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In mathematics education research reports, we find a bewildering array of ”theories”, 
”theoretical models” or ”theoretical frameworks”. The key notions and principles as 
well as the intellectual roots of these constructions are made more or less explicit, and 
the relations of theoretical entities to the empirical field under study are established 
in different ways. These differences imply discrepancies in quality. In this contribution 
we touch upon some of these issues. We attempt to show that an investigation of the 
relations between key concepts might help to read and evaluate theoretical under-
pinnings of research studies, and we argue that not all constructions that are labelled 
”theoretical” meet the criteria we consider essential for productive theorising. We also 
allude to different modes of engaging with empirical material and different ways in 
which theories are used in research studies. The main part of our discussion is limited 
to examples of ”home-grown” theorising. The examples we have chosen to illustrate 
our points necessarily represent a biased selection.

As mathematics education research has evolved into an internationally 
acknowledged research field, methodological standards have been raised. 
The mere use of commonsense descriptions, the statement of didacti-
cal principles without reference to research, interpretations exclusively 
derived from introspection, or presentation of some quotes and exam-
ples of data that ”speak for themselves” are no longer valued. However, 
the standards for carrying out and reporting research are by no means 
uniform. Even though we still might encounter journal articles that do not 
make explicit a theoretical underpinning of the research (Lerman, 2006),  
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reference to some theory can be assumed to be a shared standard. However, 
what counts as ”theory” is an issue of discussion within the field, as well 
as how theory is (or ought to be) used in research (Cobb, 2007; Mason & 
Waywood, 1996; Niss, 2007; Radford, 2008; Silver & Herbst, 2007). With 
the growth of the field, not only the range of phenomena of interest has 
widened, but also the variation in theories used has increased (Lerman, 
2006; Prediger, Bikner-Ahsbahs & Arzarello, 2008). New grand theories 
have been imported into the field and many new local theories have 
emerged. Consequently researchers are producing more and more, often 
incommensurable, outcomes at very different levels of grain size of analy-
sis. Educational studies in mathematics are at risk to become detached 
and isolated from each other. For beginning researchers this is partic-
ularly problematic, as choosing an appropriate branch of theorising is 
based mostly on tacit skills that are acquired only in the course of prac-
tising research. In some places PhD students are advised to use a distinct 
theory, but we also have anecdotical evidence for the suggestion to ”throw 
away obsolete bodies of theorising and have a fresh start”. 

In our discussion, we want to draw attention to the differences in 
quality of what is disseminated in the field of mathematics education 
under the label of ”theory”, ”theoretical model” or ”theoretical frame-
work” and to the variety of different modes by which these theories, 
theoretical models/ frameworks are established and used. As this can 
only be achieved by means of examples, restriction to a limited and biased 
selection is unavoidable. All examples concern modes of theorising from 
within mathematics education as a research domain, that is, attempts of 
”home-grown” theory building. While the examples are chosen because 
they are suitable to illustrate and discuss differences in mode and quality, 
the selection is arbitrary in relation to other aspects. 

After shortly discussing the notion of theory, we point to differences 
in the relations between theoretical objects that are established in the 
examples we have chosen. As we will argue, not all constructions show 
”relational completeness” and not all are to the same extent related to 
previous research within the field; thus some do not resemble a theory.

For a discussion of the relation to the empirical field we draw on Bern-
stein’s (2000) conception of external and internal languages of descrip-
tion. By means of examples, we show how these languages are more or 
less developed. We also touch upon different ways of employing or devel-
oping theory in research studies. In our discussion, in line with others, 
we suggest to pay serious attention to developments outside the field of 
mathematics education in order to advance theory.
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What counts as theory?
Many attempts have been made to describe analytically the minimum 
ingredients of a conceptual system that account for its status as a theory. 
In accordance with a common view in empirical social sciences, which is 
also shared by researchers in mathematics education, a theory includes an 
organised system of theoretical entities, basic principles, and a relation 
to an empirical field in the form of a more or less explicitly developed 
methodology (see Niss, 2007; Radford, 2008). Theorising aims at making 
visible something that cannot be captured without mediation by the 
theoretical concepts. In this view, theorising aims at ”producing under-
standings and ways of action” (Radford, 2008, p. 320). The characterisa-
tion also implies that a conceptual system gains the status of a theory 
only if it describes relationships between entities. Theories dealing with 
the same entities might establish different hierarchies amongst the basic 
concepts, depending on whether they, for example, privilege individual 
cognition over social interaction, reason over emotion, mind over body, 
or structure over agency.

