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Filamentous fungi have a long history in biotechnology for the production of food ingredients, 

pharmaceuticals and enzymes. The advancements made in recent years have earned filamentous 

fungi such as Aspergillus species a dominant place among microbial cell factories.  Although the 

model fungus A. nidulans has been extensively studied, the genetic and regulatory networks that 

underlie morphogenesis and development have yet to be fully characterized. The Rho GTPases 

(Cdc42 and RacA) are one of the most important regulators of the morphogenetic processes among 

diverse eukaryotic organisms. Although the functions of these GTPases are relatively well-

characterized, little is known about their downstream effectors. One likely effector is the formin 

SepA, which also belongs to a complex known as the polarisome that helps to stabilize and support 

hyphal growth. The uncharacterized gene ANID_05595.1 (ModB) possesses sequence features that 

suggest it also belongs to the polarisome. My genetic and functional characterization of ModB 

reveals some overlap with SepA, but also shows that ModB possesses distinct roles in the 

maintenance of hyphal polarity. 

In filamentous fungi, hyphal morphology requires the localized delivery of exocytic vesicles to the 

hyphal tip as well as to septation sites. The mechanisms that regulate vesicle trafficking to these 

locations are not yet well understood. In addition, because fungal hyphae presumably extend 

through a nutritionally variable environment, these mechanisms must be extremely sensitive to 

growth conditions. To begin to address these issues, I have investigated the effects of nutrient 



                             
 

 

conditions on localization patterns of two different proteins that are trafficked to the cell surface; 

a glucose transporter (HxtB) and the enzyme β-glucosidase (BglA). Although the final localization 

of each protein differs, they display similar localization dynamics upon release from glucose 

repression. In parallel, I also used fluorescence microscopy to determine how shifts from glucose 

to a non-preferred carbon source (e.g., cellulose) affect hyphal extension and morphology. My 

results suggest that relief from glucose repression leads to the production of thinner hyphae after 

a transient delay in hyphal extension. Use of variety of signaling mutants further demonstrates that 

this response requires a functional protein kinase A (PKA) as well as proper down-regulation of 

heterotrimeric G protein signals. Collectively, these observations provide valuable new insight into 

how vesicle trafficking responds to variable growth conditions. 
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Overview 

Filamentous fungi are a diverse group of heterotrophic microorganisms that are medically 

and agriculturally important and are also widely used in production of food, beverages, 

antibiotics, enzymes, organic acids and in biomass conversion. They are also serious 

human pathogens, especially to immuno-compromised patients and have been reported to 

account for up to 40% of deaths from hospital acquired infections (Muthuvijayan et al. 

2004). 

Aspergillus is a ubiquitous filamentous fungus found in nature. It is commonly found in 

soil, plant debris and indoor air environment. The genus Aspergillus includes over 185 

species out of which about 20 are identified as opportunistic pathogens. Aspergillus 

nidulans is commonly used as model filamentous fungus because it is closely related to a 

large number of other Aspergillus species of industrial (e.g., A. niger, A. oryzae) and 

medical (e.g., A. flavus and A. fumigatus) significance. Hence a better understanding in A. 

nidulans molecular mechanisms and physiology will yield information on improving our 

knowledge in other industrially and medically significant filamentous fungi (Muthuvijayan 

et al. 2004). Although, A. nidulans has been researched for decades many molecular and 

metabolic mechanisms are poorly understood.  Saccharomyces cerevisiae, a yeast, shares 

the same phylum: Ascomycota as A. nidulans. S. cerevisiae has been well studied and its 

genetic and metabolic pathways were used as a template during this study (Downs. 2012).  

Fungi exhibit two forms of cellular morphogenesis: hyphal growth and yeast growth. 

Hyphae are long tubular structures that extend solely at the tips and are partitioned into 

cellular compartments by forming septa (Figure 1b). Yeast are unicellular fungi that exhibit 

diverse morphology ranging from ovals to elongated rods (Figure 1a). Both yeast and 
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hyphal cells grow by cell surface expansion at specific cortical sites. Two key features that 

differentiate yeast and hyphal modes of growth are: yeast cells do not undergo sustained 

polarized growth and yeast cells separate by budding or fission whereas hyphae remain 

attached (Harris et al., 2009).  

 Hyphae are populated by multiple nuclei due to a series of parasynchronous nuclear 

divisions (conidia (asexual spore) are uninucleated and ascopores are binucleated). Nuclear 

 division is coordinated with growth such that each division is coupled to doubling of cell 

mass and the entire process is referred as the duplication cycle. Once hyphae reaches a 

certain volume, depending on growth conditions, they are then partitioned by forming the 

first septum. Following the first septation event, each duplication cycle is terminated by 

forming a septa in the hyphae. Sub-apical compartments enter a period of mitotic 

quiescence that is eventually broken by the formation of a branch that generates a new 

hypha. Branch formation requires the establishment and maintenance of a new polarity 

axis, likely a repetition many of the events in germination. (Trinci; Harris. 1997 and Si. 

2010). S. cerevisiae and A. nidulans also share the similar growth pattern: germination, 

polarity establishment and polarity maintenance (Figure 2). Both use the same key proteins 

that play a similar role in germination and polarity establishment. However, different 

patterns are used during polarity maintenance, i.e. hyphal elongation (Downs, 2012).  

Germination  

Germination of conidia in A. nidulans is when a dormant conidia breaks dormancy by first 

growing isotropically adding new cell wall material uniformly in every direction. This 

leads to the swelling of the conidia as it rehydrates by uptake of water, initiation of 
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translation (mainly genes encoding osmolytes and prnB (proline transporter)) and 

recommencement of metabolic activity (maintain levels of intracellular glycerol) within 

the conidia (d’Enfert and Fontaine.1997, d’Enfert et al.1999, Fillinger et al. 2001, de Vries 

et al. 2003, Tazebay, Sophianopoulou et al.1995 and Tazebay, Sophionopoulou et al.1997). 

The primary trigger for germination appeared to be glucose, whereas nitrogen or 

phosphorus also seem to trigger germination. The presence of glucose is sensed by a G 

protein-coupled receptor (GPCR), and because G protein (GanB) is constitutively active 

(GTP bound state) leads to germination in the absence of a carbon source. One of the 

downstream effectors of GanB could be CynA, an adenylate cyclase required for cyclic 

AMP (cAMP) production.  cAMP acts as a secondary messenger that binds to the 

regulatory subunit of protein kinase A (PKA) which then activates the catalytic subunit. In 

A. nidulans both CyaA and PKA are needed for efficient conidial germination (Figure 3) 

(Fillinger et al. 2002 and Si. 2012). 

Establishment of polarity 

The establishment of a polarity is the successful emergence of a germ tube from a swollen 

conidia. Polarity establishment includes processes of a new polarity axis and the use of the 

resulting positional information to spatially organize the morphogenetic machinery. This 

terminates the isotropic expansion of the conidia and results in the cell wall deposition to 

a specific site that will eventually become the hyphal tip. Despite considerable interest in 

the mechanisms in polarity establishment in A.nidulans, the mechanisms remains poorly 

defined. However, genetic analysis has provided some insight into how new polarity axes 

are specified and also implicate several cellular functions in the establishment of polarity 

(Si. 2010).  
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In S. cerevisiae, the bud site selection system is well understood and is used as a model for 

the establishment of a polarization site in fungi. This system is based on the use of distinct 

cortical markers that specify one of the two possible budding patterns (axial and bipolar). 

The axial (Bud3, Bud4, and Bud10) and bipolar (Bud8, Bud9, Rax1, and Rax2) landmark 

proteins generate positional information that is relayed to GTPase Cdc42 via a Ras-related 

GTPase Rsr1/Bud1 and its associated regulators Bud2 and Bud5. Locally active Cdc42 

then triggers the assembly polarity establishment machinery to the presumptive bud site. 

The A.nidulans genome shows axial landmark proteins are poorly conserved but the bipolar 

landmark proteins are absent. Also, the functional characterization of poorly conserved 

homologues show they have no obvious role in the establishment or maintenance of hyphal 

polarity. However, studies using A. fumigatus indicate a Ras GTPase, RasB in the spatial 

regulation of polarized hyphal growth, and cortical markers that generate positional 

information in A.nidulans have also been identified. The proper localization of cortical 

marker TeaR, a putative prenylated membrane protein, interacts with TeaA, a cell-end-

marker protein important for localizing the growth machinery at the hyphal tips. These 

cortical markers are important for microtubule growth at the hyphal tips (Takeshita, 

Higashitsuji et al. 2008 and Si. 2010). 

An alternative model for establishing polarity is available in S. cerevisiae as the mating 

pheromone response. Binding of mating pheromone to its cognate GPCR leads to 

activation of an associated heterotrimeric G protein, which is able to serve as a positional 

marker that locally recruits components of the Cdc42 GTPase module. Local activation of 

Cdc42 then reorganizes the morphogenetic machinery in a manner that overrides existing 

bud site selection signals. Most components of the pheromone response pathway are 
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conserved in A. nidulans, at least one GPCR and a heterotrimeric G protein have been 

implicated in regulation of conidial germination. Heterotrimeric G proteins also regulate 

the orientation of hyphal growth and control lateral branch formation in other filamentous 

fungi (Si. 2010). 

Studies on polarity establishment in S.cerevisiae suggest that these cortical markers are not 

needed and in the absence of all known landmark proteins, polarity establishment becomes 

reliant upon a set of positive and negative feedback loops in local Cdc42 levels until they 

exceed a given threshold at a random site. Key elements in this feedback loop includes 

filamentous actin and the modular scaffold protein Bem1, which promotes localized vesicle 

exocytosis toward the presumptive polarized site where endocytosis retrieves polarity 

factors from other sites. A similar mechanisms could be in use in A. nidulans germination 

and/ or branch formation as the current research implies that the polarity axis to form the 

first germ tube is randomly selected in a swollen spore (Si. 2010). 

A. nidulans also seems to require fewer but crucial functions for polarity establishment 

some of which are the proper function of actin cytoskeleton, vesicle trafficking machinery 

and also the proper organization of the Golgi apparatus. The disruption of actin filaments 

(mutations affecting the formin SepA) only delay the polarity establishment but 

dramatically affect polarity maintenance. But the deletion of genes that encode actin and 

key regulators such as α-actinin and Bud6 are lethal. Several studies have shown that a 

functional actin cytoskeleton is required for localized cell surface expansion and cell wall 

deposition in filamentous fungi. Exposure to depolymerizing agents have shown that there 

was no hyphal extension and this also triggered randomized swelling of the tip. Further 

studies done to disrupt cytoplasmic microtubules show they play a similar role as the actin 
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cytoskeleton in the hyphal polarity as they display a swollen spore but can maintain a 

hyphal growth and their hyphal tips show morphological defects. These studies also seem 

to reflect the role of microtubules is downstream of actin filaments, as they control the 

position of the apical vesicle cluster known as Spitzenkorper (SPK). Recent studies also 

show that microtubules are needed to achieve maximal rates of hyphal tip extension 

because they play a role in transporting vesicles to the tip. The Golgi apparatus plays an 

important role in the sorting and processing of proteins destined for secretion in eukaryotic 

cells. In A. nidulans, organization of the Golgi apparatus are spatially segregated within 

the hyphal tip and depend on the integrity of the cytoskeleton. Loss of normal Golgi 

organization stops polarized hyphal extension and triggers de-polymerization of the hyphal 

tips (Harris. 2013 and Si. 2010). 

Maintenance of Polarity 

Once the polarity axis is established, it must be stabilized for a germ tube or branch and to 

form a mature hyphae that grows by apical extension. This ability to maintain polarity axis 

for long distances defines filamentous fungi such as A. nidulans. The functions and 

components important in maintenance of polarity include: O-glycosylation, sphingolipid 

biosynthesis and organization, the Spitzenkorper and vesicle trafficking (Si. 2010, 

Goto.2007, Taheri-Talesh et al. 2008, and Rittenour et al.2011).  

Glycosylation is a conserved post translational modification which helps to generate 

proteins with multiple functions and is found in all eukaryotes, Glycosylation is also 

important for protein stability, secretion and localization. O-linked glycosylation occurs in 

Golgi apparatus and is attached to protein residues of either serine or threonine. The sugars 
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that are attached to the O-linked structure vary among different fungi (Goto. 2007). In the 

course of secretion the proteins undergo glycosylation where they provide enzyme stability 

and protection from degradation. Post translational modification is also shown to be 

important to polarity maintenance as many temperature sensitive (Ts) mutants generated 

have shown their ability to establish polarity but when grown in restrictive temperature 

were unable to maintain polarity(Si. 2010). The Ts strains used in this study were deletion 

of Δ sepA and Δ mesA. 

Serine palmitoyltransferase (SPT) is a sphingolipid that is important in polarity 

maintenance. SPT catalyzes the first committed step in sphingolipid biosynthesis and is 

required for formation of all sphingolipid derivatives (sphingoid bases, ceramides, etc.). 

Inactivation of SPT prevents polarity establishment without affecting growth or nuclear 

division. It was also found in absence of sphingolipids existing polarity axes are terminated 

and leads to profuse branching of the hyphal tip. BarA, ceramide synthase, generates a pool 

of glucosylceramides that promote localization of SepA to the hyphal tips. Sphingoid bases 

may have an additional set of functions that may involve lipid signaling, that separately 

promotes polarity establishment (Si. 2010, Rittenour et al.2011) 

The Spitzenkorper (SPK) is phase dark structure that is present at the extreme apex of the 

fungal hyphae and is shown to have an intimate role in promoting polar growth. SPK can 

be assumed to function as the vesicle trafficking center (Figure 4). The polarisome 

(components of the yeast polarisome: Spa2, Pea2, Bud6 and Bni1), a protein complex that 

plays a role in determining cell polarity by directing the localized assembly of actin 

filaments to polarization sites.  In A. nidulans, localization of SepA (homologue of Bni1) 

implied that polarisome exists as surface crescent at the hyphal tip, whereas SPK sits just 
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behind the tip and appears as a spot (Taheri-Talesh et al. 2008, Pearson et al. 2004 and Si. 

2010). 

