for this model is quite challenging, and, as will be dis-

cussed in the next section, the general conditions for the existence of the maximum

likelihood estimation (MLE) are not known, and seem difficult to obtain. As a suffi-

cient condition, it is known that when there is only one observation of the network

available, the parameters corresponding to zeros on the bidegree vector are not es-

timable [43]. This motivates us to find the maximum possible number of non-zero

elements on the bidegree vector of a graph, and consequently the maximum number

of estimable parameters with an observed network.

On the other hand, [41], [2] and [46] introduced the joint degree matrix (JDM),

which is a non-normalized version of the bidegree vector in matrix form, i.e. the

elements of JDM represents the exact number of edges between a pair of vertices.

Conditions for a given matrix to be the JDM of a graph were provided in [41], [46]

and [12].

Finding the maximum possible number of non-zero elements of a JDM for a fixed

number of nodes seems quite challenging. In this paper we shall use the conditions in

[12] as well as other methods and constructions, in order to come up with reasonable

lower and upper bounds for this value.

The structure of the paper is as follows: In the next section, we provide basic

graph theoretical as well as statistical definitions and preliminary results needed in

this paper. In Section 3.3, we provide a lower bound for the maximum possible

number of non-zero elements of a JDM by constructing a family of graphs that reaches

this bound. In Section 3.4, we use two different approaches to present upper bounds
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for this desired value.

3.2 Definitions and preliminary results

In this chapter we consider simple graphs without isolated vertices. Let G = (V,E)

be such an n-vertex graph and for 1 ≤ i ≤ n − 1 let Vi be the set of vertices of

degree i. The joint degree vector (JDV) s(G) = (j11(G), j12(G), . . . , jn−1,n−1(G))

of the graph G is a
(
n
2

)
length vector where for all 1 ≤ i ≤ k ≤ n − 1 we have

jik = |{xy ∈ E(G) : x ∈ Vi, y ∈ Vk}|. If, for some vector m there exists a graph G

such that s(G) = m, then m is called a graphical JDV. Note that the degree sequence

of a graph is determined by its JDV in that

|Vi| =
1
i

(
i∑

k=1
jki +

n−1∑
k=i

jik

)
.

The following characterization for a vector m with integer entries to be a graphical

JDV is proved by [41], [46], and [12]. As it provides simple necesssary and sufficient

conditions for a vector to be realized as a graphical JDV, we call the result an Erdös-

Gallai type theorem.

Theorem 3.1. (Erdös-Gallai type theorem for a JDV) The
(
n
2

)
size vector m =

(m11,m12, . . . ,mn−1,n−1) is a JDV of some graph G if and only if the following holds:

(i) for all i: ni := 1
i

(
i∑

k=1
mik +

n−1∑
k=i

mik

)
is an integer,

(ii) for all i: mii ≤
(
ni
2

)
,

(iii) for all i < k: mik ≤ nink.

Moreover, ni gives the number of vertices of degree i in the graph G.

In an exponential random graph model (ERGM), the node set I is finite and the

probability of observing a network G can be written as

P (G) = exp{
∑
i∈I

si(G)θi − ψ(θ)}, (3.1)

16



where si(G) are canonical sufficient statistics, which capture some important feature

of G, and ψ(θ) is the normalizing constant, which ensures that probabilities add to 1

when summing over all possible networks.

The model is in exponential family form. Hence, the likelihood function l(θ) =

P (g1, . . . , gm), for generic observed networks g1, . . . , gm, is concave, and, therefore,

has a unique maximum if it exists. For distributions in exponential families, the

following result [4, 8] provides an equivalent condition for the existence of the MLE.

Suppose that there are networks G1, . . . , Gm observed. The average observed

sufficient statistic s̄ is a vector whose elements are the average of the corresponding

elements of sufficient statistics (of dimension d), i.e. s̄i = 1
m

∑m
j=1 si(Gj), 1 ≤ i ≤ d.

We also define the model polytope to be the convex hull of all the points in a d-

dimensional space that correspond to the sufficient statistics of all graphs with n

nodes. We then have the following:

Proposition 3.2. For an ERGM, the MLE exists if and only if the average observed

sufficient statistic lies on the interior of the model polytope.

In addition, for exactly those elements that lie on a surface that contains an

extreme point corresponding to an element i, the corresponding parameter θi is not

estimable. In network analysis, there is usually only one network G observed, and

therefore, the average observed sufficient statistic is simply s(G).

In the so-called 2K-model, an element of sufficient statistic in (3.1) is the bidegree

vector s(G) = (j11(G), j12(G), . . . , jn−1,n(G), jnn(G)), where the length of s is
(
n
2

)
. It

is easy to show that [43] if si(G) = 0 then θi is not estimable. It is also easy to

observe that for every graph, there are always some elements of the bidegree vector

that are zero. In the next sections, we investigate how many elements of the bidegree

vector are always zero.
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3.3 Lower bound construction

Let Hn denote an n-vertex graph with vertex set V (Hn) = {v1, v2, . . . , vn} and edge

set E(Hn) = {vivj : i + j > n and i 6= j}. This graph, which is known as the half

graph, has degree sequence n− 1, n− 2, . . . ,
⌊
n
2

⌋
,
⌊
n
2

⌋
, . . . , 2, 1. See Figure 3.1 for an

example half graph, H7. Since it is obvious that nodes with degrees 0 and n − 1

cannot co-exist in the same graph, the half graph attains the maximum number of

distinct degrees.

v7

v1

v2

v3v4

v5

v6

Figure 3.1 The half graph on seven vertices, H7.

For a graph G, denote by A(G) the number of non-zero elements in the JDV

of G. By routine counting, we see that A(Hn) = n(n − 2)/4 + 1 if n is even and

A(Hn) = (n− 1)2/4 if n is odd. Hence we have that

lim
n→∞

A(Hn)(
n
2

) = 1
2 ,

so about half the elements of the JDV of the half graph are non-zero. However, there

are constructions which achieve a higher number of non-zero elements in the JDV

than the half graph. Consider the graph Hn with n ≥ 7 odd. If one connects the

degree 1 vertex to one of the vertices with degree (n−1)/2, the JDV element j1,n−1 is

lost, but one gains new elements j2,(n+1)/2 and j(n+1)/2,(n+1)/2. We found even better

such constructions but all of these only improve A(Hn) by a linear additive term.
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v7

v1

v2

v3v4

v5

v6

Figure 3.2 A graph on seven vertices that achieves a higher number of non-zero
elements in the JDV than the half graph, H7.

3.4 Two upper bounds

In this section, we provide two upper bounds that provide numerically very close

upper bounds, but use entirely different methods. Although we tried, we were unable

to combine these two proof techniques. We think that it is instructive to show both

of them. We note here that it was Aaron Dutle who first gave a non-trivial upper

bound (1−1/e+o(1))n2 = 0.63212...n2 for the number of non-zero entries in an n×n

JDM. His proof was somewhat similar to Subsection 3.4 but missed the symmetry

that is key to that subsection.

Continuous optimization

Let Pn = {(i, j) ∈ N2 : 1 ≤ i ≤ j ≤ n − 1}. For any graph G, let A(G) :=

{(k1, k2) ∈ Pn : jk1k2(G) > 0}. The following identity is a simple consequence of the

characterization of JDM matrices was written in this form in [43]:

Proposition 3.3. For any graph G,

∑
(k1,k2)∈A(G)

k1 + k2

k1k2
nk1k2(G) = n− n0(G), (3.2)

where n0(G) is the number of isolated nodes in G.
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To see this, by Theorem 3.1 part (i) we have that

n− n0(G) =
n−1∑
i=1

ni(G) =
n−1∑
i=1

1
i

(
i∑

k=1
jki(G) +

n−1∑
k=i

jik(G)
)

=
∑

(k1,k2)∈A

( 1
k2

+ 1
k2

)
jk1k2(G) =

∑
(k1,k2)∈A

k1 + k2

k1k2
jk1k2(G)

In the end, we are only interested in graphs without isolated nodes, since isolated

nodes do not contribute any edges. If a graph has more than one isolated node, then

we can connect the isolated nodes among each other. This can only increase the

support of the vector of bidgrees. Thus, there are optimal graphs with at most one

isolated node. On the other hand, connecting a single isolated node to a node of

degree d < n can reduce the support of the vector of bidegrees by at most d. As we

have seen in Section 3.3, there are graphs where the support is of size O(n2). Hence,

asymptotically, we can ignore single isolated nodes.

Corollary 3.4. For any graph G,

∑
(k1,k2)∈A(G)

k1 + k2

k1k2
≤

∑
(k1,k2)∈A(G)

k1 + k2

k1k2
nk1k2(G) ≤ n.

The original optimization problem can be formulated as follows:

• Maximize |A(G)| among all graphs G with n vertices.

Using the corollary, we relax this optimization problem and study the following prob-

lem, which we call the discrete relaxation:

• Maximize the cardinality among all subsets A ⊆ Pn under the constraint∑
(k1,k2)∈A

k1+k2
k1k2

≤ n.

For any n, the cardinality of a subset that solves the is an upper bound for the original

optimization problem.

The discrete relaxation can be solved on a computer as follows: First, compute

all values (k1 + k2)/(k1k2) on Pn. Second, order the values. Third, start adding them
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up as long as the sum does not exceed n. Finally, count the number of elements that

have been added. To compare the values for different n, let αn be the cardinality

of a solution A of the discrete relaxation divided by
(
n
2

)
, the cardinality of Pn. The

values of αn are plotted in Figure 3.3. As a function of n, the optimum αn decreases

roughly (though not strictly) and reaches values below 0.56 for large n.

Figure 3.3 An upper bound for the ratio of maximum non-zero elements of the
bi-degree vector to its length.

