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Abstract

We explore the origins and implementation of the Kinetic Monte Carlo method on

a system of cells suspended in a liquid media. The situation presented herein has

applications in the emerging field of biofabrication, which may have lasting impacts

in medical science. The theory behind the method is explained in detail, starting

with its emergence in the 1960s, and two major improvements to the scaling of the

method are presented, along with a restriction to a special case. Finally, we give the

results of several simulations.
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Chapter 1

Background

In biology, morphogenesis refers to the process by which an organism achieves its form

in embryonic development. For multicellular organisms, morphogenesis determines

the types of cells which will comprise the fully formed organism, where those cells

are located within the body, the structures those cells will form, and their relative

sizes. Components of this process include organogenesis, the formation of organs,

and histogenesis, the process by which cells differentiate themselves.

One of the prevailing means of explaining how morphogenesis comes to pass is

through the idea of cellular self-organization, forming highly ordered systems of cells

out of predominantly disordered collections. This phenomenon is not unique to biolog-

ical systems. Examples in chemistry have been well-studied and applied in fields such

as nanotechnology [10]. Three biological self-organizational processes are described in

Cytosystems dynamics in self-organization of tissue architecture, by Yoshiki Sasai [6].

The second process mentioned therein is self-patterning, whereby cells spontaneously

form localized structures of homogeneous cell type, and the third is self-driven mor-

phogenesis, where localized control over the mechanics of the cells themselves drive

the formation of new structures. Our study will focus on the first process, cellular

self-assembly, which is the automatic striation of cells into a patterned structure.

Mechanisms for all of the aformentioned self-organizational processes exist in Sasai’s

paper, for the curious reader.
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Figure 1.1 Yoshiki Sasai, Cytosystems dynamics in
self-organization of tissue architecture, Nature,
493(7432):318-326, 2013/01/17, Figure 1.

For cellular self-assembly to occur, there must exist forces between cells driv-

ing their movement through the extracellular matrix, and they must have enough

motility to move past one another semi-freely. The Differential Adhesion Hypothesis,

proposed by Malcolm Steinberg in 1963 [8], states that cells may be treated similarly

to molecules of a viscoelastic liquid, forming bonds with one another, but ultimately

free to move past each other given enough force acting on them. We expect that

the resultant configuration will be a striated pattern in which the cells with the least

surface adhesion capabilities will engulf those with stronger adhesions, minimizing

the total energy in the system. These adhesion abilities depend on energy differences

between the cell types, where similar energies allow for stronger intercellular bonding.

This idea is confirmed, for instance, in the structure of our own organs, which are

layered with different cell types.

It is the objective to apply these ideas in the field of biofabrication, in which

collections of cells will give rise to a desireable morphological structure, say an organ

ready for transplant. A development dating back to 2006 [1], bioprinting involves the

placing of cellular aggregates layer by layer onto a scaffold in a manner similar to

that of a 3D printer. The placed aggregates are balls consisting of various cell types

and hydrogels, and after successful deposition, the structure is allowed to proceed
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with organogenesis unhindered in a liquid medium. It is of interest to the researcher,

therefore, to have an idea how the system will alter in time.

In order to accurately model how the Differential Adhesion Hypothesis will disturb

the initial placing of cells, we will use the Kinetic Monte Carlo method. For simplicity,

the model will assume that the cells are placed on a cubic grid, that each cell neither

dies nor reproduces, and that each cell has interactions only with the cells immediately

surrounding it. For every time step, each cell will have a determinable probability of

swapping positions with one of its neighbor cells. The striation will depend on the

surface tension parameters of each of the involved cell types and the hydrogels, and

KMC will account for this in the form of differing swapping probabilities of placed

cells, based on their own type and that of their neighbors.

In Chapter 2, we will discuss the history of the Kinetic Monte Carlo method, and

we will formulate the algorithm as it will be applied to the multicellular systems thus

far discussed. In Chapter 3, the manner in which KMC immediately applies to this

particular problem will be made more explicit, and we will present some results of

simulations.
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Chapter 2

Development of Kinetic Monte Carlo

2.1 Introduction

Kinetic Monte Carlo is an algorithm used to simulate the evolution of a discrete

network of objects that can interact with one another in any of a finite number of

probabilistically set ways. Though not the originator of the variable-time Monte

Carlo simulation, Daniel T. Gillespie provided an in-depth exploration of the topic

in 1977 [5]. In his paper, Gillespie stochastically described the evolution of systems

of chemicals. It is within this context that we will survey the development of Kinetic

Monte Carlo.

The first major improvement to the Gillespie algorithm we will discuss was pub-

lished by Michael A. Gibson and Jehoshua Bruck in 2000 [4]. By classifying the

potential reactions in the network according to an “indexed priority queue”, Gibson

and Bruck were able to improve the efficiency of the algorithm from linear to logarith-

mic time. Further improvements were made less than a decade later, by Alexander

Slepoy, Aidan P. Thompson, and Steven J. Plimpton, in 2008 [7], through a reac-

tion propensity grouping procedure, the computation time was further reduced to

constant-time.

However, the development of KMC discussed in Sections 2.2 through 2.4 is more

general than we require, as one of the assumptions we are making on the multicellular

system is that the cells occupy positions on a lattice. The lattice structure of the

cells simplifies things to an extent; in fact, the method for handling this situation was

4



published two years prior to Gillespie’s paper, by Bortz, Kalos, and Lebowitz [2]. In

Section 2.5, we will explore how KMC applies to the equivalent case of an Ising spin

system.