 Research also indicates that SPK and the polarisome are part of a complex which helps 

mediates delivery of exocytic vesicles to the apex. This cluster of vesicles delivered by 

kinesin-dependent transport on cytoplasmic microtubules which could later be transferred 

to actin filaments that are nucleated by SepA and transported to exocytic zone at the 

extreme apex and it could be possible that the polarisome might play a role in the formation 

of SPK. Recent research also showes the importance of endocytosis in the polarity 

maintenance. As exocytosis relies on filamentous actin for transport of vesicles to the apex, 

endocytosis rely on branched actin patches for moving vesicles into the cell form actin 

patch region behind the apex. A number of endocytic proteins (AbpA, SlaB, FimA) have 

been shown to interact and stabilize these actin patches and mutations in these proteins 

causes severe defects in polarity maintenance and in polarity establishment. MesA is a 

predicted cell surface protein known to promote localized assembly of actin cables at 

polarized sites and aids in recruitment of SepA. Δ mesA mutants displays dramatic defects 

in the maintenance of hyphal polarity including an aberrant pattern of cell wall deposition 

and delocalization of sterol-rich membrane domains. MesA is also not required for the 

initial recruitment of SepA to polarized sites but is required for retention of SepA (Pearson 

et al. 2004, Araujo-Bazan et al.2008, Taheri-Talesh et al.2008, Upadhyay et al.2008, 

Takeshita et al. 2008, Harris. 1997 and Si. 2010). 

Rho-like GTPases 
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While studying the complexes that are important in polarity established and polarity 

maintenance it is important to look at GTPases that regulate the actin cytoskeleton dynamic 

and their implications in cell polarization.  Small GTPases of Ras superfamily function as 

molecular switches in many signaling pathways have a crucial role in cell polarization. The 

Rho (Ras homologous) family proteins of the Ras superfamily comprise of upto 20 

members which also include Cdc42, Rac1 and RhoA. Rho GTPases regulate and 

coordinate signaling pathways of both extracellular and intracellular signals of diverse 

cellular functions including cell cycle progression, migration, endocytosis, and cell 

morphology. These signaling pathways also function to assemble and organize the actin 

cytoskeleton. Cdc42 and Rac1 are both Rho-like GTPases, their importance and function 

differs in a variety of fungi (Iden et al.2008, Johnson and Pringle.1990, Ziman et al.1993, 

Schmidt and Hall.1998 and Downs. 2012). 

The Rho-like GTPases cycle between active state (GTP-bound) and inactive (GDP-bound) 

state with the aid of guanine nucleotide exchange factor (GEF), the other regulators also 

include GTPase- activating proteins (GAPs) and guanine nucleotide dissociation inhibitors 

(GDI).  GAPs convert GTP-bound form of Cdc42/Rac1 to GDP-bound form. GAP might 

also function as effectors to different Rho proteins. The two main GAPs found in fungi are 

Rga1 and Bem3. The GDI are proteins that are capable of inhibiting the dissociation of 

GDP from Rho-like GTPases, suggesting that GDIs function is to inhibit GEFs and GAPs. 

GDIs can interact with both GTP- bound and GDP-bound Cdc42 but prefers the GDP-

bound state. GDI are also capable of solubilizing both GTP and GDP bond Cdc42 from the 

cell membrane (Iden et al. 2008, Quilliam et al.1995, Cerione and Zheng.1996, Whitehead 

et al.1997, Schmidt et al.1998 and Downs. 2012). 
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 A class of proteins known as effectors interact directly with the Rho-like GTPases to 

activate or maintain cellular function in the cell. Only a small number of effectors are 

known and they fall into three classes: the p-21 activated kinases (PAKs), Cla4 and Ste20, 

the CRIB-domain proteins Gic1 and Gic2, and the formins. While the PAKs and formins 

are conserved in euascomycetes, Gic proteins and CRIB domains are not detected in the 

genome annotation. (Virag et al. 2007 and Downs. 2012).   

The activity of PAK proteins is regulated by Cdc42 and Rac1 through the control of the 

autoinhibitory mechanism and cellular localization of PAK. After the PAK and CRIB 

domain binds to Cdc42 or Rac1, the PAK kinase domain is allowed to be 

autophosphorylated. A Ste20 protein with a mutation in its autoinhibitory mechanism 

causes a decrease interaction with Cdc42, which reduction of mating signals, loss of 

filamentous growth and loss of localization to the site of polarized growth. The deletion of 

the CRIB domain shows Ste20 independent of Cdc42. The Cla4 protein might not be 

conserved in all Cla4 homologs as the Δcla4 can be restored by causing a disruption in the 

autoinhibition (Downs, 2012). The function of PAK kinase in filamentous fungi varies. In 

Magnaporthe grisea, neither Ste20 nor Cla4 is required for polarized hyphal growth 

whereas in C. albicans and A. gossypii, both Ste20 and Cla4 are involved in polarized 

growth. Ste20 and Cla4 may have overlapping functions as only a double mutant shows an 

altered phenotype. Ste20p and Cla4p may control actin cytoskeletal organization by 

regulating the polarisome (Cvrckova et al.1995, Brown et al. 1997, Chen et al.1997, 

Evangelista et al. 1997, Schmidt and Hall. 1998, Lamson et al.2002, Boyce et al.2009 and 

Downs. 2012). 
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Formins are multidomain proteins that interact with diverse signaling molecules and 

cytoskeletal proteins, although some formins have been assigned to function within the 

nucleus. Formins are characterized by the presence of two FH domains (FH1 and FH2). 

The proline-rich FH1 domain mediates interactions with a variety of proteins, including 

the actin-binding protein profilin, SH3 (Src homology 3) domain proteins, and WW 

domain proteins. The FH2 domain is required for the self-association of formin proteins 

through the ability of FH2 domains to directly bind each other, and may also act to inhibit 

actin polymerization. In addition, some formins can contain a GTPase-binding domain 

(GBD) required for binding to Rho small GTPases, and a C-terminal conserved 

Diaautoregulatory domain (DAD) which can interact intramolecularly and modulate 

activity and/or localization. The FH1 and FH2 domains appear to be separable and vary 

among species (Tanaka. 2000, Shimada et al. 2004 and Takeya et al. 2003).  

Using florescent fusion proteins in A. nidulans SepA::GFP, a formin protein, localizes at 

the crescent of the hyphal tip and septation sites interacting with the actin ring. The lack of 

both the FH1 and FH2 domains in SepA shows it can still localizes as a broad crescent at 

hyphal tip but is no longer localized at the septa. Also recent studies show cells lacking the 

complete FH1 and FH2 domains of SepA have an increase in dichotomous branching and 

abnormally wide hyphae. Notably, these cells lacked actin rings at septation sites, but some 

disorganized actin structures were still found at tips, presumably supporting the aberrant 

hyphal growth (Gladfelter. 2006). Cdc42 is known to interact with putative polarisome 

components and regulate their localization. In A. nidulans, the observations suggest that 

polarisome recruitment to hyphal tips is not strictly dependent on Cdc42. In the absence of 

Δcdc42 ΔsepA the growth of the colonies were restricted but were still able establish 
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polarity with significant amount of time suggesting that Cdc42 may not activate SepA but 

is required to maintain polarity (Virag et al. 2007).   

Activation and localization Cdc42 

In S. cerevisiae, newly synthesized Cdc42 is geranylgeranylated by Cdc43-Ram2 and 

interacts with the Rdi1 (Rho GDP-dissociation inhibitor) protein within the cytosol.  The 

Cdc42 GDP-Rdi1 complex then interacts with Cdc24-Bem1 in the plasma membrane.  This 

Cdc24-Bem1 complex is bound to the plasma membrane either through an interaction 

between Cdc24 and the GTP-bound Rsr1 (Ras-Related Protein) GTPase, or through the 

Cdc24 PH domain.  The Cdc24 then catalyzes the dissociation of GDP from Cdc42 and is 

activated with GTP.  This leads to Cdc24 dissociation from both Cdc42 and Bem1, and 

interaction with the GDP bound Rsr1 through the interaction with Bud2 (an inhibitory 

regulator protein), GAP and Bud5 (Bud Site Selection protein).  The now released Cdc24 

is free to recycle to the bud site or become available for nucleotide exchange later in the 

cell cycle (Moskow et al.2000, Gladfelter et al.2002 and Down. 2012).   

The selection of the bud site and the orientation of the actin cytoskeleton is controlled 

by the cell polarity establishment proteins, which include Cdc42, Cdc24 and Bem1, a SH3 

domain-containing protein. It has been shown that cells lacking Cdc42, Cdc24, Cdc43 or 

Bem1 are unable to form a bud, have a randomized actin cytoskeleton and have large un-

budded multinucleate cells. After Cdc42 and Bem1 localize to the plasma membrane at the 

incipient bud site, Bud1 binds to the activated Cdc42, which causes the Bud gene products 

to select a bud site and guides in cell polarity establishment proteins. Then, the cell can 

organize the cytoskeleton and initiate bud growth (Sloat et al.1981, Schmidt and Hall.1998, 



13                             
 

 

Bender and Pringle.1989 Ziman et al.1993, Chenevert.1994, Chant and Herskowitz.1991, 

Zheng et al.1995 and Downs. 2012).   

Once the cell reaches resting phase, Cdc42 is released from the Bem1-Bud1 complex and 

binds to a GDI in the cytoplasm.  However, when the cell is activated, the Cdc42 is released 

from the GDI and can now be translocated to the cell’s membrane.  Cdc42 is targeted to 

the membrane because of its post-translational attachment of prenyl groups.  The C-

terminal of the Cdc42 consists of the sequence Cys-X-X-Leu, where X can be any amino 

acid. C20 geranylgeranyl isoprenoid can modify this terminal at the Cys residue, causing 

the covalent thioether linkage of geranylgeranyl groups to the Cys residue in the CAAX-

box of the GTPase.  This is followed by the removal of the –AAX and methylation of the 

exposed Cys residue.  It is the geranylgeranyl group that anchors the Cdc42 protein to the 

cellular membrane (Takai et al.1995, Schmidt and Hall.1998, Katayama et al.1991, 

Adamson et al.1992 and Down. 2012). 

In A. nidulans, SwoF is needed for the modification of Cdc42 and this modification allows 

Cdc42 to attach to the plasma membrane. SwoF gene, is an N-myristoyl transferase, 

increases the affinity of its target to the plasma membrane. This modification is similar to 

the lipid modification, geranylgeranylation, in yeast.  It also seems that inositol 

phosphorylceramide (IPC), a sphingolipid, is needed for the attachment of Cdc42 to the 

plasma membranes in filamentous fungi.  The IPC synthesis is important for forming lipid 

rafts, which are thought to act by selective inclusion of specific membrane-bound proteins.  

These rafts are also known to sequester polarity proteins.  If there is a disruption of the IPC 

synthase after polarization has established, the apical cap becomes disorganized, resulting 
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in dichotomous branching and splitting of the apical hyphae (Shaw et al.2002, Cheng et 

al.2001 and Down. 2012). 

Cdc42 and Rac1 

In most fungi, Rac1 is more important than Cdc42 for the establishment of hyphal polarity 

but in A. nidulans, Cdc42 has a pivotal role in polarization of hyphal growth, whereas RacA 

is mostly dispensable In the absence of Cdc42 delay in the formation of lateral branches 

and secondary germ tubes but initial germination, polarity establishment and polarity 

maintenance is not affected (Virag et al. 2007). In ∆cdc42 strains, the formin SepA seems 

to lose specificity for the hyphal tip, suggesting that the polarity axis is altered. Finally, 

∆cdc42 strains have strongly altered conidiophores that support a more complex role than 

just regulation of budding morphogenesis during conidiation (Sharpless and Harris.2002, 

Timberlake.1990 and Downs. 2012) 

Cdc42 and Rac1 have overlapping functions as ∆rac1 in A. nidulans has no obvious 

phenotype.  An overexpressed Rac1 has been shown to restore a ∆cdc42 to a near wild-

type phenotype.  It has also been proposed that Cdc42 has an equal role in primary polarity 

axis during conidiophore germination.  However, Cdc42 does seem to be the pivotal 

GTPase after the primary polar axis is established (Virag et al. 2007 and Down. 2012).  

Polarisome in A.nidulans 

The homologues of the polarisome in A.nidulans were recently found and characterized, 

the homologous for Spa2, Bud6 and formin Bni1 are SpaA, BudA and formin SepA but 

none were found for Pea2. Comparison between the Spa2 and SpaA revealed that SpaA 
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lacked domain II but has three additional domains which are conserved in filamentous 

fungi and localization studies show that SpaA functions exclusively at the hyphal tip. The 

deletion of the spaA gene however showed more dichotomous branching, where two 

hyphal tips are formed by splitting from an existing tip, than compared to wild type (Figure 

5). The comparison between Bud6 and BudA showed that BudA shares the AIP3 domain 

at the carboxy terminus that is important for interaction with actin and another highly 

homologous domain at the amino terminus. The deletion of BudA has been shown to be 

lethal in A. nidulans and the localization studies show that BudA::GFP is visible only at 

sites of septum formation not at hyphal tips. SepA localizes at the hyphal tip primarily at 

the surface crescent which suggest that the polarisome also exists at the surface crescent as 

SepA. In yeast the Bni1 formin forms a complex and is necessary for normal cell 

morphogenesis. In A.nidulans however SepA is not required for the localization of SpaA 

leading to believe the polarisome components in A.nidulans might not work as a complex 

(Virag et al. 2006). We further screened several genes to find genetic similarity to the 

polarisome components and found ANID_05595.1 (ModB) is located on chromosome 5, 

contig 96 and encodes 946 amino acid hypothetical involucrin repeat protein and when 

compared to the components of the polarisome shared some genomic similarity to SepA 

(shown in Figure 6 after performing multiple alignment of the DNA sequences).   

1. The first objective in this study is to explore the role of ModB during hyphal 

morphogenesis and its possible role in the polarisome along with SepA. 