The limit for n → ∞ can be computed by approximating the discrete relaxation

by the following optimization problem, which we call the continuous relaxation:

• Maximize |A′|
(n−1)2 among all subsets A′ ⊆ [1, n]× [1, n] that satisfy∫∫

A′
1
x
dxdy ≤ n.

10 20 30 40 50 60 70 80 90 1000.55

0.6

0.65

n

ra
tio

αn
α′n

Lemma 3.5
limn→∞ αn

Figure 3.4 The solution of the discrete and continuous relaxation. The blue line
plots the upper bound on αn from Lemma 3.5. The red line is the limit for large n
of αn and α′n.
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Let α′n be the maximum of the continuous relaxation.

Lemma 3.5. αn ≤ n−1
n
α′n + 1

n
.

Proof. To each (i, j) ∈ Pn associate the two squares Ai,j := [i, i + 1)× [j, j + 1) and

Aj,i := [j, j+1)×[i, i+1). For A ⊆ Pn let A′′ =
⋃

(i,j)∈AAi,j and A′ = A′′∪⋃(i,j)∈AAj,i.

Then

∑
(i,j)∈A

i+ j

i · j
≥

∑
(i,j)∈A

∫∫
Ai,j

x+ y

x · y
dxdy =

∫∫
A′′

x+ y

x · y
dxdy

≥ 1
2

∫∫
A′

x+ y

x · y
dxdy =

∫∫
A′

1
x

dxdy.

Here, the first inequality follows from the fact that the maximum of x+y
xy

= 1
x

+ 1
y

over Ai,j is at (x, y) = (i, j). The second inequality follows by not double-counting

the set Ad := ⋃
(i,i)∈AAi,i corresponding to the diagonal elements of A. The last

equality follows since x+y
x·y = 1

x
+ 1

y
and since A′ is symmetric along the diagonal.

Therefore, if A is feasible for the discrete relaxation, then A′ is feasible solution for

the continuous relaxation. Now,

|A| = |A′′| = 1
2(|A′|+ |Ad|) ≤

|A′|
2 + n− 1

2 ,

and so

αn ≤
(n− 1)2

2
(
n
2

) α′n + n− 1
2
(
n
2

) .
Corollary 3.6. lim supn→∞ αn ≤ lim supn→∞ α′n.

It is not difficult to see that, actually, limn→∞ αn = limn→∞ α
′
n. Figure 3.3 shows

that the upper bound from Lemma 3.5 is not very close and suggests that αn ≤ α′n;

at least for n ≤ 100.

Next, we want to solve the continuous relaxation. The idea is the following: As

the set A′ it is advantageous to choose a sublevel set of the function x+y
x·y . For c > 0

let

Ac :=
{

(x, y) ∈ [1, n]2 : x+ y

x · y
≤ c

}
.
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Let

yc(x) = 1
c− 1

x

= x

xc− 1 , x1(c) = 1
c− 1

n

= n

nc− 1 .

Lemma 3.7. Ac =
{

(x, y) ∈ [1, n]2 : x1(c) ≤ x ≤ n, yc(x) ≤ y ≤ n
}
. In particular,

Ac 6= ∅ if and only if nc ≥ 2.

Proof. If x < x1(c) and 1 ≤ y ≤ n, then 1
x

+ 1
y
> c− 1

n
+ 1

n
= c. If x1(c) ≤ x ≤ n and

1 ≤ y < yc(x), then 1
x

+ 1
y
> c − 1

x
+ 1

x
= c. For the second statement observe that

x1(c) ≤ n if and only if nc ≥ 2. Similarly, yc(x) ≤ n if and only if x ≥ x1(c).

Lemma 3.8. Assume that c is such that x1(c) ≥ 1. Then yc(x) ≥ 1 for all x ∈ [1, n].

Proof. yc(x) decreases monotonically with x. Therefore, yc(x) ≥ yc(n) = x1(c) for

all x ∈ [1, n].

Lemma 3.9. Let n ≥ 3. The set Ac is feasible for the continuous relaxation if and

only if

(nc− 2) log(nc− 1) ≤ nc (3.3)

Proof. Assume that c is such that x1(c) ≥ 1. Then

∫∫
Ac

1
x

dxdy =
∫ n

x1(c)
dx
∫ n

yc(x)
dy 1
x

=
∫ n

x1(c)
dxn− yc(x)

x

=
∫ n

x1(c)
dx
(
n

x
− 1
xc− 1

)
= n log n

x1(c) −
1
c

log nc− 1
cx1(c)− 1 .

Now,

cx1(c)− 1 = cn− nc+ 1
nc− 1 = 1

nc− 1 ,

and so
∫∫

Ac

1
x

dxdy = n log(nc− 1)− 1
c

log(nc− 1)2 = (n− 2
c

) log(nc− 1).

Hence, Ac is feasible if and only if

(nc− 2) log(nc− 1) ≤ nc.
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Now suppose that n > e. If c satisfies (3.3), then

x1(c) ≥ n

exp(nc/(nc− 2)) >
n

e
> 1.

Thus, the above calculation is valid and shows that Ac is feasible. On the other hand,

if n > e and if c violates (3.3), then Ac is not feasible.

To find the solution of the continuous relaxation, we need to find the value of c

that solves (3.3) with equality. Consider the equation

log(β − 1) = β

β − 2 .

Both the left and the right hand side change sign at β = 2. For β > 2, both sides

are positive, and for β < 2 they are negative. By Lemma 3.7, we are looking for a

solution larger than 2. For β > 2, the right hand side is decreasing, while the left

hand side is increasing. It follows that there is a unique solution β0 > 2. Numerically,

β0 ≈ 5.68050. Thus, Ac is feasible if and only if c ≤ β0/n, and in order to maximize

|Ac|, we have to choose c = β0/n.

Lemma 3.10. x1(β0/n) > 1 for n large enough.

Proof. x1(β0/n)− 1 = n−β0+1
β0−1 > 0 for n large enough.

It remains to compute the maximum value of the continuous relaxation. If x1(c) ≥

1, then

|Ac| =
∫∫

A
dxdy =

∫ n

x1(c)
dx
∫ n

yc(x)
dy =

∫ n

x1(c)
dx(n− yc(x)).

Now,

yc(x) = 1
c

(
x

x− 1
c

)
= 1
c

(
1 + 1/c

x− 1
c

)
= 1
c

(
1 + 1

cx− 1

)
,

and so

|Ac| =
∫ n

x1(c)
dx(n− 1

c
− 1/c
cx− 1) = (n− 1

c
)(n− x1(c))− 1

c2 log cn− 1
cx1(c)− 1

= n2nc− 1
nc

nc− 2
nc− 1 −

2
c2 log(nc− 1).

24



Therefore,

α′n = |Aβ0/n|
(n− 1)2 = n2

(n− 1)2

[
β0 − 2
β0

− 2
β2

0

β0

β0 − 2

]
= n2

(n− 1)2
(β0 − 2)2 − 2
β0(β0 − 2) .

Numerically, α′n ≈ n2/(n− 1)20.55225694.

Second Bound

Let G = (V,E) be an n-vertex graph and let A(G) be defined as in Section 3.4.

Let ni denote the number of vertices with degree i, with some m total number of

distinct vertex degrees. We call i a single if ni = 1 and multiple if ni ≥ 2, noting that

some i are neither single nor multiple, they just don’t occur as degrees. As before, for

1 ≤ i ≤ k ≤ n−1, let jik be the number of edges between the ith and kth degree classes

and χik = 1 if jik > 0, and 0 otherwise. It is easy to see that |A(G)| = ∑n−1
i=1

∑n−1
k=i χik.

Now we set set Di = ∑i
k=1 χki+

∑n−1
k=i+1 χik and B(G) = ∑n−1

i=1 Di. Note that for k 6= i,

Di counts χki = χik twice but χii is counted only once, so we get |A(G)| ≤ B(G)+n−1
2

and therefore

|A(G)|(
n
2

) ≤ B(G) + n− 1
2 · 2

n(n− 1) = (1 + o(1))B(G)
n2 .

Our goal for this section is to prove the following theorem but first we proceed with

the proofs of several necessary lemmas.

Theorem 3.11. For any graph G,

|A(G)|(
n
2

) ≤ (1 + o(1))13
24 .

Lemma 3.12.

n−1∑
i=1

Di ≤
∑

i: i single
min(m, i) +

√
m
√ ∑
i: i multiple

min(m, i)
√ ∑
i: i multiple

ni.

Proof. Observe that Di ≤ m and Di ≤ ini, and hence Di ≤ min(m, ini). By case

analysis it follows that min(m, ini) = min(m,min(m, i)·ni). Then since the minimum
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of two elements is less than their average we get

Di ≤ min(m,min(m, i) · ni) ≤
√
m ·min(m, i) · ni. (3.4)

Note that if i is single we have

Di ≤ min(m, i). (3.5)

Employing (3.4) and (3.5) we get that

n−1∑
i=1

Di ≤
∑

i: i single
Di +

∑
i: i multiple

Di

≤
∑

i: i single
min(m, i) +

√
m

∑
i: i multiple

√
min(m, i) · ni

≤
∑

i: i single
min(m, i) +

√
m
√ ∑
i: i multiple

min(m, i)
√ ∑
i: i multiple

ni, (3.6)

where the last inequality follows from Cauchy-Schwarz.

We wish to upper bound the term from (3.6) over all graphs G. From our lower

bound construction we know that |A(G)| ≥ (1 − o(1))1
2n

2. So we may assume that

m > n/
√

2, else we’d have |A(G)| ≤ m2 ≤ n2/2 and our estimation of |A(G)| would

be complete.

Lemma 3.13.
∑
i:ni>0

min(m, i) ≤ m(n−m− 1) + n(2m− n+ 1)
2 .

Proof. We wish to upper bound ∑i:ni>0 min(m, i) over all graphs. So assume the m

highest possible degrees occur in our graph:

n− 1, n− 2, . . . , n−m+ 1, n−m.