As theories in mathematics education are not always presented in the 
form of an outline of an organised system of theoretical entities, basic 
principles, and an explicit methodology, these ingredients often can only 
be reconstructed by an analysis, which will often rely on knowledge about 
the intellectual roots and the historical development of a theory. In addi-
tion, agreement about what constitutes the empirical field of a given 
theory cannot always be assumed. To some extent, this will remain a 
matter of interpretation. 

Types of relations between theoretical objects
The view that a theory establishes (hierarchical) relationships between 
entities (theoretical objects), as denoted above, suggests that a list of (pos-
sibly empirically derived) categories without a statement about how these 
are related does not count as theory. For the purpose of reconstruct-
ing the basic principles and identifying the explanatory potential of a 
theory, it is worthwhile to look at the types of relations between the basic  
concepts that are established. 

We might find, for example, a genus-species relation (providing a hier-
archical taxonomy if it includes several levels) or a compositional relation 
(where an entity is seen as composed of some parts). Such systems can be 
used for classification of empirical instances. The genus-species relation 
might be realised only in relation to the empirical, if the categories do not 
include sub-categories. Each empirical observation is then ”an instance 
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of” a general concept. The categories might be mutually exclusive or not. 
In mathematics education, such systems have been established for cata-
loguing students’ errors in different mathematical areas. Movshovitz-
Hadar, Zaslavksy and Inbar (1987), for example, identified six categories 
for classifying errors in high school mathematics: misused data, misin-
terpreted language, logically invalid inference, distorted theorem or defi-
nition, unverified solution and technical error. The initial classification 
was based on a content analysis of a large amount of empirical material, 
and then the categories were revised in order to establish mutual exclu-
siveness of the resulting categories. The relationship between the catego-
ries in this example is mutual exclusiveness and the categories are also 
exhaustive of the given data, but are not established prior to the analysis 
based upon some theory. 

A compositional relation, in which one entity is a constituent part or 
a mode of another entity, is often visible in accounts of components of 
understanding particular mathematical concepts. For example, the com-
ponents listed as constitutive for understanding fractions usually encom-
pass part-whole comparison, measures, operators, quotients, and ratios 
and rates (e.g. Lamon, 2005). Constructions as those mentioned above are 
often labelled ”a model of” or a ”theoretical model of”.

Another type of relationship between concepts is that of antonymy, 
as for example when ”imitative reasoning” is described as the opposite of 
”creative reasoning” (Lithner, 2008), or, more prominently, in the distinc-
tion between relational and instrumental understanding (Skemp, 1976), 
or when holistic and atomic approaches to learning are conceptualised as 
antipodes (Svensson, 1984). A more complex relation between theoretical 
entities is, for example, the basis for the construction of ”hypothetical 
learning trajectories” (Simon, 1995; see also e.g. Gravemeijer, Bowers & 
Stephan, 2003; Confrey et al., 2009) which are seen as ”useful pedagogical, 
as well as theoretical, constructs” (Sarama & Clements, 2009, p. 17). The 
theoretical objects involved comprise ”levels of understanding and skills” 
which are seen as occurring in a timely order, progressing towards more 
sophistication, in the course of the learner’s development. An action-
product relation is found in parts of the APOS theory (see below). Causal 
relations are rarely established by theories in mathematics education (and 
many would argue that this is neither possible nor desirable).

The following discussion of some examples investigates the relations 
between the set of concepts in constructions that are labelled theories, 
theoretical models, theoretical frameworks, etc. As we will argue, not all 
of these constructions in our view deserve the label theoretical.
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Relations between key concepts – some examples
The four examples we will discuss have been selected, as pointed out 
above, only because they are suitable to illustrate and discuss differences 
in mode and quality of theorising. While the first example, the PISA 
framework, has been rather influential internationally, the second, more 
local example, has been chosen because the framework is claimed to 
constitute part of a new theory. We also consider modes of theorising 
which are utterly different to the first two examples, as these modes 
are of another calibre in terms of their intellectual roots and range, and 
their theoretical objects are of a much more complex nature. As one 
such example we analyse the APOS theory, and as another we discuss 
the Antropological theory of didactics (ATD), which accounts for a whole 
research programme.