Carbon Metabolism 
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Many filamentous fungi find the primary source of nutrients in the natural environment is 

dead and decaying plant matter. Plant cell wall consist of cellulose, hemicellulose and 

pectin, which is broken down to glucose by cellulolytic enzymes secreted by fungi to obtain 

glucose. Glucose represents the most preferred carbon source for majority of microbes and 

also acts as trigger in A. nidulans to start germination of conidia. The ability to sense 

intracellular and extracellular nutrient source helps the cells to coordinate cellular 

metabolism and use the preferred carbon source prior to the use of alternate carbon sources. 

This ability is known as the carbon catabolite repression (CCR). CreA is a transcriptional 

repressor in A. nidulans that is central to CCR. Nutrient sensing and the downstream 

signaling cascades control the regulation of biochemical metabolic pathways, biosynthetic 

processes and developmental changes. Previously described the glucose sensing in 

germination, G-protein-coupled receptor-mediated and Ras-mediated cAMP-PKA 

pathways regulate germination and trehalose metabolism, whereas SchA kinase performs 

parallel functions. Despite recent advancements, the understanding of how carbon 

metabolism occurs during germination, polarity establishment and polarity maintenance is 

scarce. The importance of this knowledge is immense as the extensive use of filamentous 

fungi in bioprocess industry where it most likely encounters nutrient limitation and 

starvation conditions affects production of valuable products (Assis, 2015, Bhargava et 

al.2003 and Li et al.2000).  

Intercellular Signaling  

Fungi are equipped with many receptors that sense both abiotic and biotic stimuli. These 

receptors facilitate the coordinate mechanisms of: fungal development, morphogenesis and 

metabolism in accordance with the environment. G-protein coupled receptors (GPCRs) are 
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a large family of transmembrane receptors, which detect mostly unknown extracellular 

signals and initiate intracellular signaling cascades. GPCRs sense a wide range of stimuli 

including light, sugars, amino acids and pheromones. GPCRs possess seven 

transmembrane domains and initiates downstream signaling through the associated 

heterotrimeric G-proteins. Sensitization of a GPCR by a ligand results in the activation of 

(exchange of GTP for GDP) Gα subunit, leading to its dissociation from the Gβγ subunits. 

This allows in both Gα subunit and Gβγ subunits to interact with effector proteins that 

regulate downstream signaling. In fungi, GPCR-regulated signaling pathways includes the 

cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase 

(MAPK) cascades, which regulate metabolism, growth, morphogenesis, mating, stress 

responses and virulence (Brown et al. 2015 and Fernanda dos Reis.2013). 

Heterotrimeric G-proteins are conserved in all eukaryotes and are essential components for 

transmitting external signals into the cells. The sequential sensitization and activation of 

G-proteins then translates these signals into the proper transcriptional, biochemical and 

behavioral alterations. Regulators of G-protein signaling (RGSs) control the intensity and 

duration of the G-protein. In A. nidulans, the activated Gα subunit, FadA, promotes 

vegetative growth and inhibits both asexual and sexual development. The RGS, FlbA, 

inhibits FadA and is required to control vegetative growth and also to allow asexual 

development (Figure 8) (Brown et al. 2015). 

Extracellular Signaling 

Due to filamentous fungi role in biotechnology the need to identify and specify different 

transport systems has become increasing important. The transport system for the sugar 
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uptake is well characterized in S. cerevisiae has shown to be able to transport and 

metabolize glucose, fructose, mannose and galactose. Transport of simple sugars is 

mediated by facilitated diffusion by the Hxt (Hexose transporter) family, which is the 

largest subfamily of major facilitator superfamily (MFS). In S. cerevisiae about 20 proteins 

have been classified as Hxt proteins with different Hxt proteins being induced depending 

on the concentration of glucose available. These sugar transporters can be characterized as 

high affinity and moderate to low affinity based on their different substrate affinities or 

specificities. In A. nidulans an attempt to characterize the genes in the Hxt family was made 

and found four putative glucose transporters homologues. One of homologues HxtB, a high 

affinity glucose transporter was tagged to GFP to understand the localization and the 

mechanism used for transport (Fernanda dos Reis et al. 2013). 

Secretory Pathway 

Filamentous fungi have naturally high capacity to secrete proteins. However, the producing 

of non-fungal proteins has been low. Many studies have attempted to understand the 

secretory capacity of filamentous fungi at the transcriptome level and to better understand 

the limitation of the secretory pathway. These studies identified genes that play a major 

part in the different stages of protein secretion such as translocation, folding, cargo 

transport and exocytosis (Schalen et al. 2016). 

The transport in the secretory pathway begins with translocation of protein to the ER, where 

the protein glycosylation, phosphorylation occurs and disulfide bridges are formed. After 

passing through the quality control mechanism, the cargo is transported in vesicles from 

the ER to the Golgi apparatus. The vesicles bud off from the ER membrane and attach to 
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the Golgi with the aid of soluble N-ethylmaleimide-sensitive (NSF) factor receptor 

(SNARE) that mediates vesicle docking and fusion. After further modifications in the 

Golgi apparatus, such as glycosylation and peptide processing, the secretory cargo leaves 

the Golgi in vesicles bound for the plasma membrane, where exocytosis occurs (Schalen 

et al. 2016). One of the common techniques used to study the secretory pathway in more 

detail is used gene deletion or genes attached to fluorescent proteins to visualize the protein 

secretion (Schalen et al. 2016). 

 A high secreting fungal enzyme (β-glucosidase) was tagged to GFP to characterize the 

localization pattern and visualize its response to various conditions that mimic the 

conditions they may face during production (Ishitsuka et al 2015).  

2. The second objective in this study is to visualize and characterize the functions of 

genes (gene deletion) that play a role as a role in carbon metabolism and control 

the metabolic and growth regulation in a hyphae. We also used the same system to 

characterize the localization of glucose transporter (HxtB) and enzyme (β-

glucosidase) and its response to various nutrient conditions. 
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Figures 

 

Figure 1:  Fungal morphogenesis: a) yeast growth by budding b) hyphal growth with red 

arrows showing septa and green arrows showing secondary and tertiary branches of 

hyphae, c) Asexual reproduction of A. nidulans and shows the characteristics of hyphal 

growth and yeast growth when rows of conidia are formed by budding, and d) signaling 

pathway to the conidiation in A. fumigatus (Thompson et al. 2011and Etxebeste et al. 

2010).  

a)    b)  

c)    
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Figure 2. Growth from spore to hypha. Shows the isotropic growth (germination) to 

polarity establishment and to the polarity maintenance (Si. 2010). 

 

 Figure 3: Show the activation of the cAMP-PKA pathway in S. pombe and in A. nidulans. 

The A. nidulans sequence homologs of S. pombe are listed in square brackets 

(Muthuvijayan et al. 2004). 
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Figure 4. Morphological form of a filamentous hyphae along with the locations of actin 

cables and the Spitzenkorper (SPK) and also shows the interactions of Cdc42 with the 

exocyst and polarisome (Sudbery. 2011) 

 

 

Figure 5:  Polarity in A. nidulans. (a) Germ tube elongation. (b) Subapical branching. (c) 

Tip splitting (dichotomous branch) showed by red arrows (Momany. 2002). 
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Figure 6: Phylogenetic tree of showing genetic similarity to components of the polarisome 

in yeast and A. nidulans. 

 

Figure 7: A4 (wildtype) in the derepression system was moved from YGV (yeast extract, 

glucose media) to CMC media and measured for 4 hours. The red arrows point to change 

in hyphal morphology. 
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Figure 8: FlbA, a GTPase- activating protein negatively regulates FadA (α-subunit of 

heterotrimeric G protein) by forming a Gα-Gβ-Gγ complex. Active FadA positively 

regulates PkaA inducing vegetative growth and inhibiting conidiation and secondary 

metabolism (Kato et al. 2003). 

 

Figure 9: SepA::GFP localization in A. nidulans is at the septa and at the hyphal tips 

(Sharpless and Harris.2002) 
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Chapter 1 

Introduction 

Polarized hyphal growth is a defining feature of filamentous fungi where most of the 

growth occurs at hyphal tips. Hyphae are organized so that the cell surface expansion and 

cell wall deposition are restrained to discrete sites at the hyphal tip. This method of growth 

is supported by extreme polarization of the cytoskeleton and the vesicle-trafficking 

machinery, which delivers exocytic vesicles from the interior of the tip along with 

endocytic mechanisms that remove materials as they are displaced from the tip. Due to the 

attention given on understanding polarized growth has resulted in identification and 

characterizing gene products that are required for the establishment and maintenance of 

hyphal polarity (Si et al. 2016, Horio et al. 2005). Although the process for understanding 

the hyphal morphogenesis is well studied the genes involved in the molecular mechanisms 

are still poorly understood. The general model for these mechanisms had emerged from the 

study of polarity establishment in yeast cells (Pearson et al. 2004).  

The genes that have been of most interest in the establishment of polarity are the Rho-

related GTPases (Cdc42, Rac, Rho). These GTPases are molecular controls that control 

many aspects of the hyphal morphogenesis and in other eukaryotic cells. In Saccharomyces 

cerevisiae Cdc42 acts as control center for the different regulatory networks that relay the 

spatial and temporal information to recruit the cytoskeleton and vesicle trafficking 

machinery to polarized growth sites. In absence of Cdc42 in yeast cells, they are unable 

form budding or mating polarity axis. The importance of Cdc42 led to identification and 

characterization of Cdc42 and Rac1 homologous in any filamentous fungi (Si et al. 2016). 

In Aspergillus nidulans Cdc42 is not required for polarity establishment or polarity 
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maintenance, instead RacA can control these functions as the deletion of Δcdc42 can 

geminate and can establish hyphal polarity but the hyphae are atypically straight and 

exhibit delay in the formation of lateral branches. This suggests that Cdc42 is required for 

polarity establishment of secondary hyphal growth. The essential role of RacA in polarity 

establishment of hyphae was demonstrated when extra copies of RacA was provided on a 

high-copy plasmid in absence Δcdc42 and this suppressed the Δcdc42 mutant phenotype  

and the Δcdc42 ΔracA double mutant are inviable. Therefore neither Cdc42 nor RacA are 

absolutely required for polarity establishment and act redundantly at some level for normal 

polarized hyphal growth. Cdc42 and RacA also have individual important roles in hyphal 

morphogenesis as RacA is an activator of fungal NADPH oxidases and Cdc42 is a regulator 

for MAP kinase signaling pathway (Virag et al. 2007, Si et al. 2016).  

In yeast Cdc42 activates three distinct classes: p21- activates kinases (PAKs), the CRIB-

domain proteins Gic1 and Gic2, and the formins. In filamentous fungi relatively little is 

known about the Cdc42 effectors. Although PAKs and formins are conserved in 

filamentous fungi, the homologues of Gic proteins or other proteins with a CRIB domain 

are absent (Virag et al. 2007).  

Formins are multidomain scaffold proteins involved in actin-dependent morphogenetic 

events. As the sole member of the formin family in A. nidulans proteome, SepA is required 

for septum formation and polarized growth. SepA is also suggested to function within a 

complex (the polarisome) that is regulated by Cdc42. The disruption of actin filaments 

(mutations affecting the formin SepA) only delay the polarity establishment but 

dramatically affect polarity maintenance. But the deletion of genes that encode actin SepA 

and key regulators such as α-actinin and Bud6 are lethal. Several studies have shown that 
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a functional actin cytoskeleton is required for localized cell surface expansion and cell wall 

deposition in filamentous fungi. MesA a fungal protein that that stabilizes the polarity axis 

in A. nidulans by regulating the localization of SepA directed to hyphal tips. Although 

MesA is not required for initial recruitment of SepA to polarized sites, it is required for 

retaining the polarity during hyphal growth (Sharpless et al. 2002, Virag et al. 2006, Virag 

et al. 2007, Taheri-Talesh et al.2008, Harris et al. 2005).  

The establishment and maintenance of the hyphal tip can be attributed to formation of 

several complexes that seem to work synchronously and can be termed as the “tip growth 

apparatus”. The tip growth apparatus contains the Spitzenkorper, polarisome and the 

exocyst complex helped by the actin cytoskeleton and microtubules. Ultrastructural 

analysis and live cell imaging have shown the importance of the Spitzenkorper as it mainly 

consists of the aggregated vesicles located at the extreme apex of a growing hyphal tip. 

The homologues of the polarisome in A.nidulans of Spa2, Bud6 and formin Bni1 are SpaA, 

BudA and formin SepA but none were found for Pea2 (Pearson et al. 2004, Virag et 

al.2006, Taheri-Talesh et al. 2008, Sharpless et al. 2002). However, scanning the genome 

of A.nidulans for genes that carry similar characteristic for SpaA, BudA or SepA we came 

across ANID_05595.1 (ModB).  ModB showed some genetic similarity to SepA by sharing 

some sequence similarity in coiled coil domain (Harris unpublished). (Taheri-Talesh et al. 

2008, Virag et al. 2006, Gross et al. 2013).  

ANID_05595.1 (ModB) is located on chromosome 5, contig 96 and encodes 946 amino 

acid hypothetical involucrin repeat protein. While characterizing the function of ModB, the 

deletion of ΔmodB, resulted in restricted colony growth, increased hyphal diameter and 

dichotomous hyphal branching patterns (the hyphal tip splits into two branches instead of 
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continuing as a single tip). The phenotype was similar to phenotype found in ΔspaA and 

ΔsepA deletion (The ΔsepA strain in this study has a point mutation, an L1369S substitution 

in the FH2 domain, that causes substitution of hydrophilic amino acid for a hydrophobic 

amino acid) (Sharpless et al. 2002). The ModB hypothetical protein shows some structural 

similarities to the SepA protein. This suggests that ModB may have some similar 

mechanistic function to SepA. Further characterization of ModB::GFP also shows 

localization initially at the septa and at the hyphal tip but overtime the localization is 

maintained only at the hyphal tips which was similar pattern to SepA::GFP (Virag et al. 

2006, Sharpless et al. 2002, Gross et al. 2013). Here we present how SepA and ModB are 

different in their interactions and show that they may use different pathways for polarized 

hyphal growth. 