Now our assumption m > n/
√

2 gives that m > n−m+ 1, so the value of m has to

appear in the list of degrees above. There are n− 1−m terms strictly larger than m

in this list and each contributes min(m, i) = m. The remaining terms sum up exactly
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∑m
i=n−m i, and hence

∑
i:ni>0

min(m, i) ≤ m(n−m− 1) +
m∑

i=n−m
i

= m(n−m− 1) + n(2m− n+ 1)
2 . (3.7)

Now if the m highest degrees do not occur in our graph, then some degree less than

n−m+1 must occur which clearly gives something smaller than the term in (3.7).

Now let s be the number of degrees i that are singles. Observe we must have s ≤ m

and s+ 2(m− s) ≤ n, implying that s ≤ m ≤ n+s
2 . Now using s+∑

i:i multiple ni = n

and substituting

y =
∑

i:i single
min(m, i)

z =
√ ∑
i:i multiple

min(m, i),

we can write the term in (3.6) as

g(y, z, s,m) = y +
√
m · z

√
n− s.

We wish to maximize G subject to the constraints

1. All variables are non-negative and s ≤ n,

2. s ≤ m ≤ n+s
2 , and

3. y + z2 ≤ m(n−m− 1) + n(2m−n+1)
2 ,

where constraint 3 follows from Lemma 3.13.

Note that g(y, z, s,m) = O(n2), so we wish to determine how large the coef-

ficient of n2 in g can be as n → ∞. To do this we set S = s/n, M = m/n,
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Y = ∑
i:i single min(m, i)/n, and Z =

√∑
i:i multiple min(m, i)/n and turn to the follow-

ing numeric optimization problem: maximize

f(Y, Z, S,M) = Y +
√
M · Z

√
1− S

subject to the constraints

(a) All variables are non-negative and S ≤ 1,

(b) S ≤M ≤ 1+S
2 , and

(c) Y + Z2 ≤M(1−M) + 2M−1
2 .

By routine arguments, it follows that g(y, z, s,m) ≤ (1 + o(1)) f(Y, Z, S,M)n2.

Lemma 3.14. If constraints (a), (b), and (c) hold, then

f(Y, Z, S,M) ≤ 13
24 .

Proof. For fixed values of S, M and Z, the function f is monotone in Y . Therefore,

we have to choose Y as large as possible, which, according to the last constraint,

implies that Y = −M2 + 2M − 1
2 − Z

2. Also the right hand side of constraint (c) is

non-negative if and only if 1−
√

2/2 ≤M ≤ 1 +
√

2/2, so 1−
√

2/2 ≤M ≤ 1.

Now for fixed values of Z and M the target function f decreases with S. Hence

we need to choose S as small as possible. The constraints imply S ≥ max{0, 2M−1}

so we consider the following two cases.

If M ≤ 1/2, then S = 0. In this case, we need to optimize

f(Z,M) = −M2 + 2M − 1
2 − Z

2 +
√
M · Z

subject to

1. 1−
√

2/2 ≤M ≤ 1/2,

2. Z2 ≤ −M2 + 2M − 1
2 .
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The target function f is quadratic in Z with maximum at Z0(M) =
√
M/2. Observe

that

f(Z0(M),M) = −M2 + 9
4M −

1
2 .

This function is quadratic in M , with maximum at M = 9
8 > 1

2 . Therefore, it is

maximized by the largest feasible M = 1/2. In total,

f(Z,M) ≤ f(Z0(M),M) ≤ f(Z0(1/2), 1/2) = 3
8

for all feasible values of (Z,M). Finally, observe that (Z0(1/2), 1/2) is feasible, since

Z0(1/2)2 = 1
8 <

1
4 = −1

4 + 1− 1
2 .

For the second case, suppose now that M ≥ 1/2. Then S = 2M − 1, and we need

to optimize

f(Z,M) = −M2 + 2M − 1
2 − Z

2 +
√
M · Z ·

√
2(1−M)

subject to

1. 1/2 ≤M ≤ 1,

2. Z2 ≤ −M2 + 2M − 1
2 .

Now f is quadratic in Z, with maximum at Z0(M) =
√
M(1−M)/2. To see that

(Z0(M),M) is feasible, we have to check that

0 ≤ −M2 + 2M − 1
2 − Z0(M)2 = −1

2M
2 + 3

2M −
1
2 .

The right hand side is a quadratic polynomial with zeros at (3−
√

5)/2 < 1/2 and (3+
√

5)/2 > 1, which proves that (M,Z0(M)) satisfies all constraints.

Therefore, we need to maximize the quadratic function

f(M) = −M2 + 2M − 1
2 + 1

2M(1−M) = −3
2M

2 + 5
2M −

1
2
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with 1/2 ≤M ≤ 1. The maximum is at M = 5/6, where the value is

f(5/6) = −75
72 + 25

12 −
1
2 = 13

24 = 0.5416.

Proof (of Theorem 3.11). By Lemma 3.12 and Lemma 3.14,

B(G) =
n−1∑
i=1

Di

≤
∑

i:i single
min(m, i) +

√
m
√ ∑
i:i multiple

min(m, i)
√ ∑
i:i multiple

ni

= g(y, z, s,m)

≤ (1 + o(1)) f(Y, Z, S,M)n2

≤ (1 + o(1)) 13
24n

2,

implying that
|A(G)|(

n
2

) = (1 + o(1))B(G)
n2 ≤ (1 + o(1)) 13

24 .
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Chapter 4

Maximal matchings in polyspiro and benzenoid

chains

4.1 Introduction

Recall a matching in a graph is a collection of its edges such that no two edges in

this collection have a vertex in common. Matchings in graphs serve as successful

models of many phenomena in engineering, natural and social sciences. A strong

initial impetus to their study came from the chemistry of benzenoid compounds after

it was observed that the stability of benzenoid compounds is related to the existence

and the number of perfect matchings in the corresponding graphs. That observation

gave rise to a number of enumerative results that were accumulated over the course

of several decades; we refer the reader to monograph [11] for a survey. Further

motivation came from the statistical mechanics via the Kasteleyn’s solution of the

dimer problem [30, 31] and its applications to evaluations of partition functions for

a given value of temperature. In both cases, the matchings under consideration are

perfect, i.e., their edges are collectively incident to all vertices of G. It is clear that

perfect matchings are as large as possible and that no other matching in G can be

“larger” than a perfect one. It turns out that in all other applications we are also

interested mostly in large matchings.

Basically, there are two ways to quantify the largeness of a matching. One way, by

using the number of edges, gives rise to the idea of maximum matchings. Maximum

matchings are well researched and well understood; there is a well developed structural
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theory and enumerative results are abundant. The classical monograph by Lovász and

Plummer [38] is an excellent reference for all aspects of the theory.

An alternative way is to say that a matching is large if no other matching contains

it as a proper subset; this gives rise to the concept of maximal matchings. Every max-

imum matching is also maximal, but the opposite is usually not true. Unlike their

maximum counterparts, maximal matchings can have different cardinalities (unless

the graph is equimatchable; see [24]) and the recurrences used for their enumeration

are essentially non-local. As a consequence, maximal matchings are much less under-

stood then the maximum ones. There is nothing analogous to the structural theory

of maximum matchings and the enumerative results are scarce and scattered through

the literature [20, 33, 48].

In spite of their obscurity, maximal matchings are natural models for several

problems connected with adsorption of dimers on a structured substrate and block-

allocation of a sequential resource. One can find them also in the context of poly-

merization of organic molecules, as witnessed by an early paper of Flory [22]. A

probabilistic approach to the same problem can be found in [26]. We refer the reader

to papers [3, 16, 19, 20] for some structural and enumerative results on those models.

In this paper our goal is to further the line of research of reference [20] by consider-

ing graphs with more complicated connectivity patterns and richer structure of basic

units. We provide enumerative and extremal results on maximal matchings in two

classes of linear polymers of chemical interest: the polyspiro chains and benzenoid

chains. We extablish the recurrences and generating functions for the enumerating

sequences of maximal matchings in three classes of uniform polyspiro chains. We

then use the obtained results to determine the asymptotic behavior and to find the

extremal chains. Further, we also enumerate maximal matchings in three classes of

benzenoid chains and show that one of them is extremal with respect to the num-

ber of maximal matchings. Our results show that maximal matchings behave in a
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radically different way that the perfect matchings; chains rich in maximal matchings

are poor in perfect matchings and vice versa. We end by comparing our results with

enumerative results for other type of structures in similar polymers and by discussing

some possible directions of future research.

4.2 Preliminaries

The terminology and notations in this chapter are mostly standard and taken from

[38, 50]. All graphs G considered in this paper will be finite and simple, with vertex

set V (G) and edge set E(G). For a subset of vertices S of V (G), we make use of

the notation G − S (or G − v if S = {v}) to denote the subgraph of G obtained by

deleting the vertices of S and all edges incident to them. For a graph G and subset

of edges X of G, we use the notation G \ X (or G \ e if X = {e}) to denote the

subgraph of G obtained by deleting the endpoints of the edges in X as well as all

incident edges to these endpoints.

A matching M in G is a set of edges of G such that no two edges from M have

a vertex in common. The number of edges in M is called its size. A matching in G

with the largest possible size is called a maximum matching. If a matching in G is

not a subset of a larger matching of G, it is called a maximal matching. Let Ψ(G)

denote the number of maximal matchings of G.

In this chapter we are mainly concerned with counting maximal matchings in two

classes of linear polymers (or facsiagraphs, [29]) with simple connectivity patterns.

The first class are 6-uniform cactus chains. Chain cacti are in chemical literature

known as polyspiro chains.

A cactus graph is a connected graph in which no edge lies in more than one cycle.

Consequently, each block of a cactus graph is either an edge or a cycle. If all blocks

of a cactus G are cycles of the same length m, the cactus is m-uniform.