2.2 Gillespie KMC

Suppose we have a chemical system having a set X = {X(i)}Mi=1 denoting the number

of molecules of possible chemicals and a set R = {R(i)}Ni=1 of possible reactions of the

form
rn∑
i=1

R
(n)
i →

pn∑
i=1

P
(n)
i , (2.1)

where {R(n)
1 , R

(n)
2 , . . . , R(n)

rn
} are the reactants in the reaction R(n), and

{P (n)
1 , P

(n)
2 , . . . , P (n)

pn
} are the products. Note that not all the chemicals that can

possibly exist in the system are necessarily present at the time of initialization; how-

ever, it must be assumed that we may determine all possible reactants and products

in the system we seek to describe.

In order to simplify the proceedings, we make the assumption that a given reaction

will occur if all the reactant molecules collide.

Proposition 2.1. For any two-molecule reaction R(n), there exists a constant Cn,

depending on the total volume of the system, the temperature (the velocity of the

molecules), and the radii of all the involved molecules, such that the probability of a

R(n) reaction occurring within the next small time interval δt is Cnδt.

Proof. Without loss of generality, suppose that the reaction label is R(1). For now,

also assume that there is exactly one copy of each reactant in the system. Suppose

that the reactant m1 - of type R(1)
1 - has radius r1 and that the reactant m2 - of type

R
(1)
2 - has radius r2, then a collision will occur if the distance between the molecule

centers is less than or equal to r1 + r2.

5



Let v be the velocity of m1 relative to m2. Since a collision is equivalent to the

edge of m2 being within the cylindrical, semisphere-capped path traced by m1 over

the next time interval, it suffices to find the probability of a randomly placed point

being within the space traced by a sphere of radius r1 + r2 in the system. If the

volume of the whole system is V , then the probability is therefore

C1δt = π(r1 + r2)2vδt

V
. (2.2)

Now, suppose that there are X1 copies of reactant R(1)
1 and X2 copies of reactant

R
(1)
2 . If the average probability of some fixed pair of these molecules reacting over the

next time interval is K1δt, then the total probability of an instance of reaction R(1)

occurring in the next time interval is C1 = X1X2K1δt. If R(1)
1 = R

(1)
2 , and there are

X copies of the reactant in the space, then we find the probability of an R(1) reaction

to be C1 = X(X − 1)K1δt.

Of course, there is nothing unique about the aforementioned situations, and we

may find such probabilities for all potential reactions in the space in a similar manner.

Theorem 2.2. For each reaction R(n), there exists a constant Cn, depending on

the total volume of the system, the temperature, and the radii of all the involved

molecules, such that the probability of a R(n) reaction occurring within the next small

time interval δt is Cnδt.

Given that we have the means to find all these constants {Ci}Ni=1, define for

each reaction R(n) a time-dependent and molecular-distribution-dependent probabil-

ity function

Pt(τ, n)δt, (2.3)

which yields the probability that, given current time t and current molecular distri-

bution {X(i)}Mi=1, the next reaction in the system will be of type R(n) and will happen

6



within the time interval (t+ τ, t+ τ + δt). Additionally, we define

Pt(τ,∅), (2.4)

to be the probability that, given current time t and current molecular distribution

{X(i)}Mi=1, no reaction occurs within the time interval (t, t+ τ ].

Using these definitions, we note that Pt(τ, n)δt may be represented as the product

of the probability that no reaction occurs in the first τ time units and the probability

that a R(n) reaction occurs within δt time units:

Pt(τ, n)δt = Pt(τ,∅)Cnδt. (2.5)

Since Pt(τ, n)δt is expressible in this way, we will seek a more easily usable ex-

pression for it by way of Pt(τ,∅).

Theorem 2.3. Pt(τ, n)δt = Cnδt exp(−τ ∑nCn)

Proof. Consider the probability that no reaction occurs within the time interval

(t, t+ τ + δt], and observe that this is equal to the probability that no reaction occurs

in (t, t+ τ ] times the probability that no reaction occurs in (t+ τ, t+ τ + δt]:

Pt(τ + δt,∅) = Pt(τ,∅)Pt+τ (δt,∅) (2.6)

Now, note the probability that no reaction will occur within the next δt time units

is the product of the probabilities that no R(n) reaction will occur for each n.

Pt+τ (δt,∅) =
∏
n

(1− Cnδt)

= 1−
∑
n

Cnδt+O
(
(δt)2

) (2.7)

Hence,

Pt(τ + δt,∅) = Pt(τ,∅)
(

1−
∑
n

Cnδt+O
(
(δt)2

))

= Pt(τ,∅) + Pt(τ,∅)δt
(
−
∑
n

Cn +O (δt)
)
.

(2.8)

7



Therefore,

Pt(τ + δt,∅)− Pt(τ,∅)
δt

= Pt(τ,∅)
(
−
∑
n

Cn +O (δt)
)
. (2.9)

Taking the limit as δt approaches zero,

P ′t(τ,∅) = −Pt(τ,∅)
∑
n

Cn. (2.10)

Finally, integrating with respect to τ , we obtain

Pt(τ,∅) = exp(−τ
∑
n

Cn). (2.11)

Hence, the result holds.

Now that we have a general expression for the probability of a given reaction

in hand, we will devise the scheme by which we will simulate the evolution of the

chemical system. The Monte Carlo method will be the framework, but in the interest

of efficiency, it would be ideal if there were no wasted steps in the algorithm. Due

to this consideration, we seek time intervals that will dynamically change so that

precisely one reaction will take place per time step. To accomplish this, our time

intervals and the reactions that will be conducted will both be generated according

to the probability distribution that has been constructed.