Material and Methods 

Strains, Media and Growth Conditions 

Strains used in this study are shown in Table 1. The glucose rich media and supplements 

was prepared as previously described in Harris et al.1994. The minimal media was prepared 

as previously described in Kafer.1997. The study used both solid (with ~2% agar) and 

liquid media (without agar). MAG (2% Malt extract, 2% dextrose with vitamin), MAGUU 

(MAG with uridine and uracil), MN (1% dextrose and nitrate salts), MNV (MN with 

vitamins) and water agar were used as solid media. YGV (0.5% yeast extract, 1% dextrose 

and vitamins) and YGVUU (YGV with uridine and uracil) were used as liquid media. All 

the strains were grown in 28°C unless indicated otherwise. 

modB gene replacement 
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The ΔmodB gene replacement was constructed by fusion PCR and then transformed into 

the A. nidulans genome (Fig A).  The plasmid pFNO3 was used as the source of the 

auxotrophic marker pyrG that replaced modB. The AspGD database 

(http://www.aspergillusgenome.org) was used to retrieve ~1000 nucleotides of sequence 

upstream and downstream of modB which was then fused with pyrG through PCR. The 

MacVector software was used to construct primers for different fragments of the DNA 

construct. Each fragments was generated through PCR using the Expand High Fidelity 

PCR kit (Roche). Expand Long Template PCR kit (Roche) was used for fusion PCR of the 

fragments. The fragments were purified after amplification in the PCR by using PCR 

Purification kit (Qiagen). The modB gene replaced construct was purified using Gel 

Extraction kit (Qiagen) after PCR fusion. All fragments and the fused construct were 

verified after each amplification by gel electrophoresis to confirm the correct product size. 

The construct was transformed into A. nidulans wild-type strain TN02A3 using a standard 

lab protocol (Downs. 2012). All work in knockout, transformation and verification was 

performed by a pervious graduate student, Bradley Downs.  

Conctruction of ModB::GFP 

The Aspergillus Genome Database was used to identify the location of the gene and 

retrieve the sequence of modB (ANID_05595.1 nucleotides 2288415 to 2291359 on 

chromosome V). To build ModB::GFP the DNA construct and primer design was done 

using the Macvector software. The plasmid pFNO3 was used for retrieving the C-terminal 

GFP and pryG (auxotrophic marker). pFNO3 was acquired from the Fungal Genetic Stock 

Center. Oligonucleotide primers were purchased from IDT, Inc. The construction of 

ModB::GFP used PCR to amplify fragments of the ModB::GFP construct and PCR fusion 
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for amplifying the whole fragment (upstream (5199 base pair), downstream (3858 base 

pair), GFP-pyrG (2642 base pair) and the fusion (8313 base pair)). The Expand High 

Fidelity PCR kit (Roche) was used to amplify each fragment. Expand Long Template PCR 

kit (Roche) was used for the fusion and amplification of all fragments. We used PCR 

Purification (Qiagen) for purifying fragments after amplification through PCR and Gel 

Extraction Kit (Qiagen). After each PCR amplification the product was verified using gel 

electrophoresis. After the generating ModB::GFP DNA construct, it was transformed into 

A. nidulans wild-type strain TN02A3 using a standard lab protocol (Downs. 2012). 

Transformation of A. nidulans with Mod::GFP 

Transformation in this study was done by growing fresh TN02A3 spores (10^7/mL) in 

YGV+UU at 28˚C, 200 rpm for 12-14 hours. The protoplast solution consisted of: 20mL 

of Solution 1 (0.8M ammonium and 100mM citric acid in ddH20), 20mL of Solution 2 

(1% yeast extract and 2% sucrose dissolved in sterile ddH20), 7mL of 1M Magnesium 

Sulfate, 200mg of Driselase, 250mg of Glucanex, 250mg of Vinoflow, 100mg of Lysing 

Enzime, and 500mg of BSA (Bovine Serum Albumin). The protoplast solution was 

incubated at 30˚C, 100 rpm for 15 minutes, to dissolve the solutes into solution. The 

solution was filter sterilized.  

The mycelium was collected by making a pellet of mycelia from centrifuging the solution at 

3500 rpm, for 5 minutes, at room temperature.  The YGV+UU was discarded and the sterilized 

protoplast solution was added to the pellet.  The solution was incubated at 30˚C (at 100rpm) for 

4hours.  The solution was checked for protoplast formation at hour 3.  After 4 hours, the 

protoplast was filtered through a Miracloth and into a 50mL falcon tube (to collect all of the 
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hyphae that did not grow protoplast).  The falcon tube was centrifuged for 5 minutes, at 

3000rpm, to collect the protoplast.  

After protoplasts were collected, the supernatant was discarded.  The protoplast pellet was 

washed with 20-30mL of Solution 3 (0.4M ammonium sulfate, 1% sucrose and 50mM 

citric acid in ddH20) on ice until the entire pellet was resuspended. The solution was 

centrifuged for 5 minutes, at 3000 rpm, to collect the protoplast pellet.  This wash was 

repeated twice.  Protoplast were resuspended in 100µL/reaction of Solution 5 (0.6M KCl, 

50mM CaCl2 and 10mM MES in ddH20) and incubated on ice for 10 minutes. After 

incubation, 50µL of protoplasts were removed twice and placed separately into two 1.5mL 

tubes, one for positive and one for negative control.  Typically, 10 reactions are required 

per DNA construct.  Nine of the reactions are designated for the DNA construct and 1 

reaction was designated for the positive and negative control.  Each reaction was equivalent 

to two plates. 

4µL of pFNO3 plasmid was added to the positive control.  50µL of Solution 4 per reaction was 

added and incubated on ice for 20 minutes.  1mL of Solution 4 (25% Polyethylene Glycol 8000, 

100mM CaCl2, 0.6 KCl and 10mM Tris HCl (pH=7.5) in ddH20) per reaction was added to 

each tube and incubated at room temperature for another 20 minutes.   

The top agar was equilibrated in a 60°C water bath and was removed 5 minutes before the last 

incubation time.  This allowed the agar to cool down so that the heat would not affect the 

protoplast. 2.3mL (766.66µL, 3 times) of protoplasts were transferred to 40mL of top agar and 

mixed gently. 10mL of top agar mixture was added per plate. The plates were left at room 

temperature overnight and transferred to 28˚C incubator. 
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The transformation colonies were grown for 5 days and checked for growth, if a knockout 

mutant has been used the colonies could take longer to grow due to diminished growth 

phenotype. After the colonies were ready, a toothpick was used to transfer the colonies to a 

MAG plates to revive sick colonies.  After a sampling of phenotypes are picked. DNA was 

extracted and PCR verified, once the colonies were verified they were plated out on fresh MAG 

plates. The spores were then stored at -80°C (Downs. 2012).  

DNA Extraction 

DNA was extracted using the Mo Bio Powersoil DNA isolation kit (Catalog No. 12888-

100). The protocol followed instructions provided by the vendor. This kit has been used in 

many studies and has been used to extract DNA from a variety of yeast, bacterial and 

filamentous fungi. 

PCR  

After DNA extraction, sequences were amplified by PCR. There were three types of PCR 

reactions used in this study (based on the polymerase employed): native polymerase 

(Invitrogen, Carlsbad, CA), High fidelity polymerase (Roche) and Long template 

polymerase (Roche). The native Taq polymerase was used for PCR verification on all 

sequences that were not used in transformations. The High fidelity polymerase and Long 

template polymerase was used for sequences used in transformation. PCR reactions were 

set up follows: 

(i) PCR verification reaction (Invitrogen, Carlsbad, CA): 5μL of buffer, 2.5 mM 

MgCl2, 200μM dNTP, 100ng of DNA template, 400nM of downstream and 



33                             
 

 

upstream primers (each), 0.5 units of Taq polymerase and double distilled 

water to bring the final solution to 50μL. 

(ii) Expand High Fidelity PCR System (Roche, Mannheim, Germany): 5μL of 

buffer, 2.5 mM MgCl2, 200μM dNTP, 100ng of DNA template, 400nM of 

downstream and upstream primers, 0.75 units of Expand High Fidelity 

Enzyme mix and double distilled water to bring the final solution to 50μL.  

(iii) Expand Long Template PCR System used for PCR fusion (Roche, Mannheim, 

Germany): 5μL of buffer (with a final concentration of 2.75 mM MgCl2), 

500μM dNTP, 100ng of DNA template, 400nM of downstream and upstream 

primers, 0.75 units of Expand Long Template Enzyme mix and double 

distilled water to bring the final solution to 50μL (Downs. 2012).  

The PCR Conditions 

The simplest protocol was PCR verification, where the thermocycler, (Biorad MJ mini 

gradient thermocycler) lid was set for 105˚C and the block was set to reach 94˚C (the DNA 

denaturing temperature). The block was then held 94°C and polymerase was added to each 

reaction. After polymerase was added, there was a 90 second 94˚C denaturing step. The 

annealing temperature was specific for each primer set, usually 50-60˚C, for 30 seconds. 

The elongation temperature was 72˚C with the time dependent on the length of the product. 

In this study, for every 1kb, 1 minute was added to the elongation time. This cycle was 

repeated 30 times. The final step was 72˚C for 7 minutes to finish up all of the elongations. 

The PCR reaction was then held at 4˚C to stabilize the sequence after the run. 
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While using the High fidelity PCR system, there were two different denaturing, annealing 

and elongation cycles. The first 10 cycles were the same as stated above but, the next 20 

cycles required an additional 5 seconds added to each elongation cycle.  

While using Expand Long Template PCR System, the elongation temperature was set at 

68˚C and the last 20 cycles were increased by 20 seconds per cycle.  

Electrophoresis  

The gels used for electrophoresis in this study was made of 0.8% purified agar in 1xTAE 

and 1μL of ethidium bromide. To determine the size of the band, 1+KB ladder 

(Invitrogen) was used. To determine the mass of the bands, the High Mass Ladder 

(Invitrogen) was added to the gel in two different quantities of 2μL and 4μL.  

Microscopy 

Microscopy images were captured and processed using Metamorph software. Brightfield and 

fluorescence microscopy was performed using an Olympus BX- microscope housed in the 

Harris lab. (All of the Brightfield (40X magnifications was used for all images except for GFP 

images. 100X magnification was used for GFP images). Confocal microscope at the 

Microscopy Core Facility was used for GFP images. Calcofluor (a non-specific fluorochrome 

that binds with cellulose and chitin which is contained in the cell walls of fungi) staining was 

used to visualized hyphal tips and septa. 

Bright Field (BF) 

The spores of strains were collected from fresh plates. 15mL and/or 50 mL YGV was added 

into falcon tubes depending on the number of coverslips being used. Sterile glass coverslips 

(22X22mm) were flamed to remove lint and laid on the bottom of a clean Petri dish. For 
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small Petri dish (60 cm) use 10mL of media and 10µL of spores were used. For large Petri 

dish (100 cm) 20mL of media and 20µL of spores were used. Media and spores were mixed 

in the Falcon tube then poured into the Petri dish with coverslips. Gentle tapping was used 

to eliminate air bubbles between the coverslips and the bottom of the Petri dishes, which 

were then put in the incubator 28°C or 42°C (when ts strains were used) for 12- 14 hours. 

Calcofluor 

The samples were set up as it was done in BF. After the 12-14 hour incubation time the 

coverslips were fixed with ethanol for 2 min. They were then treated with Calcofluor (in 

50mL falcon tube add 40mL of water and add 17µL Calcofluor (10mg/mL) and mixed 

well) for 5 min. The final wash was with sterile water. Then mount solution was added 

onto the slide and the stained coverslip was added to the slide and finally analyzed on the 

microscope. 

Characterization of ΔmodB crossed with ΔsepA, ΔmesA, Δcdc42 and ΔracA 

The parent strains were streaked on MAGUU plates and then crossed sections were plated 

on MN plates. Once the cleistothecisa had matured, they were dissected on water agar 

plates. The dissected spores were diluted with water and spread on MN plates. Selected 

outcrosses segregants were then plated on MAG plates to perform DNA extraction (Mio-

Bio Powersoil kit) and then PCR verified (Invitrogen, native/ recombinant Taq 

polymerase). Once the outcrosses were verified the spores were stored at -80°C and imaged 

using both BF and Calcofluor microscopy. 

Results  

Phenotypic characterization of ΔmodB 
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The gene replacement of ΔmodB showed restrictive growth on MAG plates. The hyphal 

growth was analyzed by BF and Calcofluor microscopy and noted the phenotype of 

dichotomous branching compared to the A4 (wildtype) which only formed a single hyphal 

tip (Fig 1). However, the dichotomous branching in ΔmodB did not occur in all hyphae, as 

displayed in the ΔsepA mutant, but only in about 40% of the hyphae. (Fig 1) (Sharpless and 

Harris. 2002). The ΔsepA mutant also showed that they cannot produce septa or there is a 

delay in septum formation in some deletion strains of ΔsepA, while ΔmodB can form a 

septa similar to wildtype. 

ModB::GFP localizes at the hyphal tips and initially at the septa 

To further explore the role of ModB we first generated ModB::GFP strain. After 12 hours 

of growth in YGV media, the GFP localization was displayed at the septa and at the 

crescent of the hyphal tips (Fig: 2a). We also noted that the localization is constant at the 

hyphal tips whereas the localization at the septa disappears after 14 hours of growth (Fig: 

2d&e). During the time course of 12-16 hours we noted the changes in localization from 

the septa and at the crescent of the hyphal tips to localization only at the hyphal tips (Fig: 

2a-e). Similar to the ΔmodB’s phenotype of dichotomous branching, the localization of 

GFP was not seen in all hyphal tips and septa but only in ~40% of the hyphae that were 

wider compared to the wildtype.  

SepA::GFP has shown the similar pattern of localizing at the septa and at the hyphal tips 

(Overview Fig 9) (Virag et al. 2007). Unlike ModB::GFP the SepA::GFP localized at all 

hyphal tips and septa. This shows that ModB may function along with or may have similar 

functions as SepA. 
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The ΔsepA ΔmodB double mutant shares the same phenotype as ΔsepA: of restricted 

growth, form dichotomous branching and unable to form septa. 