A hexagonal cactus is a 6-uniform cactus, i.e., a cactus in which every block is a

33



hexagon. A vertex shared by two or more hexagons is called a cut-vertex. If each

hexagon of a hexagonal cactus G has at most two cut-vertices, and each cut-vertex

is shared by exactly two hexagons, we say that G is a chain hexagonal cactus. The

number of hexagons is called the length of the chain. An example of a chain hexagonal

cactus is shown in Figure 4.1.

Figure 4.1 A chain hexagonal cactus of length 6.

Furthermore, any chain hexagonal cactus of length greater than one has exactly

two hexagons with only one cut-vertex; such hexagons are called terminal and all

other hexagons with two cut-vertices are called internal.

Internal hexagons can be one of three types depending upon the distance between

its cut-vertices: in an ortho-hexagon cut vertices are adjacent, in a meta-hexagon they

are at distance two, and in a para-hexagon cut-vertices are at distance three. The

terminology is borrowed from the theory of benzenoid hydrocarbons; see [18, 19, 20]

for more details. These give rise to the following three types of hexagonal cactus

chains of length n: the unique chain whose internal hexagons are all para-hexagons is

Pn, the unique chain whose internal hexagons are all meta-hexagons is Mn, and the

unique chain whose internal hexagons are all ortho-hexagons is On.

The other class of unbranched polymers we consider are benzenoid chains. A

benzenoid system is a is a connected, plane graph without cut-vertices in which all

faces, except the unbounded one, are hexagons. Two hexagonal faces are either

disjoint or they share exactly one common edge (adjacent hexagons). A vertex of

a benzenoid system belongs to at most three hexagonal faces and the benzenoid

system is called catacondensed if it does not posses such a vertex. If no hexagon
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Pn 1 2 · · · n

Mn 1
2
· · · n

On 1

2

· · · n

Figure 4.2 The hexagonal cactus chains Pn, Mn, and On.

in a catacondensed benzenoid is adjacent to three other hexagons, we say that the

benzenoid is a chain see Figure 4.3.

The number of hexagons in a benzenoid chain is called its length. In each ben-

zenoid chain there are exactly two hexagons adjacent to one other hexagon; those

two hexagons are called terminal, while any other hexagons are called interior. An

interior hexagon has two vertices of degree 2. If these two vertices are not adjacent,

then hexagon is called straight. If the two vertices are adjacent, then the hexagon is

called kinky.

Figure 4.3 A benzenoid chain of length 6.

If all n − 2 interior hexagons of a benzenoid chain with n hexagons are straight,

we call the chain a polyacene and denote it by Ln. If all interior hexagons are

kinky, the chain is called a polyphenacene. Since the number of perfect matchings

in a polyphenacene of length n is equal to the (n + 2)-nd Fibonacci number Fn+2,

these chains are also known as fibonacenes [11]. We consider two specific families of
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polyphenacenes depicted in Figure 4.4: the zig-zag polyphenacene, Zn, and helicene,

Hn.

Ln 1 2 · · · n

Zn 1
2
· · · n

Hn 1 2
...

n

Figure 4.4 The polyacene, zig-zag polyphenacene, and helicene chains.

4.3 Chain hexagonal cacti

Generating functions

In this section, we obtain ordinary generating functions for the number of maximal

matchings in the hexagonal chain cacti Pn, Mn, and On. To do this, we first find

recursions for the number of maximal matchings using auxiliary graphs where the

initial conditions are obtained by direct counting and extending the recursions back-

wards. By introducing generating functions for the number of maximal matchings

in each auxiliary graph, the recursions can be transformed into a solvable system of

equations in terms of unknown generating functions. Finally, we solve this system of

equations for the desired generating function.

Lemma 4.1. Let pn be the number of maximal matchings in Pn and pin be the number

of maximal matchings in the auxiliary graph P i
n in Figure 4.5. Then
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Pn 1 2 · · · n P 1
n 1 2 · · · n

P 2
n 1 2 · · · n P 3

n 1 2 · · · n

Figure 4.5 Auxiliary graphs for Pn.

(i) pn = 2p1
n−1 + pn−1,

(ii) p1
n = p2

n + p3
n−1,

(iii) p2
n = p3

n−1 + 2p1
n−1,

(iv) p3
n = pn + 2p3

n−1,

with the initial conditions p0 = 1, p1
0 = 2, p2

0 = 1, and p3
0 = 3.

Proof.

a

b

c

d

1 2 · · · n

Figure 4.6 Pn with labeled edges a, b, c, and d.

Part (i) Refering to Figure 4.6, any maximal matching of Pn must contain exactly

one of the following sets of edges: a, b, or {c, d}. Observe that for 1 ≤ i ≤ 3, P i
n−1

is a subgraph of Pn and we will make use of similar facts from this point forward.

Now for any maximal matching containing the edge a, the remaining edges must be a

maximal matching of the subgraph P 1
n−1. The same holds for any maximal matching

containing b. For any maximal matching containing the edges {c, d}, the remaining
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edges must be a maximal matching of the subgraph Pn−1. Hence the number of

maximal matchings of Pn is given by 2p1
n−1 + pn−1, proving the recursion (i).

a
b

1 2 · · · n

Figure 4.7 P 1
n with labeled edges a and b.

Part (ii) As in Figure 4.7, any maximal matching of P 1
n must contain either the

edge a or the edge b. If such a maximal matching contains a, then the remaining edges

in the matching must give a maximal matching of the subgraph P 2
n . If a maximal

matching contains the edge b, then the remaining edges must be a maximal matching

of P 3
n−1, proving the claimed recursion.

ab

c
1 2 · · · n

Figure 4.8 P 2
n with labeled edges a, b, and c.

Part (iii) Refering to Figure 4.8, any maximal matching of P 2
n must contain

exactly one of the following edges: a, b, or c. If such a maximal matching contains

a, then the remaining edges in the matching must give a maximal matching of the

subgraph P 3
n−1. If a maximal matching contains the edge b or c, then the remaining

edges must be a maximal matching of P 1
n−1. Hence the recursion (iii) holds.

Part (iv) Refering to Figure 4.9, any maximal matching of P 3
n must contain

exactly one of the following sets of edges: {a, b}, {a, d}, or {b, c}. If such a maximal

matching contains {a, b}, then the remaining edges in the matching must give a

maximal matching of the subgraph Pn. If a maximal matching contains the edges
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a

b

c

d
1 2 · · · n

Figure 4.9 P 3
n with labeled edges a-d.

{a, d} or {b, c}, then the remaining edges must be a maximal matching of P 3
n−1,

finishing the proof.

Mn 1
2
· · · n M1

n 1
2
· · · n

M2
n 1

2
· · · n M3

n 1
2
· · · n

Figure 4.10 Auxiliary graphs for Mn.

Lemma 4.2. Let mn be the number of maximal matchings in Mn and mi
n be the

number of maximal matchings in the auxiliary graph M i
n in Figure 4.10. Then

(i) mn = 2m1
n−1 +mn−1,

(ii) m1
n = m2

n +m3
n−1,

(iii) m2
n = m3

n−1 +m1
n−1 +m2

n−1 +mn−1,

(iv) m3
n = 2m3

n−1 +m1
n−1 +m2

n−1 +mn−1 +m2
n,

with the initial conditions m0 = 1, m1
0 = 2, m2

0 = 1, and m3
0 = 3.
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Proof.

a

b

c

d

1

2

· · · n

Figure 4.11 Mn with labeled edges a-d.

Part (i) Refering to Figure 4.11, any maximal matching of Mn must contain

exactly one of the following sets of edges: a, b, or {c, d}. Any maximal matching con-

taining the edge a, the remaining edges must be a maximal matching of the subgraph

M1
n−1. The same holds for any maximal matching containing b. For any maximal

matching containing the edges {c, d}, the remaining edges must be a maximal match-

ing of the subgraph Mn−1. Hence the recursion (i) holds.

ab1

2

· · · n

Figure 4.12 M1
n with labeled edges a and b.

Part (ii) As in Figure 4.12, any maximal matching ofM1
n must contain either the

edge a or the edge b. If such a maximal matching contains a, then the remaining edges

in the matching must give a maximal matching of the subgraph M2
n. If a maximal

matching contains the edge b, then the remaining edges must be a maximal matching

of M3
n−1, proving the claimed recursion.

Part (iii) Refering to Figure 4.13, any maximal matching of M2
n must contain

exactly one of the following sets of edges: a, b, {c, d}, or {c, e}. If such a maximal
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a

b

c

de

1

2

· · · n

Figure 4.13 M2
n with labeled edges a-e.

matching contains a, then the remaining edges in the matching must give a maximal

matching of the subgraphM3
n−1. If a maximal matching contains the edge b, then the

remaining edges give a maximal matching ofM1
n−1. If the maximal matching contains

the sets {c, d} or {c, e}, then the remaining edges must be a maximal matching of

M2
n−1 or Mn−1, respectively. Hence the recursion (iii) holds.

a

b
c

d

f

e

gh

1

2

· · · n

Figure 4.14 M3
n with labeled edges a-h.

Part (iv) Refering to Figure 4.14, any maximal matching of M3
n must contain

exactly one of the following sets of edges: b, {a, c}, {a, d}, {a, f}, {a, e, g}, or {a, e, h}.

If such a maximal matching contains b, then the remaining edges in the matching must

give a maximal matching of the subgraph M2
n. If a maximal matching contains the

edges {a, c} or {a, d}, then the remaining edges must be a maximal matching ofM3
n−1.

If a maximal matching contains the edges {a, f}, then the remaining edges give a

maximal matching ofM1
n−1. Lastly if a maximal matching contains the edges {a, e, g},

or {a, e, h}, then the remaining edges give a maximal matching of the subgraphsM2
n−1

orMn−1, respectively. Hence we get thatm3
n = 2m3

n−1+m1
n−1+m2

n−1+mn−1+m2
n.
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On 1
2
· · · n O1

n 1
2
· · · n

O2
n 1

2
· · · n O3

n 1
2
· · · n

Figure 4.15 Auxiliary graphs for On.