We precondition the probability function as

Pt(τ, n)δt = P 1
t (τ)δt · P 2

t (n|τ), (2.12)

i.e. the probability that the next reaction is of type R(n) and takes place in the time

interval (t+τ, t+τ +δt) is equal to the probability that the next reaction of any type

takes place in the interval (t + τ, t + τ + δt) times the probability that the reaction

that takes place is of type R(n), given that the reaction is in the interval.

We can find P 1
t (τ)δt easily enough, as this will be the sum of the probabilities for

each individual reaction taking place in the interval

P 1
t (τ)δt =

∑
n

Pt(τ, n)δt. (2.13)

8



Then, we find P 2
t (n|τ) by combining (2.12) and (2.13)

P 2
t (n|τ) = Pt(τ, n)δt

P 1
t (τ)δt

= Pt(τ, n)δt∑
n Pt(τ, n)δt .

(2.14)

Definition 2.4. For a fixed probability distribution P (x), we define the cumulative

probability F (x) =
x∫
−∞

P (ν) dν. Observe that 0 ≤ F (x) ≤ 1. We say that a random

value y is chosen with respect to P (x) if for a uniformly distributed random number

r in [0, 1], we have y = F−1(r). Observe further that this inverse is always uniquely

defineable, as F (x) increases uniformly over all of R.

Now, to pick τ and n for use in a time step, we need only pick them according to

their respective probability distributions.

Theorem 2.5. For uniformly distributed random numbers r1 and r2 in [0, 1], τ picked

with respect to P 1
t (τ) has the value 1∑

k
Ck

log
(

1
r1

)
and n picked with respect to P 2

t (n|τ)

has the value of n for which
n−1∑
k=1

Ck < (∑k Ck) r2 ≤
n∑
k=1

Ck, where
0∑

k=1
Ck is defined to

be 0.

Proof. Let F1(τ) be the cumulative probability distribution of P 1
t (τ) and let F2(n)

be the cumulative probability distribution of P 2
t (n|τ).

Applying Theorem 2.3, (2.13), and the fact that P 1
t (τ) = 0 for τ < 0 (since P 1

t is

9



predictive, but not historical), we have

F1(τ) =
τ∫

−∞

P 1
t (τ̂) dτ̂

=
τ∫

0

∑
k

Pt(τ̂ , k) dτ̂

=
τ∫

0

∑
k

Ck exp(−τ̂
∑
k

Ck) dτ̂

=
(∑

k

Ck

) τ∫
0

exp(−τ̂
∑
k

Ck) dτ̂

= − exp(−τ̂
∑
k

Ck)
∣∣∣∣τ
0

= 1− exp(−τ
∑
k

Ck)

(2.15)

Hence, for uniformly distributed r in [0, 1],

F−1
1 (r) = 1∑

k Ck
log

( 1
1− r

)

= 1∑
k Ck

log
( 1
r1

) (2.16)

for another uniformly distributed random number r1 = 1− r in [0, 1].

Now, suppose that r2 is uniformly distributed in [0, 1]. Applying Theorem 2.3 and

10



(2.14), we have

F2(n) =
n∫

−∞

P 2
t (n̂|τ) dn̂

=
n∫

−∞

Pt(τ, n̂)∑
k Pt(τ, k) dn̂

=
n∫

−∞

Cn̂ exp(−τ ∑k Ck)∑
k Ck exp(−τ ∑k Ck)

dn̂

=
n∫

−∞

Cn̂∑
k Ck

dn̂

= 1∑
k Ck

n∫
−∞

Cn̂ dn̂

(2.17)

Since the Cks are a discrete collection, this leads to the conclusion

F2(n) = 1∑
k Ck

n∑
k=1

Ck (2.18)

Hence, if F−1
2 (r2) ≈ n, then r2 ≈ F2(n) = 1∑

k
Ck

n∑
k=1

Ck, and therefore, taking
0∑

k=1
Ck = 0,

1∑
k Ck

n−1∑
k=1

Ck < r2 ≤
1∑
k Ck

n∑
k=1

Ck (2.19)

as desired.

Having obtained a method for picking τ and n dynamically according to the

current state of the system, we may now proceed in outlining the simulation algorithm,

wherein we shall use iter to denote the number of iterations of the algorithm we have

made, and imax to denote the maximum number we wish to conduct.

11



Step 0: Input the molecular populationsX =

{X(k)}Mk=1, set t and iter equal to 0, and ini-

tialize your random number generator.

Step 1: Generate reaction rates Ck for k =

1, . . . , N and calculate ∑k Ck.

Step 2: Generate random numbers r1 and r2

and calculate τ and n according to Theorem

2.5.

Step 3: Increase t by τ, do a single reaction

of type n, adjust the population levels of X,

and increase iter by 1.

if iter < imax

Proposition 2.6. The Gillespie simulation algorithm scales in O(N) time.

Proof. Recall that N is the total number of potential reactions in the system. Since

it must be done on an element-by-element basis, computing Ck for each k takes O(N)

operations. Similarly, computing the sum ∑
k Ck takes N − 1 ∼ O(N) operations.

Calculating τ is O(1) time, since it is just the result of a single random number

generation combined with one floating-point operation. On the other hand, comput-

ing n takes O(N) time, as we must scan through the list of partial sums to find the

first value m for which the sum
m∑
k=1

Ck exceeds the generated random number r2 times

the total sum. This may happen quickly, or it may not occur until m = N .

Actually performing the reaction scales as O(1), since the degree to which the size

of molecular populations can be effected by a single reaction is bounded from above

by the reaction in {R(k)}Nk=1 having the largest combined number of reactants and

products.