The PISA framework
Even though the PISA is a survey and not a research study, we find it 
appropriate to shortly discuss the ingredients of what is called the ”theo-
retical framework” of the PISA 2003 in a recent publication (OECD, 2009, 
p. 17) because this framework has initiated curriculum development in 
some countries and is used as theoretical background in research studies. 
The goal of the (permanent) survey is to empirically identify the degree of 
students’ mathematical literacy. The mismatch between the theoretical 
roots and the framework for the PISA 2000, as reported in German pub-
lications, has been analysed by Gellert (2007). In the following we focus 
on the construction of the ”theoretical framework”. The assumptions 
and restrictions related to the measurement of mathematical literacy by 
means of a one-dimensional scale, resulting from the re-description of a 
general competence into a standardised performance measurement, has 
been discussed elsewhere (Jablonka, 2007). The empirical field, to which 
the PISA sample refers, is the mathematical literacy competency of all 
15-year old students (attending educational institutions located within 
the country, in grades 7 and higher) in participating member countries 
and some partner countries and partner economies of the OECD. In 
the last round these were 25  451  204 individuals (calculated from table 
11.1, pp. 178–180 in OECD, 2006). One a priori category by which this  
empirical field is structured is country-membership. 

The theoretical framework first describes ”mathematisation” as the 
main constitutive component of mathematical literacy (OECD, 2009, 
p. 20). In addition, eight (overlapping) mathematical competencies (cf. 
Niss, 1999) are listed as constitutive for mathematical literacy, as reflected 
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in formulations such as ”central to mathematical literacy”, ”critical” or 
”critically important” to mathematical literacy, or a ”defining compe-
tency of mathematical literacy”, an ”important part of mathematical lit-
eracy” (OECD, 2009, p. 32). ”Modelling” is one of these eight components. 
The description of modelling (p. 32) resembles that of mathematisation. 
By this, a constitutive category appears at the same time as a constitutive 
sub-category. This relation results in a circular construction.

In the course of the operationalisation in the form of test items, the 
descriptions of the eight competencies disappear, as the items are classi-
fied according to ”the demands they placed on students’ cognitive process-
ing capabilities” (p. 37). In an exemplary description of some items from a 
previous round of the test, reference to some of the eight competencies is 
made selectively and only occasionally. The relation of the category ”cog-
nitive demand” to the eight constitutive competencies of mathematical 
literacy is explained as follows: 

These demands were identified by the competencies discussed and 
their amalgamation into the clusters of reproduction, connections, 
and reflection.  (p. 37) 

The necessity of the introduction of the three clusters is argued on the 
basis of practical demands:

In order to productively describe and report student’s capabilities, 
as well as their strengths and weaknesses from an international per-
spective, some structure is needed.  (p. 33)

By this, the competency clusters are established as a form of an a priori 
operationalisation (without reference to empirical data) of the construct 
mathematical literacy. A hierarchical relation between the competen-
cies in each cluster is implicitly suggested, that is, a student displaying a 
competency in the connections cluster needs to have developed the ones 
included in the reproduction cluster, and both of these are needed if the 
student can be said to display competencies in the reflection cluster. 

In addition to competency clusters, the operationalised version of the 
theoretical framework includes a category named ”overarching ideas”, 
that is, a classification system for the assumed mathematical procedures, 
definitions, concepts etc. that are considered helpful in solving the tasks. 
However, these overarching mathematical ideas change into traditional 
names for the five sub-areas of school mathematical content used in the 
TIMSS (Grade 8) content classifications (Mullis, Martin, Gonzalez & 
Chrostowski, 2004) when used for the classification of test items.

Another dimension introduced for the classification of the PISA tasks 
in relation to mathematical literacy is the ”context” to which a text of a 
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test item refers: (i) personal, (ii) educational and occupational, (ii) public 
and (iii) scientific (including intra-mathematical). It is not clear on what 
conception of domains of social practice this list might be based. If ”scien-
tific” refers to the domain of scientific activity that is available to a public 
audience (e.g. in newspaper reports), it is included in ”public”. ”Intra-mathe-
matical” suggests that this is the domain of academic mathematics and 
not the public domain of mathematics. The category ”educational” must 
be interpreted as referring to mathematical activity in institutionalised 
education which was supposed not to be the focus of the test. The com-
bination of ”educational” with diverse domains of occupational practices  
in which mathematical knowledge could be used, is unreasonable. 