Lemma 4.3. Let on be the number of maximal matchings in On and oin be the number

of maximal matchings in the auxiliary graph Oi
n in Figure 4.15. Then

(i) on = 2o1
n−1 + on−1,

(ii) o1
n = o2

n + o3
n−1,

(iii) o2
n = o3

n−1 + o2
n−1 + on−1 + 2o3

n−2,

(iv) o3
n = on + o3

n−1 + o2
n,

with the initial conditions o0 = 1, o1
0 = 2, o2

0 = 1, o2
1 = 7, and o3

0 = 3.

Proof.

a

bc

d
1

2

· · · n

Figure 4.16 On with labeled edges a-d.
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Part (i) Refering to Figure 4.16, any maximal matching of On must contain

exactly one of the following sets of edges: a, b, or {c, d}. Any maximal matching con-

taining the edge a, the remaining edges must be a maximal matching of the subgraph

O1
n−1. The same holds for any maximal matching containing b. For any maximal

matching containing the edges {c, d}, the remaining edges must be a maximal match-

ing of the subgraph On−1, proving the recursion (i) holds.

a

b

1

2

· · · n

Figure 4.17 O1
n with labeled edges a and b.

Part (ii) As in Figure 4.17, any maximal matching of O1
n must contain either the

edge a or the edge b. If such a maximal matching contains a, then the remaining edges

in the matching must give a maximal matching of the subgraph O2
n. If a maximal

matching contains the edge b, then the remaining edges must be a maximal matching

of O3
n−1, which proves (ii).

ab

c

d
e f

1

2

· · · n

Figure 4.18 O2
n with labeled edges a-e.

Part (iii) Refering to Figure 4.18, any maximal matching of O2
n must contain

exactly one of the following sets of edges: a, {b, d}, {b, e, f}, {c, d}, or {c, e}. If such
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a maximal matching contains a, then the remaining edges in the matching must give

a maximal matching of the subgraph O3
n−1. If a maximal matching contains the edge

{b, d} or {b, e, f}, then the remaining edges give a maximal matching of O3
n−2. If the

maximal matching contains the sets {c, d} or {c, e}, then the remaining edges must

be a maximal matching of O2
n−1 or On−1, respectively. Hence the recursion (iii) holds.

a

b

c

d

1

2

· · · n

Figure 4.19 O3
n with labeled edges a-d.

Part (iv) Refering to Figure 4.19, any maximal matching of O3
n must contain

exactly one of the following sets of edges: {a, c}, {a, d}, or b. If such a maximal

matching contains {a, c} or {a, d}, then the remaining edges in the matching must

give a maximal matching of the subgraph On or O3
n−1, respectively. If a maximal

matching contains the edge b, then the remaining edges must be a maximal matching

of O2
n, finishing the proof

Theorem 4.4. Let P (x), M(x), and O(x) be the ordinary generating functions for

the sequences pn, mn, and on, respectively. Then

(i)

P (x) = 1 + 4x2

1− 5x+ 4x2 − 4x3 ,

(ii)

M(x) = 1− x− 2x2

1− 6x+ 3x2 − 2x3 ,
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(iii)

O(x) = 1 + x+ x2

1− 4x− 4x2 − x3 .

Proof.

Part (i) Let P i(x) be the ordinary generating function for the sequences pin for

i = 1, 2, 3. Then Lemma 4.1 implies the following system of equations hold:

P (x)− 1
x

= 2P 1(x) + P (x)

P 1(x)− 2
x

= P 2(x)− 1
x

+ P 3(x)

P 2(x)− 1
x

= P 3(x) + 2P 1(x)

P 3(x)− 3
x

= P (x)− 1
x

+ 2P 3(x).

Solving this system yields (i).

Part (ii) Let M i(x) be the ordinary generating function for the sequences mi
n

for i = 1, 2, 3. Then Lemma 4.2 implies the following system of equations hold:

M(x)− 1
x

= 2M1(x) +M(x)

M1(x)− 2
x

= M2(x)− 1
x

+M3(x)

M2(x)− 1
x

= M3(x) +M1(x) +M2(x) +M(x)

M3(x)− 3
x

= 2M3(x) +M1(x) +M2(x) +M(x) + M2(x)− 1
x

.

Solving this system yields (ii).

Part (iii) Let Oi(x) be the ordinary generating function for the sequences oin for

i = 1, 2, 3. Then Lemma 4.3 implies the following system of equations hold:

O(x)− 1
x

= 2O1(x) +O(x)

O1(x)− 2
x

= O2(x)− 1
x

+O3(x)

O2(x)− 1− 7x
x2 = O3(x)− 3

x
+ O2 − 1

x
+ O(x)− 1

x
+ 2O3(x)

O3(x)− 3
x

= O(x)− 1
x

+O3(x) + O2(x)− 1
x

.
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Solving this system yields (iii).

Since P (x),M(x), and O(x) are rational functions, we can conclude that the numbers

pn, mn, and on each satisfy a third order linear recurrence with constant coefficients.

The initial conditions can be verified by direct computations.

Corollary 4.5.

(i) pn = 5pn−1 − 4pn−2 + 4pn−3

with initial conditions p0 = 1, p1 = 5, p2 = 25,

(ii) mn = 6mn−1 − 3mn−2 + 2mn−3

with initial conditions m0 = 1, m1 = 5, m2 = 25,

(iii) on = 4on−1 + 4on−2 + on−3

with initial conditions o0 = 1, o1 = 5, o2 = 25.

None of the obtained sequences appear in The On-Line Encyclopedia of Integer Se-

quences [1].

Now we can apply a version of Darboux’s theorem to deduce the asymptotic

behavior of the sequences pn,mn, and on. We refer the reader to any of standard books

on generating functions, such as [5, 51] for more information on these techniques.

Theorem 4.6 (Darboux). Let f(x) = ∑∞
n=0 anx

n denote the ordinary generating

function of a sequence an. If f(x) can be written as

f(x) =
(

1− x

w

)α
g(x),
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where w is the smallest modulus singularity of f and g is analytic at w, then

an ∼
g(w)

Γ(−α)w
−nn−α−1.

Here Γ(x) denotes the gamma function.

Corollary 4.7.

(i) pn ∼ 1.37804 · 4.28428n,

(ii) mn ∼ 0.81408 · 5.52233n,

(iii) on ∼ 1.05177 · 4.86454n.

The characteristic equations of the three recurrences can be solved exactly, but

the resulting formulas tend to be too cumbersome to be of any use. The equation

for meta-chains, however, allows a compact formula for the smallest (and the only)

positive root: it is equal to 1
2(1 + 3

√
3− 3
√

9).

The obtained asymptotics suggest that meta-chains could be the richest and para-

chains the poorest in maximal matchings among all polyspiro chains of the same

length. In the next subsection we prove that this is, indeed, the case.

Extremal structures

Theorem 4.8. Let Gn be a hexagonal cactus of length n. Then

Ψ(Pn) ≤ Ψ(Gn) ≤ Ψ(Mn).

Let Gm be an arbitrary hexagonal cactus of lengthm. Observe that we can always

draw Gm as in Figure 4.20, where hm is a terminal hexagon and the hexagon adjacent

to the left of hm−1 may attach at any of the vertices b, a, k, j, or i. Let us assume
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the hexagons of Gm are labeled h1, . . . , hm according to their ordering in Figure 4.20

where (h1 is the other terminal hexagon).

hm−1 hm· · ·

a b

c

d e

f

j i h g

k

Figure 4.20 A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the
hexagonal chain cactus Gm.

In what follows, for 1 ≤ `, p ≤ m let H` be the subgraph of Gm induced by the

vertices of the hexagons h1, . . . , h` and let H`,p denote the subgraph of Gm induced

by the vertices of the two hexagons h` and hp. We will need the following lemmas.

The proof of the first lemma is immediate.

Lemma 4.9. If H is a subgraph of the graph G, then Ψ(H) ≤ Ψ(G).

Lemma 4.10. Any maximal matching in Gm must contain exactly one of the edges

cb, cd, ch, or ci, or the maximal matching must contain all the edges ab, de, ji, and

hg.

Proof. Take a maximal matching M in Gm. For sake of contradiction, suppose that

M does not contain any of the edges cb, cd, ch, or ci and that M does not contain

all of the edges ab, de, ji, and hg. Then at least one of the edges ab, de, ji, and hg

is missing, say ab. Since ab is not in M , then we can add the edge bc to M , which is

a contradiction to the fact that M is a maximal matching. The lemma follows.

Lemma 4.11. For the subgraph Hm−1 of Gm, at least one of the following holds:

(i) 2 ·Ψ(Hm−1 − {b, c}) ≥ Ψ(Hm−1 − c)

(ii) 2 ·Ψ(Hm−1 − {c, i}) ≥ Ψ(Hm−1 − c)
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Proof. The proof depends on where the hexagon hm−2 attaches to hm−1. By symme-

try, suppose that hm−2 attaches at either i, j, or k (the case a, b, k is similar). Consider

a maximal matching of Hm−1 − c. If such a matching contains the edge ab, then the

remaining edges give a maximal matching of Hm−1−{a, b, c}. If a maximal matching

does not contain the edge ab, then the matching must also be maximal in the graph

Hm−1 − {b, c}. Thus by Lemma 4.9 we have

Ψ(Hm−1 − {c}) = Ψ(Hm−1 − {a, b, c}) + Ψ(Hm−1 − {b, c})

≤ 2 ·Ψ(Hm−1 − {b, c}).