12



While O(N) computation time isn’t ideal, Gillespie’s method provided the Monte

Carlo algorithm with the significant improvement of removing wasted computation

steps. Since Monte Carlo used fixed time steps, some of them would result in no

actual change in the system. With the variable-time scheme proposed in Gillespie’s

research, this was no longer an issue. Each time interval contains precisely one

reaction. However, the computation time of the algorithm has seen marked reductions

since its inception. Gibson and Bruck provide us with our first.

2.3 Gibson-Bruck KMC

One particularly inefficient piece of Gillespie’s original algorithm is in the update step

for the collection of reaction propensities {Ck}Nk=1. Since not every Ck will necessarily

be affected by the occurrence of a given reaction, we seek to alleviate this problem

by categorizing the reactions by those other reactions that they influence.

Definition 2.7. We define the dependency graph of the system to be the directed

graph whose vertex set consists of all the reactions {R(i)}Ni=1. We will place a directed

edge from the vertex R(m) to the vertex R(n) if and only if the set of reactants

and products in R(m), namely {R(m)
1 , . . . , R(m)

rm
}⋃{P (m)

1 , . . . , P (m)
pm
}, shares a nontrivial

intersection with the set of reactants in R(n), {R(n)
1 , . . . , R(n)

rn
}.

Assuming that such a dependency graph D can be constructed, we may now up-

date the reaction propensities in constant time, bounded from above by the degree

of the highest degree vertex R(v) in D. For, suppose that a reaction of type R(v) hap-

pens, then for each reaction R(i) not in the neighborhood of R(v), none of the reactant

molecules in R(i) will be altered by the occurrence of R(v); hence, the probability that

those molecules collide and react in the space will also be unaltered. On the other

hand, if R(i) is in the neighborhood of R(v), then at least one of the molecules that

13



are required for R(i) has seen its concentration in the space perturbed; therefore, the

reaction rate is subject to change.

So, performing an update on the values {Ck}Nk=1 only requires a limited number

of actual updates. Because of the sparsity of this step, recalculating the sum ∑
k Ck

will also be reduced to constant time. Suppose without loss of generality that the

values C1, . . . , CL were updated to their new values C ′1, . . . , C ′L, and the rest of the

values remain static CL+1 = C ′L+1, . . . , CN = C ′N . Then the sum may be recalulated

as
N∑
k=1

C ′k =
N∑

k=L+1
C ′k +

L∑
k=1

C ′k

=
N∑

k=L+1
Ck +

L∑
k=1

Ck +
L∑
k=1

C ′k −
L∑
k=1

Ck

=
N∑
k=1

Ck +
L∑
k=1

(C ′k − Ck),

(2.20)

with the sum
L∑
k=1

(C ′k − Ck) taking only constant time due to the bounds on the size

of L.

With this, all steps of the algorithm take constant time with the exception of

calculating n, our randomly determined selection for which reaction will take place

in a given time step. In order to improve the calculation time here, we will construct

another graph.

Definition 2.8. We define the indexed priority queue of the system to be a binary tree

with weighted vertices whose leaves have weights equal to the reaction propensities

{Ck}Nk=1, and whose non-leaf nodes have weights equal to the sum of the weights of

the two vertices beneath them on the tree (Figure 2.1).
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Figure 2.1 Demonstration of the form of an
indexed priority queue.

Suppose we are at the step of Gillespie’s algorithm in which we are tasked with

finding n, the index of the reaction which will be conducted. We proceed as follows.

Step 1: Begin at the root of the tree with the
search value r2

∑
k Ck = S, and suppose the

left child node has weight pl.

Step 2: Iterate: If S ≤ pl, branch left; if
S > pl, brach right and set S = S - pl.

End step: Stop once you reach a leaf and
conduct the reaction so selected.

Figure 2.2 Selection method in an indexed priority
queue.

We present the following claim without proof.

Theorem 2.9. The reaction selected by the procedure outlined in Figure 2.2 is the

same n as would be chosen in the original Gillepsie algorithm.
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Now, once the appropriate reaction has been selected, we alter the reaction

propensities according to the dependency graph, and we percolate the changes up-

ward through the indexed priority queue by recomputing partial sums as in (2.20).

This leads to our updated Gibson-Bruck version of the Kinetic Monte Carlo method.

Step -1: Construct the dependency graph

and the lattice for the indexed priority queue

of the chemical system.

Step 0: Input the molecular populationsX =

{X(k)}Mk=1, set t and iter equal to 0, and ini-

tialize your random number generator.

Step 1: Generate reaction rates Ck for k =

1, . . . , N and fill the indexed priority queue.

Step 2: Generate random numbers r1 and r2

and calculate τ and n according to Theorem

2.5 / Figure 2.2.

Step 3: Increase t by τ, do a single reaction

of type n, adjust the population levels of X,

and increase iter by 1.

Step 4: Update the Cks according to the de-

pendency graph and percolate the changes

upward through the indexed priority queue.

if iter < imax

Proposition 2.10. The Gibson-Bruck simulation algorithm scales in O(log2(N))

time.
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Proof. Since calculation of τ and performing the reaction are operations that have

both remained unchanged from Gillespie, each scales as O(1), as they did previously.

With the addition of the dependency graph, updating Ck values is also O(1), since

only a bounded number of now identifiable reactions can be affected in one iteration

of the method.

Taking the place of updating the sum ∑
k Ck is updating the indexed priority

queue, requiring one sum update for each tier. By applying (2.20), each update is

O(1), and since there are N leaves in the binary graph, there are O(log2(N)) tiers,

assuming roughly equal distribution of vertices. Hence, the sum update is O(log2(N)).

Similarly, since calculating n is done via binary search through the tiers of the indexed

priority queue, this too will be a O(log2(N)) operation.