To further explore the functions of SepA and ModB, a double mutant was generated by 

crossing ΔmodB and ΔsepA. The PCR verification showed no presence of ΔmodB (Figure 

3A). The mutants were then analyzed microscopically and stained with Calcofluor while 

growing them in YGVUU at 42°C. The double mutant strains showed the same phenotype 

as ΔsepA where they formed dichotomous branching and couldn’t form a septin ring. The  

ΔmodB displayed the same phenotype of dichotomous branching but could form a septa  in 

42°C. The colonies were also grown in MAGUU plates in 42°C and the colonies showed 

the same restricted phenotype as ΔsepA (Figure 3B). As previously described the 

phenotype of double mutants as ΔsepA ΔmodB exhibit the same phenotype as ΔsepA where 

they showed the same dichotomous branching and temperature sensitivity in 42°C. This 

suggests that ModB and SepA may perform different functions despite having some similar 

characteristics. The absence of SepA and ModB doesn’t seem to affect the polarity 

establishment or maintenance but it does affect the septum formation.  

The double mutant of ΔmesA ΔmodB show the phenotype of both parents of restrictive 

growth and dichotomous branching 

To further explore the role ModB in polarity establishment we generated a double mutant 

by crossing and PCR verification was used to show absence of ModB (Fig 4A). The crossed 

strains were then compared to both parents ΔmesA and ΔmodB by growing in 42°C on 

MAGUU plates to test their temperature sensitivity. The plate analysis shows the double 

mutants had restricted growth in 42°C (Fig 4B). Further microscopic analysis and staining 

with Calcofluor showed ΔmesA to have a restrictive growth phenotype but ΔmodBΔmesaA 
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showed an increase in dichotomous branching of the hyphae and restricted growth (Figure 

4C). Although, previous research showed both MesA and SepA are required for the 

stabilization and establishment of polarity axes of the hyphae as the double mutant 

ΔsepAΔmesA is unable form a stable polarity axis and hyphae. The double mutant of 

ΔmodBΔmesA form a stable polar axis even when the growth is restricted. This further 

shows that ModB and SepA may have different functions. 

The double mutant of Δcdc42ΔmodB were inviable 

Cdc42 plays a central role in most organisms to establish polarity. To further explore role 

of ModB in polarity establishment we attempted to generate a double mutant of 

Δcdc42ΔmodB but this cross yielded only wildtype phenotype on minimal media and even 

in rich media the segregants were either wildtype or either of the parents. The segregants 

were verified through PCR and noted that nearly all of the segregants had been wildtype 

as they contained both ModB and Cdc42. Only a few were a deletion of either ΔmodB or 

Δcdc42 parents when the segregants were tried to be revived on MAG and MAGUU plates 

but most were wildtypes. This shows that either ModB or Cdc42 are required for polarity 

establishment. This also shows that they both may be required to form cleistothecia (sexual 

spore) therefore unable to form the double mutants. 

The double mutant of ΔracA ΔmodB phenotype show hyper- and dichotomous branching. 

In A. nidulans Cdc42 and RacA have overlapping functions as in the absence of Cdc42 or 

RacA the hyphae can still establish and maintain polarity, but during the absences of both 

it is lethal. To explore the role of ModB we generated double mutants of ΔracAΔmodB and 

the segregants were verified through PCR. The verified double mutants were then analyzed 
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through BF microscopy. The double mutants displayed the phenotype of hyper branching 

and dichotomous branching. The ΔracA mutant displays reduced growth and the hyphae 

remain similar to wildtype but ΔmodB showed the dichotomous branching phenotype. This 

shows the presence of RacA and ModB are required for proper formation of hyphae as the 

absence of both leads to hyper-branching and dichotomous branching in some hyphae 

(Figure 5) (Virag et al.2007). This shows that ModB may share some function with RacA. 

Discussion 

The Rho related GTPases are crucial in the polarity establishment of animal and fungal 

cells. Although this process is not fully understood in filamentous fungi yet the yeast 

molecular mechanisms have acted as a model system. However, in yeast cells a functional 

Cdc42 is required to establish polarity. In filamentous fungi such as, A. nidulans, either 

RacA or Cdc42 is adequate to establish or maintain polarity in cells, even though Cdc42 

has a major role in hyphal morphogenesis. Cdc42 also interacts with several effectors 

including formin, SepA, a component of the Polarisome that plays an important role in 

establishing and maintaining polarity. Another fungal protein that is crucial to establish 

polarity is MesA as it recruits and stabilizes SepA to polarized sites. The initial analysis of 

searching for homologues for polarisome components lead to the gene ModB that showed 

some genetic similarity in the coiled coil domain of SepA (Harris unpublished). In an effort 

to understand the role and function of ModB, we deleted ΔmodB and constructed 

ModB::GFP. The comparison between ΔmodB and ΔsepA displayed a similar phenotype 

of dichotomous branching. The phenotypes displayed also differed as the phenotype of 

dichotomous branching in ΔmodB did not occur in all hyphal tips but only in ~40% of the 

hyphae. This is different from the ΔsepA phenotype as the dichotomous branching occurs 
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in all hyphal tips. Other difference that was displayed was that ΔmodB could form a septa 

similar to wildtype whereas, ΔsepA could not form a septa. The comparison between 

ModB::GFP and SepA::GFP showed similar localization pattern at the septa and at the 

crescent of hyphal tip. However, there were some differences in ModB::GFP localization 

as the initial localization was at the hyphal tips and at the septa but overtime the localization 

remained only at the crescent of the hyphal tip. The localization of SepA::GFP was present 

in 100% of hyphal tips but the localization in ModB::GFP was only present in ~40% hyphal 

tips (Sharpless et al. 2002). This indicated that ModB and SepA may share similar roles. 

Further analysis was done to understand the role the ModB by creating double mutants of 

ΔmodB: ΔsepA, ΔmesA, Δcdc42 and ΔracA. The double mutants of ΔsepA ΔmodB showed 

the same phenotype of ΔsepA mutant where the mutants had restricted growth and in 

temperature sensitive conditions in 42°C, could not form a septa and branched 

dichotomously. These phenotypes indicated that SepA and ModB may function in different 

pathways. Further analysis of the double mutant of ΔmesA ΔmodB showed restricted 

growth of colonies and hyphae in 42°C and also showed the phenotype of dichotomous 

branching but the polarity was established and maintained. This was different from the 

double mutant of ΔsepAΔmesA as they were unable to establish a proper polarity axis 

(Pearson et al. 2004). So far the results indicated that ModB functions in a different 

pathway from SepA.  

To further explore the role of ModB in polarity establishment the generation of double 

mutant of Δcdc42ΔmodB was attempted and noted to be inviable as most of the outcrosses 

were wildtype. This leads to show that ModB could have a more important role in 

establishment of polarity and may play a role in both actin and microtubule organization 
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of the establishment within hyphae. Previous research shows that in the absence of Cdc42 

the function of microtubule to establish and maintain a polarity axis becomes important. It 

was observed that when Δcdc42 mutant was exposed to microtubule depolymerizing agent 

benomyl, there was a delay in polarity establishment. Also the spores fail to polarize in 

ΔsepA mutant as well as in the double mutant of Δcdc42ΔsepA when exposed benomyl 

(Virag et al. 2007). To further understand the role ModB in polarity establishment the 

double mutant of ΔracAΔmodB was generated and showed similar phenotype of 

dichotomous branching present only in ΔmodB. The ΔracA exhibited delay in hyphal 

growth by formed wildtype hyphae. The ΔmodBΔracA also displayed hyphae that were 

hyper branching as they form significantly wider hyphae different from both parents. This 

shows that RacA and ModB may have a related role in polarity establishment (Virag et al. 

2007). 

Future Directions 

Further studies can be done to understand ModB’s role in microtubule organization by 

exposing ΔmodB and the double mutants of ΔmodB: ΔsepA, ΔmesA, and ΔracA to benomyl. 

This could show what role ModB plays in microtubule organization and how this affects 

the polarity establishment and maintenance. More analysis could be done to explore the 

role of ModB in the conidiophore and sexual development to understand what causes the 

inviability of the double mutant Δcdc42ΔmodB. Further analysis can also be done to the 

role of ModB in endocytosis and exocytosis by crossing ΔmodB to SynA::GFP (v-snare 

that binds to SPK and plays a role in exocytosis) and SlaB::GFP (component that couples 

with the endocytic vesicle formation to actin polymerization). These crosses can give us 
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more insight in the role ModB in endocytosis and exocytosis of polarized growth of the A. 

nidulans hyphae (Penalva et al. 2012). 
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Tables and Figures 

 

Table 1 

Name  Strain name Relevant genotype Source 

wildtype A4  FGSC 

wildtype TNO2A3 pyrG89; argB2 ; pyroA 4 nkuA ::argB FGSC 

modB T15 pyrG89 ΔmodB::pyr-4 wA3 pyroA4 Lab stock 

ModB::GFP T17 pyrG89 modB::gfp::pyr-4 wA3 pyroA4 Lab stock 

cdc42 AAV 128 pyrG89; argB2; pyroA4ΔmodA::pyroA Δnku::argB Lab stock 

sepA ASH 630 pyrG89 wA3 sepA1 Lab stock 

mesA DD8 A2 mesA, pyrG89;paba Lab stock 

racA AAV 129 pyrG89; argB2 ΔracA::pyroA;pyroA4 Δnku::argB Lab stock 

 

Figure A: The gene replacement of nkuA was replaced with argB and was fused with PCR 

fusion and transformed into the genome of A. nidulans. The same phenomenon was used 

for gene replacement of modB with pyrG (amplified with pFNO3) and use fusion PCR to 

make the transforming fragment and then transformed into the genome of A. nidulans 

(Nayak et al. 2006). 
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Figure: 1 a) The phenotype of ΔmodB shows dichotomous branching indicated by red 

arrows, b) The phenotype of wildtype strain A4 shows normal branching of the hyphal 

tip. C) The phenotype of ΔsepA shows dichotomous branching indicated by red arrows. 

The ΔmodB and ΔsepA also displays the frequency of the phenotype of dichotomous 

branching as the phenotype is more prevalent in ΔsepA than in ΔmodB. 
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Figure 2 (a-e): ModB::GFP localization analyzed in a time course from 12 hours to 16 

hours in YGV media at 28°C. The red arrows show the GFP localization at the septa and 

the hyphal tips.  

 

 

 

Overview Figure 9: SepA::GFP localization in A. nidulans is at the septa and at the hyphal 

tips (Sharpless and Harris.2002) 
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Figure 3A: The PCR verification was performed to check the presence of ModB in the 

segregants from the crosses of ΔsepA and ΔmodB. Then a gel electrophoresis was done to 

visualize the results of PCR. The gel image shows the TN (wildtype) and the double 

mutants of ΔsepAΔmodB (10, R, W and Y). The gel image indicates the presence of ModB 

in TN but not in the other strains. 
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Figure 3B: The phenotype of ΔmodBΔsepA double mutants shows the same phenotype as 

ΔsepA. The phenotype of ΔmodB shows dichotomous branching indicated by red arrow. 

The phenotype of ΔsepA show a restricted growth and dichotomous branching phenotype 

indicated by the red arrow. The double mutant of ΔmodBΔsepA shows the dichotomous 

branching phenotype and restricted growth similar to ΔsepA. The phenotype of TN 

(wildtype) shows normal branching. All strains were grown in YGVUU for 11 hours in 

42°C a) ΔmodB b) ΔsepA c) ΔmodBΔsepA d) TN (wildtype). 

 

Figure 3C: The MAGUU plates shows the phenotypic growth of all strains in 42°C. The 

growth of ΔmodB is restricted compared to TN. The growth of ΔsepA shows restricted 

growth and the same colony phenotype is found in the double mutants of ΔmodBΔsepA. 

Row1 shows ΔmodB and ΔsepA. Row2 shows all the double mutants ΔmodBΔsepA 

strains and row 3 shows TN (wildtype). 
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Figure 4A: The PCR verification was performed to check the presence of ModB on the 

segregants from the crosses of ΔmesA and ΔmodB. Then a gel electrophoresis was done to 

visualize the results of PCR. The gel image shows the TN labeled as E and C (wildtype) 

and the double mutants of ΔmesAΔmodB (1, 2, 3, 6, 7 and 8). The gel image indicates the 

presence of ModB in E and C but not in the other strains. 

 

 

 

 

 

 

 

 

 

Figure 4B: The MAGUU plates shows the phenotypic growth of all strains in 42°C. The 

growths of ΔmodB and ΔmesA is restricted compared to TN. The colony phenotype found 

in the double mutant of ΔmodBΔmesA shows a more restricted growth compared to ΔmodB 

and ΔmesA. Row1 shows ΔmodB, ΔmodBΔsepA, and ΔmesA strains. Row 2 shows TN 

(wildtype). 
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Figure 4C: The phenotype of ΔmodBΔmesA double mutants displays the same phenotype 

as ΔmodB and ΔmesA. The phenotype of ΔmodB shows dichotomous branching indicated 

by red arrow. The phenotype of ΔmesA show a restricted growth of the hyphae. The 

double mutant of ΔmodBΔmesA shows the dichotomous branching phenotype and 

restricted growth similar to both ΔmodB and ΔmesA. The phenotype of TN (wildtype) 

shows normal branching. All strains were grown in YGVUU for 12 hours in 42°C a) 

ΔmodB b) ΔmesA c) ΔmodBΔmesA d) TN (wildtype). 
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Figure 5: The phenotype of ΔmodB ΔracA double mutant shows hyper- and dichotomous 

branching as indicated by the red arrows. The ΔmodB mutant shows dichotomous 

branching indicated by the red arrows. The ΔracA mutant displays slower growth but 

hyphae look similar to A4 (wildtype). All strains were grown in YGV for 12 hours at 28°C. 

A) A4 (wildtype) B) ΔmodB, C) ΔracA D) ΔmodBΔracA.  
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Chapter 2 

Introduction 

Reproduction in Aspergillus nidulans produces both conidia (asexual spores) and 

ascospores (sexual spores) that are vital for survival and dispersal in any environment. 

Spore dispersal and germination is essential for pathogenicity and growth in the 

environment. Dormant conidia can be viable for years until appropriate conditions are 

detected for germination, including water, salt, carbon and nitrogen sources. Germination 

can be described in two morphological phases: isotropic growth (swelling of the spore) and 

the germ tube emergence. Germination also involves the detection of external nutrients to 

initiate the primary metabolism to energy yielding reactions to not only initiate the cell 

cycle but also the biosynthesis of cellular components and differentiation of growth 

morphology (Assis, 2015).  