Proof (of Theorem 4.8). Take a hexagonal cactus C of length n − 1. Let us set

m = n − 1 and suppose that C is drawn as in Figure 4.20 with vertices labeled as

such, so that we may refer to this picture to aid this proof. We consider three cases

of extending C by an nth hexagon hn.

hn−2 hn−1 hn· · ·

a b

c

d e

f

j i h g

k

Figure 4.21 The hexagonal cactus CP.

Case 1. The hexagon hn attaches in the para position to the vertex f and let

us denote the resulting graph by CP , see Figure 4.21. To compute Ψ(CP ) we make

use of Lemma 4.10. Consider maximal matchings in CP containing the edge bc. The

remaining edges of the matching must be a maximal matching of Hn−2−{b, c} and a

maximal matching of Hn−1,n−c. By direct counting, we find that Ψ(Hn−1,n−c) = 11

and hence, the number of maximal matchings containing the edge bc is 11 ·Ψ(Hn−2−
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{b, c}). We count the maximal matchings containing the edges ci, cd, or ch as well as

the maximal matchings containing all the edges ab, de, ji, and hg similarly, to obtain

Ψ(CP ) =11(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 20 ·Ψ(Hn−2 − c)

+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}).

hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 4.22 The hexagonal cactus CM.

Case 2. The hexagon hn attaches in the meta position to the vertex e and let

us denote the resulting graph by CM , see Figure 4.22. Counting similarly to Case 1

above we obtain

Ψ(CM) =17(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 22 ·Ψ(Hn−2 − c)

+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).

Case 3. The hexagon hn attaches in the ortho position to the vertex d and let

us denote the resulting graph by CO, see Figure 4.23. Counting as in Cases 1 and 2,

Ψ(CO) =15(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 18 ·Ψ(Hn−2 − c)

+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).

Now Ψ(CM) ≥ Ψ(CO) follows immediately by comparing terms. By Lemma 4.9,

we have Ψ(Hn−2−c) ≥ Ψ(Hn−2−{a, b, c, i, j}) and by comparing the remaining terms
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hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 4.23 The hexagonal cactus CO.

we see that Ψ(CM) ≥ Ψ(CP ). The preceding shows that attaching a hexagon in the

meta position yields the most maximal matchings, implying

Ψ(Gn) ≤ Ψ(Mn)

as desired.

To get the remaining inequality of our theorem, we need only show that Ψ(CO) ≥

Ψ(CP ). Now we must have either (i) or (ii) of Lemma 4.11, say (i) holds. Then

4 ·Ψ(Hn−2−{b, c}) ≥ 2 ·Ψ(Hn−2− c) and by Lemma 4.9 we have Ψ(Hn−2−{c, i}) ≥

Ψ(Hn−2 − {a, b, c, i, j}), showing that

Ψ(CO) ≥ 11Ψ(Hn−2 − {b, c}) + 13Ψ(Hn−2 − {c, i}) + 20 ·Ψ(Hn−2 − c)

+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}). (4.1)

Now by comparing the terms of Ψ(CP ) with the inequality (4.1), it follows that

Ψ(CO) ≥ Ψ(CP ), which completes the proof.

It is instructive to compare the above results with the corresponding results for

all matchings and for independent sets from reference [18] (Theorems 3.23 and 4.14,

respectively). It can be seen that with respect to the richest chains, the number

of maximal matchings behaves more like the number of independent sets than the

number of all matchings. A possible explanation might be the fact that maximal
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matchings in any graph G are in a bijective correspondence with nice independent

sets in G. (A set of vertices S is nice if G− S has a perfect matching.)

4.4 Benzenoid chains

Generating functions

Now we turn our attention to benzenoid chains. Here the connectivity increases to

two, and one can expect that this will result in longer recurrences, as indicated in

[20]. This is, indeed, the case.

Using the same techniques outlined in subsection 4.3, we obtain ordinary generat-

ing functions for the number of maximal matchings in the benzenoid chains Ln, Zn,

and Hn.

Ln 1 2 · · · n L1
n 1 2 · · · n

L2
n 1 2 · · · n L3

n 1 2 · · · n

Figure 4.24 Auxiliary graphs for Ln.

Lemma 4.12. Let `n be the number of maximal matchings in Ln and `in be the num-

ber of maximal matchings in the auxiliary graph Lin in Figure 4.24. Then

(i) `n = `1
n−1 + `n−1 + 2`2

n−2,

(ii) `1
n = 2`1

n−1 + `n−1 + 2`3
n−1,

(iii) `2
n = `3

n + `1
n−1 + `3

n−1,
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(iv) `3
n = 2`1

n−1 + `2
n−1 + `2

n−2,

with the initial conditions `0 = 1, `1 = 5, `1
0 = 2, `2

0 = 3, `3
0 = 2, and `3

1 = 7.

Proof.

a

b

c

d

e

1 2 · · · n

Figure 4.25 Ln with labeled edges a-c.

Part (i) Refering to Figure 4.25, any maximal matching of Ln must contain

exactly one of the following sets of edges: a, b, c, or {b, c}. For any maximal matching

containing the edge a, the remaining edges must be a maximal matching of the

subgraph L1
n−1. If a maximal matching contains the edges {b, c}, the remaining edges

must be a maximal matching of Ln−1. For any maximal matching containing the

edge b, the remaining edges must be a maximal matching of L2
n−2 and the same holds

for any maximal matching containing c. Hence the recursion (i) holds.

a

b

c

d

e

1 2 · · · n

Figure 4.26 L1
n with labeled edges a-e.

Part (ii) As in Figure 4.26, any maximal matching of L1
n must contain exactly

one of the following sets of edges: a, {b, c}, {d, e}, {b, e}, or {c, d}. If such a maximal

matching contains a, then the remaining edges in the matching must give a maximal

matching of the subgraph L1
n−1; the same holds for any maximal matching containing

{b, c}. If a maximal matching contains the edges {d, e}, then the remaining edges
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must be a maximal matching of Mn−1. If a maximal matching contains the edges

{b, e}, then the remaining edges in the matching give a maximal matching of L3
n−1;

the same holds for any maximal matching containing the edges {c, d}. Thus the

claimed recursion holds.

ab

cd

1 2 · · · n

Figure 4.27 L2
n with labeled edges a-d.

Part (iii) Refering to Figure 4.27, any maximal matching of L2
n must contain

exactly one of the following sets of edges: a, {b, c}, or {b, d}. If such a maximal

matching contains a, then the remaining edges in the matching must give a maximal

matching of the subgraph L3
n. If a maximal matching contains the edges {b, c}, then

the remaining edges give a maximal matching of L1
n−1. If the maximal matching

contains the edges {b, d}, then the remaining edges must be a maximal matching of

L3
n−1. Hence the recursion (iii) holds.

a

bc

de

1 2 · · · n

Figure 4.28 L3
n with labeled edges a-e.

Part (iv) Refering to Figure 4.28, any maximal matching of L3
n must contain

exactly one of the following sets of edges: a, b, {c, d}, or {c, e}. If such a maximal

matching contains a or {c, d}, then the remaining edges in the matching must give

a maximal matching of the subgraph L1
n−1. If a maximal matching contains the

edge b, then the remaining edges must be a maximal matching of L2
n−1. If a maximal
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matching contains the edges {c, e}, then the remaining edges give a maximal matching

of L2
n−2. Hence we get the recursion (iv).

Zn 1
2
· · · n Z1

n 1
2
· · · n

Z2
n 1

2
· · · n Z3

n 1
2
· · · n

Z4
n 1

2
· · · n Z5

n 1
2
· · · n

Figure 4.29 Auxiliary graphs for Zn.

Lemma 4.13. Let zn be the number of maximal matchings in Zn and zin be the num-

ber of maximal matchings in the auxiliary graph Zi
n in Figure 4.29. Then

(i) zn = z1
n−1 + z2

n−1 + z3
n−2,

(ii) z1
n = 2z2

n−1 + z4
n−2 + z5

n−1 + z3
n−2 + z2

n−2,

(iii) z2
n = zn + z5

n−1 + zn−1,

(iv) z3
n = 2z2

n−1 + z3
n−1 + z1

n−1 + z5
n−1,

(v) z4
n = zn + z5

n−1 + zn−1 + z2
n−1 + z3

n−1,

(vi) z5
n = z5

n−1 + z4
n−2 + z2

n−1 + z3
n−2 + zn−1,

with the initial conditions z0 = 1, z1 = 5, z1
0 = 2, z1

1 = 9, z2
0 = 2, z3

0 = 3, z4
0 = 4,

z5
0 = 2, and z5

1 = 7.
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Proof.

a

b

c

d

1

2

· · · n

Figure 4.30 Zn with labeled edges a-d.

Part (i) Refering to Figure 4.30, any maximal matching of Zn must contain

exactly one of the following sets of edges: a, b, or {c, d}. For any maximal matching

containing the edge a, the remaining edges must be a maximal matching of the

subgraph Z1
n−1. If a maximal matching contains the edge b, then the remaining edges

must give a maximal matching of Z2
n−1. Lastly, if a maximal matching contains the

edges {b, c}, the remaining edges must be a maximal matching of Z3
n−2. Hence the

recursion (i) holds.

a

b

d

c

f

e

g

1

2

· · · n

Figure 4.31 Z1
n with labeled edges a-g.

Part (ii) As in Figure 4.31, any maximal matching of Z1
n must contain exactly

one of the following sets of edges: {a, b}, c, {d, e}, {a, e, f}, {a, e, g}, or {b, d}. If such

a maximal matching contains {a, b} or c, then the remaining edges in the matching

must give a maximal matching of the subgraph Z2
n−1. If a maximal matching contains

the edges {d, e}, then the remaining edges must be a maximal matching of Z4
n−2. If a

maximal matching contains the edges {a, e, f} or {a, e, g}, then the remaining edges
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in the matching give a maximal matching of Z3
n−2 or Z2

n−2, respectively. If a maximal

matching contains the edges {b, d}, then the remaining edges must be a maximal

matching of Z5
n−1. Thus the claimed recursion holds.

a

b

d
c

1

2

· · · n

Figure 4.32 Z2
n with labeled edges a-d.