The Gibson-Bruck algorithm is a marked improvement over Gillespie, reducing

linear scaling to logarithmic while still making the same selections. In this way, it is

a pure improvement, requiring only a minimal amount of additional theory to provide

structure, leading to not just probabalistically, but precisely the same result. The

final step we make in improving the computational behavior of KMC doesn’t leave

the original algorithm quite so unperturbed, but STP KMC has the great advantage

of having constant scaling.

2.4 Constant-Time KMC

To further reduce the scaling behavior of Kinetic Monte Carlo to constant time, we

adopt what we shall refer to as the rejection scheme. At its core, the idea of the

scheme is to assemble all the potential reactions in the system into a bar graph,

so that the x-axis consists of the discrete and numbered reactions while the y-axis

represents the propensity for each corresponding reaction to occur in the next time

interval (Figure 2.3)
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Figure 2.3 Demonstration of a
rejection scheme reaction propensity
graph.

In order to choose a reaction to conduct, we pick two random numbers, an integer

rint over {1, . . . , N} and a random number rfloat in [0,maxk(Ck)]. We then check the

coordinate (rint, rfloat). If it is inside the bar representing the propensity of reaction

R(rint), then we conduct the reaction. If not, then we reject the attempt and try

again.

Proposition 2.11. A reaction picked by the rejection scheme is done so with the

same probability as in the Gillespie scheme.

Proof. Since coordinates falling outside of bars in the graph are rejected outright, it

suffices to check that a reaction is picked with the same probability given that the

random number pair was accepted. For that, we note that by construction, picking

n in the original Gillespie scheme was identical to sequentially ordering the reactions

in [0,∑k Ck], where each reaction R(k) takes its own interval of size Ck in [0,∑k Ck],

and then picking a random number r2
∑
k Ck in [0,∑k Ck]. If the random number so

picked fell into the interval representing reaction n, this was the reaction we chose to

conduct, and the probability is Cn∑
k
Ck

. Now, in the composition and rejection scheme,

if we assume that the point we pick falls into a bar somewhere, then it falls into the
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bar representing reaction R(n) with probability Cn∑
k
Ck

, since the total sum of all the

bar lengths is ∑k Ck.

The inherent problem with this method is that the reaction propensities need not

be prevalent in the area bounding the bar graph. It is conceivable, then, that we

could make many rejected attempts before one is successful. Fortunately, since the

rejections do not affect the probability of picking a given reaction, we may reduce

the number of rejections simply by carefully constructing our bar graph to have an

acceptably small blank space.

We make the definitions: Cmin is the minimum expected nonzero Ck value (less

than or equal to mink Ck) and Cmax is the maximum expected Ck value (greater than

or equal to maxk Ck). Then, we collect reactions together into groups 1, 2, . . . ,Γ,

where reaction R(k) is in group j if and only if 2j−1Cmin ≤ Ck < 2jCmin. Suppose

that the sum of all the reaction propensities in a given group G is defined to be∑GCk.

Now, we add an additional step to our scheme, wherein we generate a random number

rg in [0,∑k Ck] and we pick the group G̃ as our operating space if rg falls into the

collection of reaction propensities in G̃:

G̃−1∑
G=1

∑
G

Ck < rg ≤
G̃∑
G=1

∑
G

Ck. (2.21)

Once we have found G̃, then we proceed as before with two additional random

variables to pick out the specific reaction within group G̃, using a y-axis bounded

above by 2G̃Cmin (Figure 2.4). We will refer to this modified version of the rejection

scheme as the composition and rejection (C&R) scheme.
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Figure 2.4 Alexander Slepoy, Aidan
P. Thompson, and Steven J.
Plimpton, A constant-time kinetic
monte carlo algorithm for simulation
of large biochemical reaction
network,. The Journal of Chemical
Physics, 128(20):, 2008, Figure 3.

The following propositions are easily verified.

Proposition 2.12. A reaction picked by the C&R scheme is done so with the same

probability as in the Gillespie scheme.

Proposition 2.13. By grouping the reactions as described, we reduce the expected

number of attempts to at most 2. Also, the number of groups is independent of N .

The disadvantage of this scheme is the necessity of tracking to which group a

given reaction currently belongs, and maintaining the proper group sums. However,

as was shown in (2.20), recomputing sums is a bounded procedure, and so long as we

leave the thresholds for group membership static, then determining to which group

a reaction belongs is simple. Recall also that the dependency graph of the system

will inform us as to which reactions have the potential to change propensities and

likewise to change groups.

Now, we are prepared to show STP KMC.
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Step -1: Construct the dependency graph of

the chemical system.

Step 0: Input the molecular populationsX =

{X(k)}Mk=1, set t and iter equal to 0, and ini-

tialize your random number generator.

Step 1: Generate reaction rates Ck for

k = 1, . . . , N and collect the reactions into

groups.

Step 2: Generate random number r1 and cal-

culate τ according to Theorem 2.5.

Step 3: Generate random number rg to pick

a group, then generate random numbers rint

and rfloat to pick a reaction n within the

group. Repeat Step 3 if the attempt is re-

jected.

Step 4: Increase t by τ, do a single reaction

of type n, adjust the population levels of X,

and increase iter by 1.

Step 5: Update the Cks according to the de-

pendency graph, update groups for affected

reactions, and update the group sums.

if iter < imax

Proposition 2.14. The STP KMC simulation algorithm scales in O(1) time.

Proof. Calculation of τ and performing the reaction are still unchanged from Gillespie,
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so each scales as O(1), as they did previously. Updating Ck values is O(1) due to

the dependency graph, though we now have the additional consideration of tracking

groups for the reactions and group sums. However, this too scales as O(1), since only

a bounded number of reactions require updated Ck values; therefore, only a bounded

number of reactions change groups. The altered group sums can be calculated in

O(1) time, as shown in (2.20), and the number of groups requiring such updates is

independent of N , as stated in Proposition 2.13.