The three dimensions ”competencies”, mathematical ”content” and 
”context” are not related. The theoretical framework appears as a con-
glomeration of didactical (mathematical literacy competencies), math-
ematical (content), cognitive (competency clusters) and common 
sense (context) concepts. In the course of the construction of the  
operationalised version, the hierarchy of the basic concepts changes.

Authentic tasks
The ”theory of authentic task situations” starts with the observation that 
school mathematics tasks have been criticised as being pseudo-realistic 
and that students have a tendency not to make proper use of their real-
world knowledge when solving contextualised tasks. We have chosen 
this example because of its provenience in a Nordic country and also 
because it touches upon a problématique that is widely recognised in 
mathematics education. Palm (2009, p. 5) establishes the construction as 
”a local theory of authentic task situations and a framework specifying 
one way of looking at the notion of authentic tasks” and as a contribution 
”to a theoretical base” for the study of word problems that are ”realistic”, 
or ”authentic”. ”Task situations” are the practices indexed by a school 
mathematics word-problem given as a text (written or orally). The theory 
attempts to provide a ”fine-grained operational framework” for judging 
the ”concordance between in- and out-of-school situations” and includes 
some ”claims” (basic principles) about the fact that the enhancement of 
the authenticity (as described by the operational framework) of a word 
problem increases the ”the proportion of students that makes proper use of  
their real-world knowledge when working with a word problem” (p. 13). 

The whole endeavour aims at comparing two different practices. 
Hence, the empirical field consists of (students solving) word-problems 
on the one hand, and ”out-of-school situations” in domestic or perhaps 
more specialised vocational practices on the other hand. As this is a  
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comparatively large empirical field, we consider it as not only a ”local 
theory”, in contrast to its claim (see above). The operational framework 
constitutes a language for classifying word-problems given as school 
mathematics texts in terms of their ”representativeness” of out-of-school 
situations. The notion of representativeness is introduced by a reference 
to a work on performance measurement (Fitzpatrick & Morrison, 1971, 
pp. 237–240) and is seen as composed of ”comprehensiveness” and ”fidel-
ity”. These three notions have to be seen as the fundamental concepts of 
the theory. Comprehensiveness denotes ”the range of different aspects 
of the situation that are simulated”, while fidelity refers to the ”degree 
to which each aspect approximates a fair representation in the criterion 
situation”. The operational framework consists of a list of aspects, which 
are seen as ”essential in the sense that their simulations clearly can affect 
the possibilities for the students to engage in the same mathematical 
activities in the school tasks as in the corresponding out-of-school situ-
ation” (Palm, 2002, p. 3). There are eight main aspects: event, question, 
information/data, presentation, solution strategies, circumstances, solu-
tion requirements and purpose in the figurative context; some of these 
are composed of sub-categories. Altogether, the framework comprises 
seventeen categories. 

These categories are more or less visible in the school mathematics 
texts, but not necessarily in the corresponding situations, in which the 
(mathematical) knowledge employed is often tacit, the mathematical pro-
cedures as well as the data might remain unrecognized and the solution 
procedures rely on implicit conventions and can only be made explicit 
through research (see e.g. Gahamanyi, 2010). Hence, the categories pro-
vided cannot easily function as an operational framework for analysing 
the out-of-school situations that are indexed by a school mathematics 
word-problem in order to evaluate the representativeness of the latter.

As to the relationship between the categories of the framework, it 
remains unclear how these refer to the fundamental concepts of com-
prehensiveness and fidelity. Some of the aspects can only be judged as 
being present or absent in a word problem (such as a plausible ”event” and 
a plausible ”question”); thus these are not aspects of ”fidelity”. Others are 
a matter of degree (for example the sub-categories ”realism” and ”specifi-
city” of ”information/data”) and can be seen as indicators of ”fidelity”. 
Hence, the framework consists of a list of categories with an (implicit) 
compositional, and in some aspects constitutive relation to the fun-
damental concept of representativeness. Whether there is a hierarchy 
between the aspects of a situation described in a word-problem in terms 
of their impact on students’ perceptions of the task is an empirical ques-
tion. However, even though relations between the categories are not 
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described in the framework, some of the aspects seem to be theoretically 
related: The presence/ absence or degree of one, influences the other. For 
example, the given information/data and the available tools (”circum-
stances”) certainly affect the range of possible solution strategies, and if 
the ”event” is fictive, then it does not make much sense to evaluate the 
representativeness of other aspects. 