A.nidulans can germinate and sustain growth on a diverse range of simple and complex 

carbon sources, including saccharides, alcohols, proteins and lipids. This metabolic 

flexibility has enabled A.nidulans to adjust metabolism and nutrient uptake to fit its 

environment (Assis, 2015).  

The primary trigger for germination in A.nidulans appears to be glucose. Glucose is sensed 

both intracellularly and extracellularly in addition to glucose transport which occurs 

through facilitated diffusion (Fernanda dos Reis. 2013). 

Intracellularly, the presence of glucose is sensed by a G protein-coupled receptor (GPCR), 

since this Gα protein (GanB) is constitutively active (GTP bound) so germination can be 

activated even in the absence of a carbon source. A downstream effector of GanB is CyaA, 

an adenylate cyclase, is required for cyclic AMP (cAMP) production. cAMP acts as a 

secondary messenger that binds to regulatory subunit of protein kinase A (PkaA) and 
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activates the catalytic subunit. In A.nidulans both CyaA and PkaA are required for 

germination (Fernanda dos Reis. 2013). An additional intracellular signaling pathway that 

controls vegetative growth or switch to asexual development is through another G-

protein/cAMP/PkaA signaling pathway. This involves FlbA, a RGS (regulator of G-protein 

signaling) protein that negatively regulates another Gα subunit, FadA, similar to GanB. 

When FadA is GTP bound it is active and leads to the activation of cAMP/PkaA pathway 

which stimulates vegetative growth in formation of vegetative hyphae. FlbA suppress the 

function of FadA by converting FadA into an inactive state by FadA being bound to GDP. 

The ΔflbA leads to constitutively active state of FadA and PkaA (Krijgsheld et al. 2013). 

Both of these cAMP/PkaA signaling pathway lead to vegetative growth. 

When glucose is available, the synthesis of enzymes specific for the use of alternative less 

preferred carbon sources such as xylose and carboxymethylcellulose sodium (CMC), is 

repressed by a mechanism termed as carbon catabolite repression (CCR) (Lockington et al. 

2001). CreA is a transcriptional repressor in A.nidulans that is central to CCR. This process 

is beneficial for two major reasons: firstly, the most favorable carbon source is used and 

secondly no energy is wasted in synthesizing the other catabolic systems (Orejas, 1999). 

Extracellularly glucose is sensed by glucose transporters that have yet to be fully defined 

in A.nidulans. Budding yeast has been used as a model system for the study of hexose 

sensing and transport. In Saccharomyces cerevisiae extracellular glucose is sensed by two 

specific transmembrane proteins that act as sensors, Rgt2 and Snf3 and also show similarity 

to hexose transporters (HXT proteins). These sensors however are unable to transport 

glucose. In the presence of extracellular glucose the transcriptional repressor complex 

Rgt1, Std1 and Mth1 are bound to the promoter regions of HXT genes and inhibiting 
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transcription. In the absence of extracellular glucose Std1 and Mth1 are phosphorylated by 

Yck1 and Yck2 kinases and targeted to the SCF Grr1 E2/E3 complex for degradation. This 

process then results in PkaA hyperphosphorylating Rgt1 and is released from the promoter 

region of HXT genes. Hxt proteins are part of sugar porter family within the Major 

Facilitator Superfamily (MFS) group. In S.cerevisiae twenty proteins have been classified 

as hexose transporters and these classifications are based on their different substrate 

affinities or specificities such as low-affinity, moderate affinity and high affinity. 

Differences in individual HXT gene expression is based on not just the availability of 

glucose but also the osmotic pressure, starvation, and the physiological state of the cell. 

Even though significant progress has been made in how S.cerevisiae senses glucose not 

much has been known about filamentous fungi. In A.nidulans hxtA is characterized as high 

affinity glucose transporter and In A. niger mstE genes is characterized as low affinity 

glucose transporter. Recent research revealed four homologues HxtB- HxtE for hexose 

transporter and were characterized based on their ability to transport glucose. All four of 

these genes were classified as glucose transporters (Fernanda dos Reis, 2013). The 

mechanism for the transport of glucose still needs to be defined therefore HxtB::GFP strain. 

The construction of the HxtB Strain can be found in Fernanda dos Reis et al. 2013.  

CCR has become fairly important as most fungi in nature and in the bioprocess industry 

experience limitation or even starvation which leads to morphological and/or physiological 

changes. This can be detrimental in some processes where it could lead to decreased 

production of a product or limits growth. Many studies have indicated that carbon 

starvation has morphological changes which include fragmentation due to cell wall 

degradation or physiological changes such as increased expression of hydrolytic enzymes, 
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increased vacuolation. Most of these studies show the increase in cellular degradation 

activity. However we don’t have a complete picture of how the starvation effects 

filamentous fungi. This is mainly due to the fact that most studies have measured the 

population-average behavior which does not capture the spatial and temporal changes in 

individual mycelium (Bhargava et al. 2005).  

To capture the morphological and physiological changes submerged cultures were used 

and strains of A4, ΔpkaA, ΔschA (a protein kinase involved in cAMP- dependent signaling 

during germination and has overlapping functions with PkaA), ΔflbA (negative regulator 

of G-protein signaling promoting conidiophore development) and HxtB::GFP  were 

exposed to brief periods of glucose rich conditions during germination and then switched 

to glucose limiting conditions with different carbon sources (xylose, CMC, 1% glucose, 

0.1% glucose) as well as with no carbon source (NCS). The morphology of these shift was 

seen within an hour in most old and newer hyphae as they would switch growth form wider 

to narrow hyphae in all strains. Some strains like ΔpkaA, ΔschA and ΔflbA showed a lag 

time (where the switch from wider to narrow hyphae was slower for about three hours) in 

non-glucose conditions and in ΔflbA strain there was slow or no growth after the switch. In 

HxtB::GFP the localization during these shifts was seen primarily in the nuclear membrane 

and overtime localization was reduced. This derepression studies would help us predict 

how the morphology and physiology of a single hyphae would change from carbon rich to 

carbon limiting or starvation conditions. 

 

Material and Methods 

Strains, media and growth conditions  



55                             
 

 

The strain used in study HxtB-GFP strain was acquired from Goldman lab (Fernanda dos 

Reis. 2013). The following strains were made in Harris lab: ΔpkaA (CEA 198), ΔschA 

(CEA 182) and ΔflbA (RJH 046). Strains used in this study are also listed in Table 2.  

The glucose rich media and supplements was prepared as previously described in Harris et 

al.1994. The minimal media was prepared as previously described in Kafer.1997. All 

medias used in this study were liquid media (no agar). YGV (0.5 % yeast extract, 1% 

dextrose and vitamins), MNV (minimal media with 1% glucose and vitamins), MNV 

(0.1%) (minimal media with 0.1% glucose and vitamins) CMCV (1% 

Carboxymethylcellulose sodium salt in minimal media and vitamins), NCS (no carbon 

source, minimal media with only nitrate salts) and XV (1% xylose in minimal media and 

vitamins). All the strains were grown in 28°C unless indicated otherwise. For septation and 

hyphal growth studies showed conidia were grown at 28°C for 12 hours on coverslips. 

During shift experiments after 12 hours of growth in YGV media the coverslips were then 

washed with sterilized ddH2O in stain jars and then placed into the shifting media (NCS, 

CMCV, MNV and MNV (0.1%)). The coverslips were then grown in shifted media for 4 

to 6 hours and analyzed each hour. 

Microscopy methods and staining  

The microscopy was done by using the Metamorph software.  The microscopic methods 

used in this study were Bright Field, Calcofluor stain (a non-specific fluorochrome that 

binds with cellulose and chitin which is contained in the cell walls of fungi), Wheat Germ 

Agglutinin (an agglutinin protein that binds to N-acetyl-D- glucosamine found in chitin of 

the cell membrane and acts as a marker for growth before the coverslips were switched 
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from YGV to MN to different carbon sources) and Hoechst stain (blue fluorescent stain 

specific for DNA such as nuclei of eukaryotic cell). 

Bright Field (BF) 

The spores of strains were collected from fresh plates. 15mL and/or 50 mL YGV was added 

into falcon tubes depending on the number of coverslips being used. Sterile glass coverslips 

(22X22mm) were flamed to remove lint and laid on the bottom of a clean Petri dish. For 

small Petri dish (60 cm) use 10mL of media and 10µL of spores were used. For large Petri 

dish (100 cm) 20mL of media and 20µL of spores were used. Media and spores were mixed 

in the Falcon tube then poured into the Petri dish with coverslips. Gentle tapping was used 

to eliminate air bubbles between the coverslips and the bottom of the Petri dishes, which 

were then put in the incubator 28°C or 42°C (when ts strains were used) for 12- 14 hours. 

Calcofluor 

Samples were set up as it was done in BF. After the 12-14 hour incubation time the 

coverslips were fixed with ethanol for 2 min. They were then treated with Calcofluor 

(40mL of water with 17µL Calcofluor (10mg/mL) and mixed well) for 5 min. The final 

wash was with sterile water. Then mount solution was added onto the slide and the stained 

coverslip was added to the slide and finally analyzed on the microscope. 

Wheat Germ Agglutinin (WGA) Stain 

Sample were set up as it was done in BF. After the 12-14 hour incubation time the 

coverslips stained in YGV media containing WGA for 20 min (20µL of wheat germ 

agglutinin in 20mL of YGV media). Then washed with fresh YGV media without wheat 
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germ agglutinin twice and then with sterile water in staining jars. The samples were then 

switched to fresh minimal media and incubated and analyzed after every hour.  

Hoechst/Calcofluor stain and fix 

HxtB::GFP was set up as it was done in BF.  After the 12-14 hour incubation time the 

coverslips were fixed in fix solutions (5mL of 1M pipes pH 6.7, 10mL of 0.25 EGTA 

pH7.0, 5mL of DMSO and 10mL formaldehyde 10%)  for 5 min and then into Hoechst/ 

Calcoflour stain (1µL Hoechst to 9µL water in a 0.5µL centrifuge tube. In a 50mL falcon 

add 40mL water, 10µL concoflour and 4µL Hoest with water) for 20 min. After staining 

the coverslips were washed with sterile water.  Mount solution was added onto the slide 

before the stained coverslip was added.  

Strains in microscopy 

  The analysis with Harris lab strains was done using BF, Calcoflour staining and wheat 

germ agglutinin. The analysis of HxtB::GFP was done using BF, Hoechst/concoflour stain. 

All strains were first grown in YGV and then switched to MNV (1% glucose), MNV (0.1% 

glucose), CMCV, NCS and XV. Confocal microscope at the Microscopy Core Facility was 

used for GFP images. 

Results  

For visualizing A4, ΔpkaA, ΔschA and ΔflbA shift from glucose rich to glucose minimal 

shows immediate change in the hyphal growth except for ΔflbA which forms a pointed 

hyphal tip. During derepression of hyphae when A4, ΔpkaA, ΔschA and ΔflbA are moved 

from glucose rich to alternate minimal carbon sources shows ΔpkaA and ΔschA share a 

lag time whereas ΔflbA shows no change in growth. 
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During the microscopic studies of A4, ΔpkaA, ΔschA and ΔflbA were used for shift 

experiments from rich to minimal media. We noted the same change in morphology when 

A4, ΔschA, ΔpkaA were switched from YGV (rich) media to MNV (minimal with 1% 

glucose) and stained with WGA. The hyphae was seen to be narrowing in MNV media 

within an hour and showed no difference between the strains (Fig1a). The morphology of 

ΔflbA on the other hand did not show any changes and there was no growth after the switch 

until 24 hours but the morphology of the hyphal tip was changed from a crescent shape to 

pointed (Fig 1b). There is a change in adaption when A4, ΔpkaA, ΔschA and ΔflbA are 

switched from YGV to minimal media without glucose (xylose or CMC). A4 shows no 

difference between glucose and CMC switch the hyphae went from broad hyphae to 

thinning within an hour as in MNV (Fig 1c). We noted that there is a lag time of about 

three hours when ΔpkaA is switched from YGV to CMC (Fig 1d), however with ΔschA 

there is a shorter lag time of about two hours (Fig 1e). The morphology of ΔflbA is quite 

different as there is not switch to thinner hyphae but the tips of hyphae seemed normal and 

there was no growth after 24 hours (Fig 1f). This derepression study showed some of the 

players that might be involved in helping a hyphae transition between different carbon 

sources. PkaA and SchA seem to have similar function conforming the results from 

previous research that PkaA and SchA have parallel functions as they both reacted the same 

way in the switch experiments. FlbA is known to work independently as it negatively 

regulates that FadA, a Gα-protein that promotes vegetative growth and suppresses asexual 

and sexual development through PkaA. But the absence of ΔflbA appears to affect its ability 

to respond different nutrient conditions. 
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HxtB::GFP localization is seen at the hyphal tips and septa when grown in different carbon 

sources. The derepression of HxtB::GFP from glucose rich media to different carbon 

sources shows it localizes at the septa, the vacuolar membrane and in xylose at the hyphal 

tips. 

HxtB::GFP has been characterized as a high affinity glucose transporter as there is no GFP 

expression in high glucose environments as seen in YGV (Fernanda dos Reis. 2013) (Fig 

2). The localization of GFP is seen in MNV (1% and 0.1% glucose), CMCV, NCS and XV 

the expression was noted at the septum and in vacuoles along the hyphae in all media (Fig 

2). 

When HxtB::GFP was grown in YGV and switched to MNV (1% and 0.1% glucose), 

CMCV, NCS and XV showed no lag time and the GFP expression was seen from the first 

hour of the switch. We also noted that the HxtB::GFP localization after the switch 

experiments was in vacuoles which we later indicated to be the nuclear membrane by the 

Hoechst/Calcofluor stain. The intensity of GFP expression also differed in different media 

as it was the localization was more visible in NCS, Xylose, MNV (0.1% glucose) and 

CMC. But the localization was barely visibile in MNV (1% glucose) (Fig 2a). 