Also by Proposition 2.13, picking n is now an O(1) operation, as it is the result

of three random number generations with an expected number of attempts less than

two.

With this, we have now constructed an efficient kinetic time algorithm for the

evolution of a system of chemicals. In the next section, we will take a step back and

we will apply the algorithm to a lattice of objects interacting with one another in

what is known as an Ising spin system.

2.5 KMC on Ising Spin Systems

An Ising spin system is simply a d-dimensional lattice in which each node has the

property of being either “spin up” or “spin down”. A lattice point can interact with

its neighbors by reversing its own spin, or by interchanging its spin with that of its

neighbor. The probability of any such alteration occurring at a node p depends only

on the spins of the nodes pj in the neighborhood of p, on the spins of the nodes in

the neighborhoods of each pj (in the event that the coming action is an interchange),

and on the spin of p itself. The neighborhood of a node is dependent on the problem

at hand. In Chapter 3, we will use the spin of a lattice point to indicate whether the

node currently holds a cell or a medium element. Since we will also assume that cells

neither die nor reproduce, it can be said that in our problem, the probability of a

node reversing its spin alone is always zero, and there will only be spin interchanges.
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Further, in our 3-dimensional lattice, the neighborhood of a node p will be all nodes

contained within the 3× 3 cube of nodes surrounding p.

For now, we aim to determine an upper bound on how many possible reaction

types there are in an Ising spin system with known node neighborhoods.

Theorem 2.15. In an Ising spin system in which each node has k neighbors, there

are at most 2(1 + k)(1 + k2) possible reaction types.

Proof. Fix a node p. Since we are only aiming for an upper bound, we assume for

simplicity that the neighbor sets of the neighbors of p are disjoint. First, there are 2

ways to pick a spin for p itself. From here, we break up the potential reactions into

self-spin reversals, which depend only on neighbors of p, and spin interchanges, which

also depend on the neighbors of the potential interchange target. If m1 is the number

of potential configurations of the neighbors of p, and m2 is the number of ways to

pick an interchange target and arrange its and p’s neighbors, then the solution is

2[m1 +m2].

To find m1, we note that it doesn’t matter precisely where the nodes with a given

spin are located, just so long as they are in the neighborhood of p. Therefore, it

suffices to count the number of neighbors with an up spin. There are k + 1 such

configurations, namely 0 neighbors, 1 neighbor, . . . , or k neighbors with up spin.

To find m2, we observe that given we have fixed the configuration of the neighbors

of p as before, there are k ways to pick a neighbor pn - whose spin has already been

fixed, and then, removing p as a neighbor of pn - since the spin of p has already

been fixed as well - k ways to configure the neighbors of pn. Note that this will

double count some configurations, but we are aiming only for an upper bound; hence,

m2 ≤ k2(k + 1).

Therefore, there are at most 2 [(k + 1) + k2(k + 1)] = 2(1 + k)(1 + k2) possible

reaction types in the Ising spin system.
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Corollary 2.16. If we are working in an Ising spin system in which each node has k

neighbors and it is possible to ignore spin interchanges, then the number of potential

reaction types is precisely equal to 2(1 + k).

Proof. Observe that the assumptions that contributed to the inequality in the proof

of the theorem were all made on the neighbors’ neighbors or in calculating the bound

on the number of interchange reactions.

Corollary 2.17. If we are working in an Ising spin system in which each node has k

neighbors and it is possible to ignore self-spin reversals, then the number of potential

reaction types is at most 2k2(1 + k).

Suppose that there are K reaction types and that we can find probabilities

P1, . . . , PK for the potential reactions. Suppose further that we wish to conduct

a reaction in the system corresponding to the probabilities we have for each element

in the set of all possible events E = {e1, . . . , eN}, namely every possible self-spin

reversal and every node-neighbor swap. Note that if the lattice is static, then the

set of possible events is also, though the propensity for any given event may alter as

the system evolves. Let EPi
denote the set of events whose current probability is Pi.

Then the total reaction propensity - denoted by ∑k Ck in the previous sections - is

given by

∑
e∈E

prob(e) =
K∑
i=1

∑
e∈EPi

prob(e)

=
K∑
i=1

∣∣∣EPi

∣∣∣Pi.
(2.22)

We organize the potential events in the system in a list-based manner wherein

each event can be identified not only by its type, but also by its position as a member

of the set of events sharing the same reaction probability. This can be done by

creating a table in which the row corresponds to an event’s probability and the column
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corresponds to its membership index, or one can utilize more creative methods, an

example of which is discussed in the paper by Bortz, Kalos, and Lebowitz. We will

assume the use of a tabular method for the remainder of this section.

To conduct a reaction, we calculate two random variables r1 and rp in [0, 1].

Finding the reaction time is done precisely the same way as in Gillespie, so

τ = 1∑
i

∣∣∣EPi

∣∣∣Pi log
( 1
r1

)
. (2.23)

To find the event to conduct, we take two steps. First we pick the reaction type

by finding n such that
n−1∑
i=1

∣∣∣EPi

∣∣∣Pi∑
i

∣∣∣EPi

∣∣∣Pi < rp ≤

n∑
i=1

∣∣∣EPi

∣∣∣Pi∑
i

∣∣∣EPi

∣∣∣Pi . (2.24)

Then, we choose the particular event by taking a random integer rn ∈
{

1, . . . ,
∣∣∣EPn

∣∣∣}.
In the update step, we check all the nodes that are either neighbors or neighbors’

neighbors to the altered node(s), and we change the reaction propensities accordingly.