The descriptions of most of the categories are commonsensical and we 
spontaneously found some more categories that could be added to the list 
(such as the degree of freedom for changing the conditions for achieving 
the goal or the type of imagery in the school task). We also felt tempted to 
re-arrange the list of aspects on the base of a principle derived from some 
theory (for example in terms of social base, availability of symbolic and 
material tools, modes of division of labour etc., derived from some version 
of activity theory). We consider the mode of theorising in this example 
as relying on a strategy that is based on ad-hoc-constructions. 

APOS
The following example relates to a branch of theories concerned with 
conceptual development in mathematics in terms of movements between 
engagement with mathematical operations or processes and mathemati-
cal objects, where the latter are constituted by the former through ”rei-
fication” (Sfard, 1991) or ”encapsulation” (Dubinsky, 1991; see also Pegg 
& Tall, 2010). As an example of this mode of theorising we consider the 
APOS theory, which sets out to be ”a general theory of mathematical 
knowledge and its acquisition” (Dubinsky, 1991, p. 96). The focus is on 
mental constructions that can be made by the learners during instruction 
phases, and the theory is described as ”an interpretation of Piaget’s con-
structivism” (Cottrill et al., 1996, p. 171). The following quote from Piaget 
(provided by Dubinsky, 1991, p. 101) may serve to illustrate the generality 
of the fundamental principle in the theory:

The whole of mathematics may therefore be thought of in terms 
of the construction of structures, [...] mathematical entities move 
from one level to another; an operation on such ”entities” becomes 
in turn an object of the theory, and this process is repeated until 
we reach the structures that are alternatively structuring or being 
structured by ”stronger” structures.

The theorising is based on three elements: (1) the ”APOS cycle” (see figure 
13 in Dubinsky, 1991, p. 107), mediated by the fundamental Piagetian 
concept of reflective abstraction; (2) the researcher’s own mathemati-
cal understanding, including references to the historical evolution of  
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mathematical entities; and (3) empirical observations of students working 
with mathematical entities. As a basic principle it is stated that math-
ematical knowledge occurs in three general types, actions, processes, and 
objects, organised in schemas (APOS). In the action phase, the response 
is controlling the individual, while during the transformation of math-
ematical objects (processes) the individual is in control of it. By reflecting 
on these processes they are encapsulated into new mathematical objects 
and thereby constructed. These objects can then also be de-constructed, 
that is, seen as processes. A schema is a coherent collection of actions, 
processes, and objects and other linked schemas. Reflecting on schemas 
is another way to construct new objects. The resulting objects can then 
be the starting point for a new cycle.

The relation established between the key concepts of the theory 
(actions, processes, and objects, organised in schemas) is one of reifica-
tion, a process-into-product, a ”thingifying” relation (with the conno-
tation that the product is a real thing that exists). Reification is a com-
paratively general concept, used in a variety of intellectual fields. For 
example, the early Sanskrit grammarian Panini has generally claimed 
that all nouns are derived from verbs by such a process. As is well known, 
in Marxist theory reification (Verdinglichung) is a central concept, for 
example referring to the transformation of production and exchange 
value into use value. In mathematics (education), the concept of reifica-
tion refers as its empirical field to both at the same time, the cognitive 
processes of individual learners of specific mathematical concepts as well 
as to the social development of mathematical sub-areas into systems of 
codified knowledge. 

The APOS theory constitutes a comparatively high level of theoris-
ing with complex relationships between its key concepts. Some of the 
basic principles build on theorising outside the field of mathematics  
education. 