Hoest/Concoflour stain was performed to determine the vacuoles as nuclei. We noted that 

most of the nuclei stained by Hoest/Concoflour were in same position as the vacuoles seen 

expressing GFP and therefore showing that HxtB::GFP is expressed in the nuclei (Fig 3). 

The localization was mainly seen in the membrane of the nucleus as the localization was 

seen as rings formed along the hyphae (Fig 2b). 

Discussion  
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The study of morphology and physiology of hyphae in different nutrient stresses is 

important to study as many filamentous fungi play important roles in environment and in 

bio industries for producing important compounds. One of the ways to characterize the 

molecular mechanics of how a hyphae reacts in different nutrient environments is by either 

deletion of important genes or by tagging these genes to GFP. The deletion strains used in 

this study were ΔpkaA, ΔschA and ΔflbA have shown that they play important roles when 

the environment changes from glucose rich conditions to minimal conditions and from 

glucose rich conditions to different carbon or no carbon conditions. This was displayed 

when ΔpkaA and ΔschA exhibited a slight delay in the morphological shift, when these 

strains were shifted from glucose rich to minimal media with CMC. Whereas, the ΔflbA 

strain did not exhibit any changes even after 24 hours. In the presence of glucose the shift 

from glucose rich to glucose minimal the morphology was similar to wildtype in ΔpkaA 

and ΔschA as there was no lag time. The ΔflbA strain exhibited a unique hyphal morphology 

when glucose was present as the hyphal tip went from crescent to pointed hyphal tips after 

24 hours. The delay in PkaA and SchA could attributed to the fact that the change in glucose 

rich levels and could delay the activation cAMP and thereby delaying the activation of 

PkaA and SchA. The FlbA signaling however has been interesting as previous research 

only notes the FlbA works independently from FluG signaling pathway to controls the 

hyphal and condiophore development. In A. nidulans the deletion of FlbA has resulted in 

fluffy-autolytic colony that lacks sexual/asexual sporulation and has also shown to increase 

secondary metabolites (Yu and Keller. 2005). In A. fumigatus deletion of ΔflbA negatively 

affects cellular response associated with detoxification of reactive oxygen species and 

exogenous gliotoxin. In A. niger, the deletion of ΔflbA resulted in spatial changes in 
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secretion and a more complex secretome as the mutant has thinner cell wall components 

allowing it to release proteins efficiently (Shin et al. 2013, Lee et al. 1995, Krijgsheld et al 

2013).  

The localization of HxtB::GFP shows it is a high affinity glucose transporter as it shows 

no localization in YGV but when grown in different carbon source media and in no carbon 

source it shows GFP expression in what looks like vacuoles. The same localization pattern 

was seen when HxtB::GFP is switched from YGV to (CMC, MNV (0.1%), Xylose and 

NCS). After Hoechst staining we noted most of the localized pattern of GFP matches with 

Hoechst staining of the nuclei. This shows that HxtB::GFP primarily localizes in the 

nuclear membrane. During the shift experiments it was also noted that the initial switch 

showed a higher expression of GFP compared to the later hours of the switch. Although 

further analysis of mRNA expression needs to be measured to analyze the full function 

HxtB::GFP after the switch but judging from the current data it can be said that the 

expression over time might have decreased.  

Future Directions 

The future directions for this study would be to expand to other glucose transports and 

analyze the localization and to understand if different glucose affinity transporters have the 

same localization. It would also be informative to see if mRNA expression of HxtB during 

the switch experiments to show conclusively that HxtB expression is reduced overtime 

after the switch. Crossing HxtB::GFP to ΔpkaA, ΔschA and ΔflbA would not only help 

visualize the glucose transport with the hyphae but also help in understanding what could 

cause the delay when the deletion strains are shifted from glucose rich conditions to 

limiting or no glucose conditions. Other directions would also to be analyze regulator genes 
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in other pathway such as TOR and MAPK to understand how they affect the morphology 

and physiology of the hyphae during nutrient stress. Further analysis of the switch 

experiment could done to see if ΔfadA and double mutant of ΔflbA ΔfadA, if viable, would 

have any effect on physiological and morphological patterns.  
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Tables and Figures 

Table 2 

Name  Strain  
Relevant genotype Source 

Wildtype  A4 
 FGSC 

pkaA CEA 198 
pyrG89; wA3; argB2; ΔpkaA::pyrG Lab stock 

schA CEA 182 
pyrG89; wA3; argB2;  ΔschA::pyrG Lab stock 

flbA RJH 046 
ΔflbA, pyro A4, biA Lab stock 

HxtB::GFP HxtB 
pyroA4 pyrG89; HxtB::GFP::pyrG 

Gastavo 

lab 
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Figure 1: To visualize the morphological changes when a single hyphae are moved from 

glucose rich to glucose minimal conditions. We also used gene deletions of know carbon 

sensing regulators such as: ΔpkaA, ΔschA and A4 (wildtype) to understand their roles in 

morphological shifts. We grew all strains in YGV on coverslips for 13 hours in 28°C and 

these coverslips were switched to MNV after staining the coverslips with WGA (wheat 

germ agglutinin). We noted that all strains transition from thick to thin hyphae within the 

first hour. 
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Figure 1b: In the process of visualizing the morphological changes when hyphae are 

moved from glucose rich to glucose minimal conditions, we also noted ΔflbA switch did 

not occur at the same time as wildtype, which was within an hour but ΔflbA took about 24 

hours to change. We grew ΔflbA in YGV on coverslips for 13 hours in 28°C and these 

coverslips were switched to MNV after staining the coverslips with WGA (wheat germ 

agglutinin). The ΔflbA transition from thick to thin hyphae did not take place however, 

the hyphal tip shape had switched from a crescent shape to a pointer hyphal tip and this 

transition took about 24 hours . 

V                                                                                                                                           

  

 

 

 

ΔflbA (YGV in 13 hours stained with WGA) ΔflbA after 1 hour (stained WGA, and 

switched to MNV) 

YGV to MNV after 24 hours stained 

with WGA 

Switched from YGV to MNV after 24 

hours  
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Figure 1c: To visualize morphological changes in carbon derepression in central regulators 

such as ΔpkaA, ΔschA, and A4 (wildtype) which control carbon signaling respond to 

change in carbon source from glucose to cellulose. All strains were grown on coverslips in 

YGV and the coverslips were then switched to CMC after being stained with WGA. 

A4 switched from YGV to CMC after being stained with WGA shows the morphological 

shift occurs immediately after the switch. The change in morphology is indicated by red 

arrows. This phenotype is similar to the switch from glucose rich to glucose minimal 

condition. 

     

 

ΔpkaA switched from YGV to CMCV after being stained with WGA shows morphological 

shift occurs after a delay of 3 hours. The change in morphology is indicated by red arrows. 

This phenotype is different from glucose rich to glucose minimal conditions. 
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After 1 hour 

 

After 2 hours After 3 hours 
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ΔschA switched from YGV to CMCV after being stained with WGA shows morphological 

shift occurs after a delay of 2 hours. The change in morphology is indicated by red arrows. 

This phenotype is different from glucose rich to glucose minimal conditions. 

                                                                                                                   

 

 

 

 

 

 

Figure 1d: To visualize morphological changes in carbon derepression in ΔflbA switched 

from YGV to CMCV after being stained with WGA shows no morphological change even 

after 24 hours. This phenotype is different from wildtype and for glucose rich to glucose 

minimal conditions. 
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Figure 2: HxtB::GFP used to visualize the carbon transport and sensing occurs within the 

hyphae. HxtB::GFP was first grown in different carbon sources for 16 hours in 28°C. No 

GFP localization was seen in YGV and MNV (1% glucose). GFP localization was 

displayed in vacuoles and septa in NCS, CMC and MNV (0.1% glucose). 

HxtB::GFP was grown in YGV for 16 hours and there was no GFP localization detected.

  

HxtB::GFP was grown in MNV (1% glucose) for 16 hours and no GFP localization was 

detected except auto-fluorescence.  

  

HxtB::GFP was grown in MNV (0.1% glucose) for 16 hours and GFP localization was 

detected within vacuoles. 

 



69                             
 

 

HxtB::GFP was grown in NCS for 16 hours and GFP localization was detected within 

vacuoles and septa. 

 

HxtB::GFP was grown in CMC for 16 hours and GFP localization was detected within 

vacuoles. 

 

HxtB::GFP was grown in Xylose for 16 hours and GFP localization was detected within 

vacuoles. 
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Figure 2a): To explore the localization of HxtB::GFP in carbon derepression conditions 

was explored by growing HxtB in YGV and shifting them into different carbon source 

media. This yield similar results to grown HxtB in different media. The localization was 

seen within an hour at the septa and around the vacuolar membrane, making it look like 

rings within the hyphae.   

HxtB::GFP switched from YGV to MNV (1% glucose) shows little or no localization 
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HxtB::GFP switched from YGV to MNV (0.1% glucose) shows localization at the vacuolar 

membrane  

 

HxtB::GFP switched from YGV to NCS shows localization at the vacuolar membrane and 

septa.  
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HxtB::GFP switched from YGV to Xylose shows localization at the hyphal tips, within the 

vacuoles and around the vacuolar membrane and at the septa. 

 

HxtB::GFP switched from YGV to CMCV shows localization at the vacuolar membrane 

and septa. 
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Figure 2b: Taking a closer look at the HxtB::GFP localization after it has been switched 

from YGV to CMC after 3 hours. Localization is seen as rings along the hyphae indicated 

by the red arrows and the yellow arrows showing the localization at the septa. 
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Figure 3: Comparing the GFP localization and nuclei stained by Hoechst/Calcofluor stain 

in HxtB::GFP. As indicated by the red arrows the localization of nuclei is in the same 

location as the GFP localization. The GFP localization is present at the membrane around 

the nucleus.  
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Chapter 3 

Introduction 

The plant cell wall is a complex structure composed mainly of polysaccharides which are 

the most abundant organic compounds found in nature. They make about 90% of the plant 

cell wall which can be divided into three groups: Cellulose, Hemicellulose and Pectin. The 

use of plant biomass (largely cell wall material) in food, agriculture, fabric, timber, biofuel 

and biocomposite industries makes it essential to understand the structure and development 

of plant cell wall. The bioconversion of converting cellulose to glucose requires 

multienzyme system of cellulases, xylanases and other accessory enzymes. The enzymatic 

hydrolysis of cellulose includes three types of cellulases: cellobiohydrolases, 

endoglucanases and β-glucosidases (BglA) which work in synergy. Endoglucanases and 

cellobiohydrolases act directly on cellulose fiber whereas BglA hydrolysis 

oligosaccharides and cellobiose into glucose. The end product of hydrolysis of cellulose 

fibers is cellobiose which acts as an inhibitor for converting cellulose to glucose so it can 

be further utilized by yeast and other organisms. This makes BglA activity crucial to the 

process of cellulose degradation. Most filamentous fungi such as Trichoderma and 

Aspergillus produce these cellulases, although not sufficient enough for biomass 

conversion. Also BglA is known to be inhibited in the presence of high concentration of 

glucose. Therefore the need to understand the secretion and to improve the yield of BglA 

has become of great interest (Pettolino et al. 2012, Vries et al. 2001, Ketudant et al. 2010, 

Baraldo et al. 2014 and Chauve et al. 2010). 
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Filamentous fungi have high protein secretion capacity. Hence, they are has been a lot of 

interest in turning filamentous fungi into hosts for producing industrially relevant enzyme 

and other biopharmaceutical compounds. Producing naturally secreting fungal enzymes 

has been more fruitful compared to producing proteins of non-fungal origin or recombinant 

proteins, which has been disappointingly low and not cost effective. This is due to the fact 

that fungal secretory pathway is poorly understood. Previous research has shown the 

limitations occur at the post-translational level with blockages due to compartmentalization 

or during the stages in processing of the proteins for secretion (Schalen et al. 2015). 

Another aspect of the limiting factors of how different environment and nutrient stresses 

affect the production of different fungal proteins still needs to be investigated. Pulse 

feeding and limiting carbon sources during pulse fed fermentation has been noted to 

improve the productivity of enzyme production in Aspergillus oryzae by helping to produce 

smaller mycelia, lower broth viscosity and control dissolved oxygen concentration 

(Bhargava et al. 2003).   

Protein secretion undergoes two main tasks: 1) performing proper folding and post 

translation modifications such as glycosylation and sulfation and 2) sorting cargo proteins 

to their functional states and final cellular localizations. Secretory proteins start their 

journey by entering the endoplasmic reticulum (ER). The ER proteins are folded and 

undergo distinct modifications such as glycosylation, disulfide bridge formation, 

phosphorylation and subunit assembly. Proteins then leave ER packed in transport vesicle 

and move to Golgi for further modifications such as glycosylation and peptide processing. 

Eventually the protein packed secretory vesicles are directed to the plasma membrane from 

where they are secreted (Liu et al.2014, Conesa et al. 2001). 
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Usually studies to understand secretion pathway in filamentous fungi have involved the 

deletion of genes or fusion of fluorescent proteins to secreted native proteins to characterize 

the function of the gene and how the protein is secreted (Schalen et al. 2015). Using 

BglA::GFP a strain acquired from Gastavo’s lab and using it cross different genes that are 

important to the hyphal development (ΔsepA and ΔmesA) will shed light to the process of 

how the secretory process of BglA is taking place in Aspergillus nidulans specifically. 

BglA::GFP was noted to be have no GFP localization and the growth was slower compared 

to wildtype in YGV (glucose). There was GFP localization however when BglA::GFP was 

grown in CMC, NCS, xylose, MNV (01%) and MNV. To study the effects of carbon 

limitation in shift experiments were performed from YGV to: CMC, MNV (1%glucose), 

MNV (0.1%glucose) and NCS. The results were consistent with increased expression of 

GFP in CMC, MNV (0.1%glucose) and NCS but not in MNV (1% glucose). The 

localization pattern also matched in the crosses of BglA with ΔsepA and BglA with ΔmesA. 

The localization was also similar to the localization of HxtB::GFP but the expression of 

BglA increased after the switch compared to the HxtB::GFP localization.  