Part (iii) Refering to Figure 4.32, any maximal matching of Z2
n must contain

exactly one of the following sets of edges: a, {b, c}, or {b, d}. If such a maximal

matching contains a, then the remaining edges in the matching must give a maximal

matching of the subgraph Zn. If a maximal matching contains the edges {b, c}, then

the remaining edges give a maximal matching of Z5
n−1. If the maximal matching

contains the edges {b, d}, then the remaining edges must be a maximal matching of

Zn−1. Hence the recursion (iii) holds.

d

a

e

b

c

1

2

· · · n

Figure 4.33 Z3
n with labeled edges a-e.

Part (iv) Refering to Figure 4.33, any maximal matching of Z3
n must contain

exactly one of the following sets of edges: {a, d}, {a, e}, {b, d}, {b, e}, or {c, d}. If

such a maximal matching contains {a, d}, then the remaining edges in the matching

must give a maximal matching of the subgraph Z3
n−1. If a maximal matching contains
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the edges {a, e}, then the remaining edges must be a maximal matching of Z2
n−1.

If a maximal matching contains the edge {b, d}, then the remaining edges give a

maximal matching of Z1
n−1. If a maximal matching contains the edges {b, e}, then the

remaining edges give a maximal matching of Z5
n−1. If a maximal matching contains

the edges {c, d}, then the remaining edges give a maximal matching of Z2
n−1. Hence

we get the recursion (iv).

a

c

b

d

f
e

1

2

· · · n

Figure 4.34 Z4
n with labeled edges a-f .

Part (v) Refering to Figure 4.34, any maximal matching of Z4
n must contain

exactly one of the following sets of edges: {a, c}, {a, d, e}, {a, d, f}, {b, c}, or {b, d}.

If such a maximal matching contains {a, c}, then the remaining edges in the matching

must give a maximal matching of the subgraph Zn. If a maximal matching contains

the edges {a, d, e}, then the remaining edges give a maximal matching of Z5
n−1. If the

maximal matching contains the edges {a, d, f}, then the remaining edges must be a

maximal matching of Zn−1. If the maximal matching contains the edges {b, c}, then

the remaining edges must be a maximal matching of Z3
n−1. If the maximal matching

contains the edges {b, d}, then the remaining edges must be a maximal matching of

Z2
n−1. Hence the recursion (iii) holds.

Part (vi) Refering to Figure 4.35, any maximal matching of Z5
n must contain

exactly one of the following sets of edges: {a, c}, {a, e}, b, {c, d}, or {d, e}. If such

a maximal matching contains {a, c}, then the remaining edges in the matching must

give a maximal matching of the subgraph Z5
n−1. If a maximal matching contains
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c

a

b

d

e

1

2

· · · n

Figure 4.35 Z5
n with labeled edges a-e.

{a, e}, then the remaining edges in the matching must give a maximal matching of

Z4
n−2. If a maximal matching contains b, then the remaining edges in the matching

must give a maximal matching of Z2
n−1. If a maximal matching contains {c, d}, then

the remaining edges in the matching must give a maximal matching of Zn−1. If a

maximal matching contains {d, e}, then the remaining edges in the matching must

give a maximal matching of Z3
n−2. The recursion (iv) now follows.

Hn 1 2
...

n

H1
n 1 2

...
n

H2
n 1 2

...
n

H3
n 1 2

...
n

H4
n 1 2

...
n

H5
n 1 2

...
n

Figure 4.36 Auxiliary graphs for Hn.

Lemma 4.14. Let hn be the number of maximal matchings in Hn and hin be the

number of maximal matchings in the auxiliary graph H i
n in Figure 4.36. Then
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(i) hn = hn−1 + h1
n−1 + h2

n−2 + h3
n−2,

(ii) h1
n = 2h4

n−1 + h5
n−1 + h3

n−2 + 2h4
n−2 + h5

n−2,

(iii) h2
n = h3

n−1 + 2h4
n−1 + 2h4

n−2 + 2h3
n−2 + h5

n−2,

(iv) h3
n = h5

n + hn,

(v) h4
n = hn + h2

n−1,

(vi) h5
n = h2

n−1 + h4
n−1 + h1

n−1,

with the initial conditions h0 = 1, h1 = 5, h1
0 = 2, h1

1 = 9, h2
0 = 3, h2

1 = 11, h3
0 = 3,

h4
0 = 2, and h5

0 = 2.

Proof.

a

b c

d

e

1 2

...

n

Figure 4.37 Hn with labeled edges a-e.

Part (i) Refering to Figure 4.37, any maximal matching of Hn must contain

exactly one of the following sets of edges: {a, c}, b, {a, e}, or {c, d}. For any max-

imal matching containing the edges {a, c}, the remaining edges must be a maximal
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matching of the subgraph Hn−1. If a maximal matching contains the edge b, then

the remaining edges must give a maximal matching of H1
n−1. Lastly, if a maximal

matching contains the edges {a, e} or {c, d}, the remaining edges must be a maximal

matching of H2
n−2 or H3

n−2. Hence the recursion (i) holds.

a

b

c

e f

d

g
h

1 2

...

n

Figure 4.38 H1
n with labeled edges a-h.

Part (ii) As in Figure 4.38, any maximal matching of H1
n must contain exactly

one of the following sets of edges: {a, b}, c, {d, e, g}, {d, e, h}, {a, e}, {b, d, f}, or

{b, d, g}. If such a maximal matching contains {a, b} or c, then the remaining edges

in the matching must give a maximal matching of the subgraph H4
n−1. If a maximal

matching contains the edges {d, e, g}, then the remaining edges must be a maximal

matching of H4
n−2. If a maximal matching contains the edges {d, e, h}, then the

remaining edges in the matching give a maximal matching of H5
n−2. If a maximal

matching contains the edges {a, e}, then the remaining edges must be a maximal

matching of H5
n−1. If a maximal matching contains the edges {b, d, f} or {b, d, g},

then the remaining edges must be a maximal matching of H3
n−2 or H4

n−2, respectively.

Thus the claimed recursion holds.

Part (iii) Refering to Figure 4.39, any maximal matching of H2
n must contain ex-

actly one of the following sets of edges: {a, d}, {a, c}, {a, e, f, h}, {a, e, f, i}, {a, e, g},

{b, d}, {b, e, g}, or {b, e, h}. If such a maximal matching contains {a, d}, then the re-
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a

d

b

c

f g

e

h

i

1 2

...

n

Figure 4.39 H2
n with labeled edges a-i.

maining edges in the matching must give a maximal matching of the subgraph H3
n−1.

If a maximal matching contains the edges {a, c}, then the remaining edges give a max-

imal matching of H4
n−1. If a maximal matching contains the edges {a, e, f, h}, then

the remaining edges must be a maximal matching of H4
n−2. If a maximal matching

contains the edges {a, e, f, i}, then the remaining edges must be a maximal match-

ing of H5
n−2. If a maximal matching contains the edges {a, e, g}, then the remaining

edges must be a maximal matching of H3
n−2. If a maximal matching contains the

edges {b, d}, then the remaining edges must be a maximal matching of H4
n−1. If a

maximal matching contains the edges {b, e, g}, then the remaining edges must be a

maximal matching of H3
n−2. If a maximal matching contains the edges {b, e, h}, then

the remaining edges must be a maximal matching of H4
n−2. Hence the recursion (iii)

holds.

Part (iv) Refering to Figure 4.40, any maximal matching of H3
n must contain

either the edge a or the edge b. If such a maximal matching contains a, then the

remaining edges in the matching must give a maximal matching of the subgraph

H5
n. If a maximal matching contains the edge b, then the remaining edges must be a

maximal matching of Hn, proving (iv).

Part (v) Refering to Figure 4.41, any maximal matching of H4
n must contain
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a

b

1 2

...

n

Figure 4.40 H3
n with labeled edges a and b.

a b

1 2

...

n

Figure 4.41 H4
n with labeled edges a and b.

either the edge a or the edge b. If such a maximal matching contains a, then the

remaining edges in the matching must give a maximal matching of the subgraph

Hn. If a maximal matching contains the edge b, then the remaining edges must be a

maximal matching of H2
n−1. Hence the recursion (iii) holds.

Part (vi) Refering to Figure 4.42, any maximal matching of H5
n must contain

exactly one of the following edges: a, b, or c. If such a maximal matching contains

a, then the remaining edges in the matching must give a maximal matching of the

subgraph H2
n−1. If a maximal matching contains b, then the remaining edges in the

matching must give a maximal matching of H4
n−1. If a maximal matching contains

c, then the remaining edges in the matching must give a maximal matching of H1
n−1.
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a

b

c

1 2

...

n

Figure 4.42 H5
n with labeled edges a-c.

The recursion (iv) now follows.

Theorem 4.15. Let L(x), Z(x), and H(x) be the ordinary generating functions for

the sequences `n, zn, and hn, respectively. Then

(i)

L(x) = 1 + x− x3

1− 4x− x4 − x5 ,

(ii)

Z(x) = 1 + 2x+ 4x2 + 4x3 + 6x4 + 4x5 + x6

1− 3x− x2 − 6x3 − 7x4 − 7x5 − 5x6 − x7 ,

(iii)

H(x) = 1 + 4x+ 8x2 + 8x3 + 7x4 + 4x5 + 2x6

1− x− 7x2 − 12x3 − 6x4 − 7x5 − 4x6 − 2x7 .

Proof.