The ATD
The Antropological Theory of Didactics (ATD) (Bosch & Gascon, 2006; 
Chevallard, 1997, 1998) proposes a theoretical framework that can be 
used for analysing mathematical practices in different institutions. As 
such, it might be classified as sociological theorising. A basic principle 
of the theory is the process of didactic transposition of mathematical 
knowledge (Chevallard, 1991; see also Bosch & Gascon, 2006), based on 
the assumption that knowledge selected to be taught in an educational 
institution has a pre-existence outside the institution, and in order to be 
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teachable it has to be adapted depending on the constraints given in the 
didactic system (such as pre-knowledge of the students and the teachers, 
time, resources, and organisation). The didactic transposition has been 
described by three steps of transformation of knowledge, i.e. from the 
”scholarly knowledge” to ”knowledge to be taught” to ”taught knowl-
edge” to ”learned, available knowledge”. A claim of the theory is that ”the 
minimum unity [sic] of analysis of any didactic problem must contain all 
steps of the process of didactic transposition” (Bosch & Gascon, p. 56). 
Ligozat and Schubauer-Leoni (2009, pp. 2–3) characterize the didactic 
transposition process as

(1) a decontexualisation of mathematical practices from the prob-
lems they originally attended, into [a] sequence of topics to fit the 
curricula constraints and the frames of teaching time; (2) a recon-
texualisation of these topics by the teachers, in order to make 
the students encounter the knowledge to be taught within the  
classroom practices. 

In the ATD a number of theoretical notions are employed to capture dif-
ferent critical issues related to the didactic transposition process, such 
as transparency of knowledge, didactic time, chronogenèse, topogenèse, 
and disruption of mathematical objects (Chevallard, 1991). Some basic 
principles of the theory are established through statements about the 
extent to which these constrain and shape the outcome of the didactic 
transposition process.

Within the ATD, the theoretical object of a (mathematical) praxeol-
ogy (or mathematical organisation) provides a unit of analysis (at differ-
ent levels) for studies of the ”ecology” of mathematical knowledge within 
institutions. The empirical field established by the ATD can thus be 
described as mathematical discourses in different institutions. A praxeol-
ogy is seen to provide a general model of human activities in terms of a 
practical component (the know-how or praxis), and a discursive compo-
nent (the know-why or logos) (Chevallard, 1997). In order to solve some 
type of tasks within an institution, appropriate techniques are developed. 
Although the distinction suggests a division of labour within an institu-
tion, the know-how is not seen as existing isolated from a discourse about 
why (justification or explanation) the chosen techniques apply, that is, 
a technology, which in turn is put into a wider context of meanings by 
reflections in terms of a theory. Another function of a technology is the 
production of (new) techniques. Theory plays the same role to technol-
ogy as technology does to technique, i.e. as justification, explanation, or 
production. A specific constellation of a praxeology (in terms of tasks, 
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techniques, technologies, theories) defines the structure of an institu-
tionalised body of knowledge, such as a sub-field of mathematics (e.g. a 
calculus course at a university) or a part of a sub-field (e.g. theorems on 
continuous functions).

These theoretical objects (tasks, techniques, technologies, theories) are 
the constitutive components of a praxeology. In the ATD, hierarchical 
relations between these entities are suggested: Chevallard (1998) classi-
fies praxeologies as point (ponctuelle), local, and regional. A given specific 
type of task defines a triplet of technique, technology, and theory: a point 
praxeology. A common technology for an aggregate of techniques for a 
set of types of tasks defines a local praxeology, while a set of technologies 
covered by one theory will specify a regional praxeology. 

Empirical data are interpreted with respect to a ”hierarchy of levels 
of co-determination” (Barbé, Bosch, Espinoza & Gascon, 2005, p. 256), a 
theoretical construct within the ATD which aims to provide a tool to 
analyse the relation between mathematical and didactical praxeologies 
at different levels of generality, from the most simple level ”question” 
via ”theme”, ”sector”, ”area”, ”discipline”, ”pedagogy”, ”school” to the most 
generic level, ”society”: 

The structure of a MO [mathematical organisation] at each level of 
the hierarchy determines the possible ways of organising its study 
and, reciprocally, the nature and the functions of a didactic organisa-
tion at each level determine, to a large extent, the kind of MOs that 
can be created (studied) in the considered institution. 
  (Barbé et al., p. 256)

The theory thus provides principles to describe strong relation-
ships between what is possible to teach and how to teach at different  
hierarchically ordered levels of determination.