Materials and Methods  

Strains, media and growth conditions  

The strains used in this study Sng10 (BglA::GFP) and HxtB::GFP were acquired from 

Goldman lab (Ishitsuka et al. 2015 and Fernanda dos Reis et al. 2013)  The following strains 

were made in Harris lab ΔsepA (ASH 630) and ΔmesA (DD8 A2) (Sharpless et al. 2002 

and Pearson et al. 2004). The glucose rich media and supplements was prepared as 

previously described in Harris et al.1994. The minimal media was prepared as previously 

described in Kafer.1997. Liquid media (without agar) was used as YGV (0.5 % yeast 
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extract, 1% dextrose and vitamins), MNV (minimal media with 1% glucose and vitamins), 

MNV (0.1%) (minimal media with 0.1% glucose and vitamins) CMCV (1% 

Carboxymethylcellulose sodium salt in minimal media and vitamins), NCS (no carbon 

source, minimal media with only nitrate salts) and XV (1% xylose in minimal media and 

vitamins). All the strains were grown in 28°C unless indicated otherwise. For septation and 

hyphal growth studies conidia are grown at 28°C for 12 hours on coverslips. During shift 

experiments after 12 hours of growth in YGV media the coverslips were then washed with 

sterilized ddH2O in stain jars and then placed into the shifting media (NCS, CMCV, MNV 

and MNV (0.1%)). The coverslips were then grown in shifted media for 4 to 6 hours and 

analyzed after each hour.  

 For crosses the BglA::GFP with ΔsepA and ΔmesA strains were grown on solid media 

(~2% agar) of MAG (2% Malt extract, 2% dextrose with vitamin), and in MAGUU (with 

Uridine and Uracil).The parent strains were streaked on MAGUU plates and then crossed 

sections were plated on MN plates. Once the cleistothecia had matured, they were dissected 

on water agar plates. The dissected spores were diluted with water and spread on MN 

plates. Selected segregants (a selection that includes all phenotypes) were then plated on 

MAG plates to perform DNA extraction (Mio-Bio Powersoil kit) and then PCR verified 

(Invitrogen, native/ recombinant Taq polymerase). Once the segregants were verified the 

spores were stored at -80°C and imaged using both BF and Confocal microscopy. 

DNA Extraction 

DNA was extracted using the Mo Bio Powersoil DNA isolation kit (Catalog No. 12888-

100). The protocol followed instructions provided by the vendor. This kit has been used in 
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many studies and has been used to extract DNA from a variety of yeast, bacterial and 

filamentous fungi. 

PCR  

After DNA extraction, sequences were amplified by PCR. The PCR reaction used in this 

study was native polymerase (Invitrogen, Carlsbad, CA). The native Taq polymerase was 

used for PCR verification on all sequences that were not used in transformations. PCR 

reaction was set up: 5μL of buffer, 2.5 mM MgCl2, 200μM dNTP, 100ng of DNA template, 

400nM of downstream and upstream primers (each), 0.5 units of Taq polymerase and 

double distilled water to bring the final solution to 50μL. 

The PCR Conditions 

The simplest protocol was PCR verification, where the thermocycler, (Biorad MJ mini 

gradient thermocycler) lid was set for 105˚C and the block was set to reach 94˚C (the DNA 

denaturing temperature). The block was then held 94°C and polymerase was added to each 

reaction. After polymerase was added, there was a 90 second 94˚C denaturing step. The 

annealing temperature was specific for each primer set, usually 50-60˚C, for 30 seconds. 

The elongation temperature was 72˚C with the time dependent on the length of the product. 

In this study, for every 1kb, 1 minute was added to the elongation time. This cycle was 

repeated 30 times. The final step was 72˚C for 7 minutes to finish up all of the elongations. 

The PCR reaction was then held at 4˚C to stabilize the sequence after the run. 

Electrophoresis  

The gels used for electrophoresis in this study was made of 0.8% purified agar in 1xTAE 

and 1μL of ethidium bromide. To determine the size of the band, 1+KB ladder 
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(Invitrogen) was used. To determine the mass of the bands, the High Mass Ladder 

(Invitrogen) was added to the gel in two different quantities of 2μL and 4μL.  

Microscopy (Bright Field (BF) and fluorescent GFP filter) 

The microscopy was done by using the Metamorph software.  The microscopic methods 

used in this study used Bright Field and GFP was analyzed with GFP filter. Confocal 

microscope at the Microscopy Core Facility was used for some GFP images. 

Results 

BglA::GFP localization in various carbon sources occurs at the hyphal tips, septa and in 

secretory vesicles. The carbon derepression studies show similar localization except in 

NCS and CMC where the localization was also around the nuclear membrane. 

BglA::GFP does not show any localization when grown in YGV except some auto-

florescence (Fig1a). When BglA::GFP is grown in different carbon sources (MNV (0.1% 

glucose), Xylose, CMC and NCS) the localization was seen at hyphal tips, septa and 

secretory vesicles. But when BglA::GFP is grown in MNV (1% glucose) there was no GFP 

expression which is consistent with the fact that BglA expression is inhibited in the 

presence of high glucose concentrations (Chauve et al. 2010). 

Shift experiment was conducted from YGV to: MNV (1% glucose), MNV (0.1% glucose), 

NCS, Xylose and CMC. The localization was noted after four hours mainly at hyphal tips, 

secretory vesicles and septa (Fig 1c and Fig 1d). However, in CMC and NCS the 

localization also matched the localization of HxtB::GFP. The localization was also 

displayed around the nuclear membrane as it was displayed in HxtB::GFP and this 

localization was noted only in the CMC and NCS. The secretory vesicular movement was 
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not seen in HxtB::GFP indicating that nuclear localization could involve different function 

compared to the secretory pathway. 

The localization of ΔsepA BglA::GFP strain localizes in the same locations as BglA::GFP, 

at the hyphal tips, septa, in secretory vesicles and around the nuclear membrane.  

Actin is an important player in the polarity establishment. To visualize how the absence of 

actin affects the secretion pathway we generated the cross of ΔsepA BglA::GFP. The 

segregants were verified through PCR and used brightfield to visualize the ΔsepA 

BglA::GFP in carbon derepression. After ΔsepA BglA::GFP was grown in YGV and 

shifted into CMC media, the localization pattern was displayed to be in similar to 

BglA::GFP localization (Fig 2).  The phenotype of the hyphae resembled ΔsepA as the 

growth was restricted as they were grown in 42°C. This however did not hinder the 

expression of BglA::GFP and it was similar to the expression in BglA::GFP. We noted the 

same vesicular and nuclear localization pattern in the BglA::GFP ΔsepA strains as it was 

displayed previously in the shift experiments from YGV to CMC in BglA::GFP. This 

indicated that absence of actin does not hinder the expression of BglA::GFP. 

The localization of ΔmesA BglA::GFP strain shows similar localization pattern as 

BglA::GFP but there was an absence of localization around the nuclear membrane. 

MesA a predicted cell surface protein that promotes the localized assembly of actin cables 

at polarized sites and is required for recruitment of SepA. To further explore the role of 

actin’s function in the secretory pathway we generated the strain ΔmesA BglA::GFP and 

verified the strain through PCR. The phenotype of the ΔmesA BglA::GFP strain is similar 

to the phenotype of ΔmesA. The shift experiment of ΔmesA BglA::GFP showed similar 
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localization pattern as BglA::GFP as it localizes at the secretory vesicles, hyphal tip and at 

the septa. But the nuclear localization was not visible (Fig 3). This may indicate that MesA 

is important for nuclear localization. 

 HxtB::GFP and BglA::GFP localizations compared during a time course of five hours are 

initially different but after four hours both show localization around the nuclear 

membrane. 

To further explore how HxtB::GFP and BglA::GFP localize we compared both strains in 

carbon derepressed conditions over a time course of five hours. We noted the localization 

of HxtB and BglA is slightly similar, as they both localize at the septa and sometimes at 

the hyphal tips (HxtB in xylose). The localization pattern over time also differs as HxtB 

localizes primarily in the nuclear membrane and BglA primarily localizes at hyphal tips, 

septa and secretory vesicles. This localization displays the movement from the spore head 

to the hyphal tip in indistinct vesicles. BglA localization in the nucleus does not appear 

until after three hours in the shift experiment YGV to CMC (Fig 4) whereas the HxtB 

localization appears in the nucleus within the first hour of the shift. Over the time course it 

can be seen that HxtB and BglA localization not only differ in localization patterns but also 

in the protein expression overtime. HxtB::GFP expression could be reduced but BglA::GFP 

expression seems to increase overtime because of the intensity of expression seen in 

microscopy (Fig 4). This shows that over time BglA and HxtB may share some common 

function. 

Discussions 
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The bioconversion of cellulose to glucose requires multienzyme system of cellulases which 

include the final hydrolyzing enzyme BglA which breaks down cellobiose into glucose. 

Most filamentous fungi such as A. nidulans already secret this enzyme in small amounts. 

The need to improve our understanding in the secretory pathway has become a major 

importance as most filamentous fungi have high protein secretion capacity. This ability 

makes them an appealing host to secrete relevant enzymes and other biopharmaceutical 

compounds. Although producing naturally secreting enzymes has been shown to be more 

cost effective to secrete than non-fungal proteins. While the secretion in filamentous fungi 

has been of interest, the pathway for secretion is not fully understood. Recent research 

revealed that in carbon limiting conditions improve the secretion of enzymes in A. oryzae 

(Bhargava et al. 2003). Using BglA::GFP we looked for the localization patterns when 

BglA is grown in different carbon sources and when switched from carbon rich to carbon 

limiting conditions. It was also noted that BglA is inhibited in high glucose concentration 

(Chauve et al. 2010). Our findings were consistent with previous research where the 

different carbon sources mainly CMC, Xylose and NCS showed an increase in GFP 

expression compared to MNV in different glucose amounts (1% and 0.1%).  All were seen 

to localize at the septa and at hyphal tip and secretory vesicles. Shift experiments from 

YGV to MNV (1%), MNV (0.1%), CMC, xylose and NCS showed the localization at the 

hyphal tip, septa and secretory vesicles. But only CMC and NCS were shown to also 

localize in nuclear membrane similar to the localization pattern of HxtB::GFP. Further 

analysis needs to be done to understand the importance of localization in the nuclear 

membrane as both HxtB::GFP and BglA::GFP have this same localization. This process 

may improve or deter the secretion process. 
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Further analysis was done by crossing BglA::GFP to deletions of genes that play a role in 

establishing hyphal polarity, ΔsepA and ΔmesA. In both instances the shift experiments 

were performed when moving mutants from YGV to CMC and we found in the case of Δ 

sepA the phenotype of both parents was maintained. The strains were grown in 42°C as 

ΔsepA is a temperature sensitive mutant and the localization of ΔsepA BglA::GFP matches 

that of BglA::GFP as there was localization at the tip, septa, and the secretory vesicles but 

the localization was also seen around the nuclear membrane. The ΔmesA BglA::GFP 

however had similar localization patterns and at the tip, secretory vesicles and septa but 

there didn’t seem to be any nuclear localization. This could be due to the fact that it could 

need more time to localize in the nuclear membrane or MesA is required for nuclear 

localization. 

The comparison between HxtB::GFP and BglA::GFP showed some similar localization 

patterns but were mostly quite different. HxtB localizes primarily in the nuclear membrane 

and BglA showed distinct pattern of moving from the spore head to the hyphal tip using 

vesicles that are part of the protein secretion pathway. Over time the HxtB expression also 

seemed to display reduced GFP expression whereas the BglA expression was intensified 

showing a reverse pattern, while HxtB::GFP secretion is reduced BglA::GFP secretion is 

increased.  

Future directions  

Using BglA::GFP can be used to define the secretory pathway by crossing it to deletion of 

genes that play a part in hyphal morphogenesis (Cdc42, RacA) but also to genes that control 

the carbon catabolite repression like CreA, PkaA and SchA. These crosses could help us 

understand what genes play a role in secretion pathway and could help us improve the 
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production of not just the fungal enzymes but also of the recombinant proteins. It would 

also be beneficial to measure the RNA levels of HxtB and BglA during shift experiments 

to further show what conditions are beneficial for the secretion and if the nuclear 

localization would improve or deter the secretory process. 
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Figures 

Figure 1a: BglA::GFP grown in YGV for 17 hours showed no GFP localization as imaged 

in Brightfield and Confocal microscopic images. 
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Figure 1b: BglA::GFP was grown in different carbon source minimal media (MNV (0.1% 

and 1% glucose), CMC, Xylose and NCS for 17 hours showed localization at the hyphal 

tips, secretory vesicles and at the septa. There was no localization in MNV (1% glucose). 
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Figure 1c: BglA::GFP grown in YGV for 12 hours and shifted to different carbon source 

minimal media (CMC, NCS, MNV (0.1% and 1% glucose) and captured after 4 hours. The 

GFP localization was seen at the hyphal tips, septa and secretory vesicles along the hyphae. 

The localization in NCS and CMC also shows nuclear membrane similar to HxtB 

localization. 

 

BglA::GFP 
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Figure 1d: BglA::GFP grown in YGV for 12 hours and shifted to different carbon source 

minimal media (Xylose) and captured after 4 hours. The GFP localization was seen at the 

hyphal tips, septa and secretory vesicles along the hyphae.  

 

 Figure 2: BglA::GFP ΔsepA mutant strain was grown in YGV for 12 hours and switched 

to CMC minimal media and imaged after 4 hours. The localization was seen in hyphal tips, 

septa, in secretory vesicles and also at the nuclear membrane as HxtB localization. 
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Figure 3: BglA::GFP ΔmesA grown in mutant strain was grown in YGV for 12 hours and 

switched to CMC minimal media and imaged after 4 hours. The localization was seen in 

hyphal tips, septa and secretory vesicles. 
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Figure 4: Comparing the confocal microscopic images of BglA::GFP (BGL) and 

HxtB::GFP grown in YGV for 12 hours and switched to CMC and imaged after every 

hour for 5 hours. The localization was initally different as HxtB showed localization 

around the nuclear membrane and BGL shows localization at the hyphal tips, septa and in 

the secretory vesicles. But around the 5th hour shows some localization around the 

nuclear membrane can be seen and is indicated by the red arrow.
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