For example, in the two dimensional planar case where two nodes are considered

neighbors if and only if they share an edge, if we interchange the spins of a pair

of nodes, then there are a total of 8 self-spin reversal events and 23 interchange

events that require updated probabilities. The dependencies of given events on other

events may be tracked via a dependency graph as in the case of a chemical system,

though it bears mentioning that in the case of an Ising spin system, the number of

dependencies scales with the number of neighbors for each node, as opposed to the

number of chemical species.

Once those probabilities have been updated, we may relocate events to new rows

if necessary, and we may reindex the elements of the rows so affected, updating their

row sums as in (2.20). Hence, our algorithm for KMC on an Ising spin system may

be stated as follows.
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Step -1: Construct the dependency graph of
the Ising system.

Step 0: Input the spins of each node, set t
and iter equal to 0, and initialize your ran-
dom number generator.

Step 1: Generate event rates ei for i =
1, . . . , N , and collect the events into groups
{EP1 , . . . , EPK

}.

Step 2: Generate random number r1 and cal-
culate τ according to Theorem 2.5.

Step 3: Generate random number rp to pick
a group, then generate random number rn to
pick an event e within the group.

Step 4: Increase t by τ, conduct the event e,
change any affected spins, and increase iter
by 1.

Step 5: Update the event rates according
to the dependency graph, update probabili-
ties for affected events, and update the group
sums.

if iter < imax

Figure 2.5 KMC on an Ising spin system.

Proposition 2.18. For an Ising spin system, the scaling of the KMC algorithm as

described is O(K).

Proof. Calculation of τ , performing the reaction, and updating the probabilities for

each event ei are O(1) by Proposition 2.14, with the group sums of STP KMC having

been replaced by event list sums. Again, since only a bounded number of events are

affected by the conduction of another event, updating the event lists and event sums
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is an O(1) operation.

However, to find which reaction type to conduct, we must now find n satisfying

(2.24). As shown in Proposition 2.6, this scales as the upper limit of the sum, namely

K. Finding the particular reaction to enact afterwards is O(1), as we need only check

the number of elements in EPn and take a random integer.

So long as the number of reaction types isn’t too large, the setback in scaling will

be manageable. In the next chapter, we will discuss our assumptions for our Ising-

based model, and we will provide the method used to calculate the event probabilities.

After, results of several different simulations will be provided.
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Chapter 3

Applications to Multicellular Systems

3.1 Explanation of Reaction Rates

As stated in the previous section, we will consider the space in which the cells lie to

be a three-dimensional Ising spin system with periodic boundary conditions where

cell nodes have an up-spin and medium nodes have a down-spin. Further, we will

consider two nodes to be neighbors if they occupy a common 3x3x3 cube of nodes

[9], and we forbid self-spin reversals, i.e. removals or additions of cells. For a given

node r = (rx, ry, rz), we define

σr =


1, if r holds a cell

0, if r holds a medium element
. (3.1)

Let E(σr, σs) denote the interaction energy - the strength of the bond - between

neighbor sites r and s, dependent only on the elements the nodes are currently holding.

Then there are three possible pairwise interaction energies in the system, which we

will define as follows:

E(0, 0) =: −Emm

E(0, 1) = E(1, 0) =: −Ecm

E(1, 1) =: −Ecc.

(3.2)

Define Nm to be the total number of medium elements in the system, Nc to be the

total number of cells in the system, and Ncm to be the total number of cell-medium

neighbor pairs in the system.
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Theorem 3.1. The total energy E in the system is given by E =
(
Ecc+Emm

2 − Ecm
)
Ncm−

13NcEcc − 13NmEmm.

Proof. First, note that each node in the Ising system described has 26 neighbors. We

calculate,

E =
∑

r and s
neighbors

E(σr, σs)

= −
∑

mm pairs
Emm −

∑
cc pairs

Ecc −
∑

cm pairs
Ecm.

(3.3)

We claim that − ∑
mm pairs

Emm = −Emm
∣∣∣{mm pairs}

∣∣∣ is given by −Emm
(

1
2

(
(26)Nm −

Ncm

))
. Indeed, consider a single medium element in the space. We may count all

the bonds around it and subtract off those bonds that are between it and a cell. If

we do this for every medium element, we get a total of (26)Nm −Ncm; however, this

double counts every bond. Hence, dividing by 2 produces the appropriate number

of medium-medium bonds, and − ∑
mm pairs

Emm = −Emm
(

1
2

(
(26)Nm − Ncm

))
. Similarly,

−∑
cc pairs

Ecc = −Ecc
(

1
2

(
(26)Nc −Ncm

))
.

Observe that − ∑
cm pairs

Ecm = −EcmNcm by the definition of Ncm. Therefore,

E = −
∑

mm pairs
Emm −

∑
cc pairs

Ecc −
∑

cm pairs
Ecm

= −Emm
(1

2
(
(26)Nm −Ncm

))
− Ecc

(1
2
(
(26)Nc −Ncm

))
− EcmNcm

=
(
Ecc + Emm

2 − Ecm
)
Ncm − 13NcEcc − 13NmEmm

(3.4)

We define the constant γcm := Ecc+Emm

2 − Ecm. If we discount the possibilities of

cell death and cell birth, so that the number of medium and cell nodes stays constant,

then we have, for some constant C,

E = γcmNcm + C. (3.5)

29



Since the propensity of node interchanges to occur should depend on the change in E,

it suffices to consider the modified energy term E = γcmNcm in future calculations.