Part (i) Let Li(x) be the ordinary generating function for the sequences `in for
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i = 1, 2, 3. Then Lemma 4.12 implies the following system of equations hold:

L(x)− 1− 5x
x2 = L1(x)− 2

x
+ L(x)− 1

x
+ 2L2(x)

L1(x)− 2
x

= 2L1(x) + L(x) + 2L3(x)

L2(x)− 3
x

= L3(x)− 2
x

+ L1(x) + L3(x)

L3(x)− 2− 7x
x2 = 2

(
L1(x)− 2

x

)
+ L2(x)− 3

x
+ L2(x).

Solving this system yields (i).

Part (ii) Let Zi(x) be the ordinary generating function for the sequences zin for

i = 1, 2, . . . , 6. Then Lemma 4.13 implies the following system of equations hold:

Z(x)− 1− 5x
x2 = Z1(x)− 2

x
+ Z2(x)− 2

x
+ Z3(x)

Z1(x)− 2− 9x
x2 = 2

(
Z2(x)− 2

x

)
+ Z4(x) + Z5(x)− 2

x
+ Z3(x) + Z2(x)

Z2(x)− 2
x

= Z(x)− 1
x

+ Z5(x) + Z(x)

Z3(x)− 3
x

= 2Z2(x) + Z3(x) + Z1(x) + Z5(x)

Z4(x)− 4
x

= Z(x)− 1
x

+ Z5(x) + Z(x) + Z2(x) + Z4(x)

Z5(x)− 2− 7x
x2 = Z5(x)− 2

x
+ Z4(x) + Z2(x)− 2

x
+ Z3(x) + Z(x)− 1

x
.

Solving this system yields (ii).

Part (iii) Let H i(x) be the ordinary generating function for the sequences hin
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for i = 1, 2, . . . , 6. Then Lemma 4.14 implies the following system of equations hold:

H(x)− 1− 5x
x2 = H(x)− 1

x
+ H1(x)− 2

x
+H2(x) +H3(x)

H1(x)− 2− 9x
x2 = 2

(
H4(x)− 2

x

)
+ H5(x)− 2)

x
+H3(x) + 2H4(x) +H5(x)

H2(x)− 3− 11x
x2 = H3(x)− 3

x
+ 2

(
H4(x)− 2

x

)
+ 2H4(x) + 2H3(x) +H5(x)

H3(x) = H(x) +H5(x)
H4(x)− 2

x
= H(x)− 1

x
+H2(x)

H5(x)− 2
x2 = H2(x) +H4(x) +H1(x).

Solving this system yields (i).

Since L(x), Z(x), andH(x) are rational functions, we can examine their denominators

to obtain linear recurrences for the sequences `n, zn, and hn. The initial conditions

can be verified by direct computations.

Corollary 4.16.

(i) `n = 4`n−1 + `n−4 + `n−5

with initial conditions `0 = 1, `1 = 5, `2 = 20, `3 = 79, and `4 = 317,

(ii) zn = 3zn−1 + zn−2 + 6zn−3 + 7zn−4 + 7zn−5 + 5zn−6 + zn−7

with initial conditions z0 = 1, z1 = 5, z2 = 20, z3 = 75, z4 = 288, z5 = 1105, and

z6 = 4234,

(iii) hn = hn−1 + 7hn−2 + 12hn−3 + 6hn−4 + 7hn−5 + 4hn−6 + 2hn−7
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with initial conditions h0 = 1, h1 = 5, h2 = 20, h3 = 75, h4 = 288, h5 = 1094, and

h6 = 4171.

Again we can use Darboux’s Theorem to deduce the asymptotics of the sequences

`n, zn, and hn. The smallest modulus singularity of L(x) is approximately x =

0.248804. Hence, the asymptotic behavior of `n is given by `n ∼ 4.01923n+1 for large

n. Similarly, we deduce that zn ∼ 3.83256n+1 and hn ∼ 3.81063n+1 for large n.

Extremal structure

In this subsection, we prove the linear polyacene has most maximal matchings among

all benzenoid chains of the same length.

Theorem 4.17. Let Gn be a benzenoid chain of length n. Then

Ψ(Gn) ≤ Ψ(Ln).

Let Gm be an arbitrary benzenoid chain of length m. Observe that we can always

draw Gm as in Figure 4.43, where hm is a terminal hexagon and the hexagon adjacent

to the left of hm−1 may attach at any of the edges f, g, or h. Let us assume the

hexagons of Gm are labeled h1, . . . , hm according to their ordering in Figure 4.43

where (h1 is the other terminal hexagon).

hm−1 hm· · ·

a b

c

def

g

h x

y

z

Figure 4.43 A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the
benzenoid chain Gm.
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In what follows, let us adopt all of the same notation introduced in section 4.3.

We also make use of Lemma 4.9 introduced previously, since this holds for arbitrary

graphs.

Lemma 4.18. Any maximal matching of Gm must contain at least one of the edges

a, b, c, d or e. Moreover, any maximal matching of Gm contains exactly one of these

edges, or contains exactly one of the following pairs of edges: a and e, a and d, b and

e, or b and d.

Proof. Take a maximal matching M . For sake of contradiction, suppose M contains

none of the edges a, b, c, d or e. Then we could add the edge c to M , which is a

contradiction to M being a maximal matching. Hence at least one of the edges

a, b, c, d or e. The remaining part of the lemma follows by considering which pairs of

edges can belong to the same matching.

Proof. (of theorem 4.17). Take a benzenoid chain B of length n − 1. Let us set

m = n − 1 and suppose that B is drawn as in Figure 4.43 with edges labeled as

such, so that we may refer to this picture to aid this proof. We consider two cases of

extending B by an nth hexagon hn.

hn−2 hn−1 hn· · ·

a b

c

def

g

h x

y

z

Figure 4.44 The benzenoid chain BL.

Case 1. The hexagon hn attaches in the linear position to the edge y and let

us denote the resulting graph by BL, see Figure 4.44. To compute Ψ(BL) we make

use of Lemma 4.18 and count matchings based on which of the edges a, b, c, d, e are

saturated. Of the possibilities in Lemma 4.18, consider the maximal matchings of BL
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containing only the edge a. Such a matching must also contain the edges f and z, else

this matching would contain one of the other edges d or e. The remaining edges of

the matching must be a maximal matching of Hn−2 \ {a, f} and a maximal matching

of Hn−1,n \ z. By directly counting, we find that Ψ(Hn−1,n \ z) = 4 and hence, the

number of maximal matchings containing only the edge a is 4 ·Ψ(Hn−2 \ {a, f}). We

count the remaining cases from Lemma 4.18 similarly. We note that a Hn−1 \ c is

used to count maximal matchings containing the edges b or d, since these edges do

not belong to the subgraph Hn−2. For example, the number of maximal matchings

containing only the edge b is 3 ·Ψ(Hn−2 \ {c, f}). Thus

Ψ(BL) = 4 ·Ψ(Hn−2 \ {a, f}) + 3 ·Ψ(Hn−2 \ {c, f}) + 14 ·Ψ(Hn−2 \ c)

+ 4 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 9 ·Ψ(Hn−2 \ {a, e})

+ 7 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).

hn−2 hn−1

hn

· · ·

a b

c

def

g

h x

y

z

Figure 4.45 The benzenoid chain BK.

Case 2. The hexagon hn attaches in the kinky position to the edge z and let us

denote the resulting graph by BK, see Figure 4.45. Counting as in Case 1 above we
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obtain

Ψ(BK) = 6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)

+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})

+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).

Now considering the terms in Ψ(BL), by Lemma 4.9 we have

Ψ(Hn−2 \ {a, c}) ≥ Ψ(Hn−2 \ {a, f}),

Ψ(Hn−2 \ {c}) ≥ Ψ(Hn−2 \ {c, f}), and

Ψ(Hn−2 \ {a, e}) ≥ Ψ(Hn−2 \ {e, h}),

implying that

Ψ(BL) ≥6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)

+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})

+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e})

≥ Ψ(BK).

The above proves that attaching a hexagon linearly gives more maximal matchings

than attaching a hexagon in the kinky position. The inequality stated in the theorem

follows.

Again, we can see that the number of maximal matchings follows the same pattern

as the number of independent sets, contrary to the number of all and of perfect match-

ings. While the last two increase with the number of kinky hexagons, the number

of maximal matchings decreases. Further, unlike the number of perfect matchings

which does not discriminate between left and right kinks, the number of maximal

matchings seems to be sensitive to the direction of successive turns. It seems that

the helicenes have the smallest number of maximal matchings among all benzenoid

chains of the same length.
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4.5 Further developments

In this last section we list some unresolved problems and indicate some possible

directions of future research. We start by stating a conjecture about the extremal

benzenoid chains.

Conjecture 4.19. Let Bn be a benzenoid chain of length n. Then Ψ(Hn) ≤ Ψ(Bn).

Now we turn to some structural properties. The cardinality of any smallest max-

imal matching in G is called the saturation number of G. The saturation number is

of interest in the context of random sequential adsorption, since it gives the infor-

mation on the worst possible case of clogging the substrate; see [20] for a discussion

and [3, 19, 16] for some specific cases. However, it is not enough to know the size

of the worst possible case; it is also imprtant to know how (un)likely is it to hap-

pen. This brings us back to enumerative problems, since the answer to this question

depends on the ability to count maximal matchings of a given size. A neat way to

handle information about maximal matchings of different sizes is to use the maximal

matching polynomial. It was introduced in [20] and some of its basic properties were

established there. There are, however, many open questions about this polynomial.

For example, for ordinary (generating) matching polynomials [21, 38] we know that

their coefficients are log-concave. Is this valid also for maximal matching polynomi-

als? We have computed maximal matching polynomials explicitly for several families

of graphs, and we have enumerated maximal matchings in several other families. So

far, no counterexample has been found, but the proof still eludes us.

Another interesting thing to do would be to look at the dynamic aspect of the

problem, emulating the approach of Flory [22].

Finally, it would be interesting to extend our results on other classes of graphs,

such as rotagraphs, branching polymers, composite graphs and finite portions of

various lattices.
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