As given by the Arrhenius relation [3], we may take the swap rate of two neighbor

nodes r and s to be

r(r, s) = 1
τ0

exp
(
−∆E

2

)
= 1
τ0

exp
(
−∆E

2

)
(3.6)

where τ0 is the relaxation time of the system and the change terms are given by the

change in the system energy that would occur in the hypothetical swap of the two

nodes in question. Observe that ∆E = γcm (∆Ncm). Consider two neighbor nodes.

If both are cells or both are medium elements, then we have ∆Ncm = 0. Suppose the

site c contains a cell and the site m contains a medium element. Then the change

in Ncm is given by the change in the number of medium-type neighbors of the cell

currently located at c after its swap, plus the number of cell-type neighbors of the

medium element currently located at m after its swap.

Suppose nm(x) denotes the number of medium-type neighbors of site x, and nc(x)

denotes the number of cell-type neighbors of site x. We have

∆Ncm =
(
nm(m) + 1− nm(c)

)
+
(
nc(c) + 1− nc(m)

)
=
(
26− nc(m) + 1− nm(c)

)
+
(
26− nm(c) + 1− nc(m)

)
= 54− 2nc(m)− 2nm(c).

(3.7)

Therefore,

r(r, s) = 1
τ0

exp
(
−∆E

2

)

= 1
τ0

exp
(
−γcm∆Ncm

2

)

= 1
τ0

exp
−γcm

(
54− 2nc(m)− 2nm(c)

)
2



= 1
τ0

exp
(
− γcm

(
27− nc(m)− nm(c)

))
.

(3.8)
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From here, we may proceed as in section 2.5. For each pair of neighbor points, it

suffices to track the number of non-matching neighbors of each node in the pair. We

will calculate the rate as shown in (3.8), and proceed on with the algorithm outlined

in Figure 2.5. In the final section, we will show the results of several simulations

using the Kinetic Monte Carlo algorithm that has been built up.

3.2 Simulation Results

The most basic simulation for the merging of multicellular aggregates would, nat-

urally, be just two aggregates placed side by side. Using constants informed by

biological testing, we have the following result.

Figure 3.1 2 aggregates, 1 · 107 steps, aggregate radius 10, and aggregate distance 1.

In sectional view,
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Figure 3.2 2 aggregates, 1 · 107 steps, aggregate radius 10, and aggregate distance 1.
Sectional view.

Observe that the aggregates merge and the surface cells distribute themselves

somewhat evenly, but the interior cells remain segregated. In the next figure, we can

see how the free energy in the system, measured by the number of cell-medium bonds,

generally decreases as the system evolves.
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Figure 3.3 2 aggregates, 1 · 107 steps, aggregate radius 10, and aggregate distance 1.
Energy estimate.

Additional simulations follow.

Figure 3.4 3 aggregates in triangular formation, 2 · 106 steps, aggregate radius 8, and
aggregate distance 1.
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Figure 3.5 3 aggregates in triangular formation, 2 · 106 steps, aggregate radius 8, and
aggregate distance 1. Sectional view.

Figure 3.6 3 aggregates in triangular formation, 2.6 · 106 steps, aggregate radius 8,
and aggregate distance 1. Energy estimate.
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Figure 3.7 4 aggregates in square formation, 4.5 · 106 steps, aggregate radius 8, and
aggregate distance 1.

Figure 3.8 4 aggregates in square formation, 4.5 · 106 steps, aggregate radius 8, and
aggregate distance 1. Sectional view.
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Figure 3.9 4 aggregates in square formation, 6 · 106 steps, aggregate radius 8, and
aggregate distance 1. Energy estimate.

In the following tower simulation, note how the center of the mass doesn’t fill

initially, but eventually overcomes the tangential forces of the neighbor cells along

the outside of the unfilled sphere formed by the aggregates. You can see two major

drops in cell-medium bonds in Figure 3.12. The first is caused by the initial merger

of the cells on the outside of the sphere. The second is caused when the empty center

of the sphere collapses.
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Figure 3.10 8 aggregates in 2-cube formation, 3 · 106 steps, aggregate radius 5, and
aggregate distance 1.

Figure 3.11 8 aggregates in 2-cube formation, 3 · 106 steps, aggregate radius 5, and
aggregate distance 1. Sectional view.
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Figure 3.12 8 aggregates in 2-cube formation, 5 · 106 steps, aggregate radius 5, and
aggregate distance 1. Energy estimate.

The next simulation shows the evolution of a cube of aggregates. They are ar-

ranged as follows: the first, the third, and the fifth layers have all cells of type 1 (red),

the second and fourth layers are arranged as illustrated in Figure 3.13. Observe how

the cells are pulled toward the outside of the mass before eventually falling inward to

form a stable ball. Several different angles are provided.

Figure 3.13 Illustration of
layers 2 (on the left) and 4 (on
the right) in the five-cube
simulations.
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Figure 3.14 125 aggregates in 5-cube formation, 2 · 107 steps, aggregate
radius 4, and aggregate distance 1.

Figure 3.15 125 aggregates in 5-cube formation, 2 · 107 steps, aggregate
radius 4, and aggregate distance 1. Side view.
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Figure 3.16 125 aggregates in 5-cube formation, 2 · 107 steps, aggregate
radius 4, and aggregate distance 1. Horizontal cut.

Figure 3.17 125 aggregates in 5-cube formation, 2 · 107 steps, aggregate
radius 4, and aggregate distance 1. Vertical cut parallel to the ZY plane.
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Figure 3.18 125 aggregates in 5-cube formation, 2 · 107 steps, aggregate
radius 4, and aggregate distance 1. Vertical cut parallel to the ZX plane.

Figure 3.19 125 aggregates in 5-cube formation, 3 · 107 steps, aggregate
radius 4, and aggregate distance 1. Energy estimate.
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