The research programme linked to this theorising has developed a 
comparatively specialised language and cross-references between single 
studies are common. The ATD, though often only implicitly, also draws 
on a range of intellectual roots. Even if this name does not suggest so, 
the theory introduces a programme that sets out to develop a sociology 
of (mathematical) knowledge by studying ”didactic systems”. However, 
scholars working within the ATD have not, to our knowledge, engaged 
in a critical discussion of its basic principles and relations to other frame-
works such as Activity Theory or to Bernstein’s work that is concerned 
with the production, reproduction and distribution of knowledge, and in 
particular with the process of knowledge recontextualisation. 
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Different modes of ”theorising”
The examples sketched above have been selected in order to illustrate 
different strategies of theorising in mathematics education. Inspired by 
Dowling’s advanced method of describing two-dimensional spaces of 
strategies (see table 2 below), we could distinguish different modes of 
attempts of classifying, modelling or theorising. As with all research, 
mathematics education is discursive in nature and can only be under-
stood in reference to previous research. However, the intertextuality can 
be more or less explicit (as for example by use of specialised language, ref-
erences to intellectual roots, building on previous research outcomes). In 
the examples we discussed above, another dimension emerged, that is, the 
extent to which relations between the key concepts are established. We 
refer to this dimension as relational density. In table 1, the space created 
by these two dimensions is displayed.

In this categorisation, some of the examples discussed above resemble 
more of a conglomerate and of an ad-hoc construction, while others rep-
resent local models and theories. This is not to say that these other modes 
cannot be useful, but they cannot easily generate descriptions that gen-
eralise across contexts. We suggest using the term ”theory” only for strat-
egies that aim at relational completeness as well as interrogation and 
further development of previous research. In general, the internal explic-
itness and coherence and the relational completeness of the theory should 
serve as criteria for the evaluation of the analytic stage in a research study 
(see Dowling & Brown, 2010, p. 87).

A theoretical construct with low relational density between its basic 
concepts can have only a weak explanatory power. In an attempt to dis-
tinguish a collection of different re-interpretions of empirical phenom-
ena from a theory proper, Moore (2006, in elaboration of Bernstein, e.g., 
2000) argues that a theory describes a generating principle for a range 
of possibilities. It achieves this by generating theoretical objects that 
can be re-written in terms of empirical descriptions. A theoretical lan-
guage makes it possible to outline configurations not yet observed in the 

Intertextuality Relational density 

High Low

High Theory Conglomerate

Low Local model Ad-hoc construction

Table 1. Different modes of classifying, modelling or theorising 1
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empirical or experienced but untheorised and thus not recognised as  
empirical instances.

Moore uses the creation of the periodic table as an example. Mendeleev 
invented a principle that generated a two-dimensional scheme of posi-
tions for the elements (in terms of similar characteristics and of atomic 
weight). The point is that this matrix generated theoretical possibilities 
by predicting the existence and properties of new elements (only 63 of the 
92 elements were recognised) and also suggested that the atomic weights 
attributed to some elements were wrong. As Moore points out, such 
theorising would provide the possibility of more than only re-describ-
ing the empirical by different languages that even might be based on  
incompatible approaches. 

Amongst the examples discussed, the ATD might provide an example 
of this mode of theorising. The conceptualisation of mathematical 
discourses as a space of different constellations of the components of 
a praxeology allows the description of praxeologies that are not (yet)  
empirically realised.

However, not all conceptual systems that would fall under the cat-
egory of theory in this schema, exhibit similar explicitness in terms of 
what is to count as an instance of a theoretical concept when encoun-
tered in the empirical. The price to be paid for a high level of theorising 
is the difficulty of the endeavour to describe an empirical field. In the  
following we further elaborate on this issue.

Relation to the empirical: languages of description
As to the relation to the empirical material, Radford (2008) stresses the 
coherence of the methodology with the basic principles and the ”oper-
ability” and also points to the unavoidable selectivity of data production 
and interpretation. An important point here is that a methodology inco-
herent with the basic principles will not produce relevant data and will 
not assist in data interpretation coherent with the theory. Methodology 
here refers to both, modes of data generation and of their interpreta-
tion. In the constraints discussed above for a conceptual system that 
might account for its status as theory, we did not include constraints on 
the relation to the empirical. It has been commonly argued that theo-
ries must be in principle testable or falsifiable, that they must help to 
make empirical data manageable, or provide descriptions of the empiri-
cal that enable understanding. Systems that do not bear any relation to 
the empirical sometimes also are labelled theoretical. However, we do not 
consider these here. The methodology mediates between research goals 
and questions posed in theoretical terms and the generating and reading 
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of empirical material in relation to the questions, that is, between the 
questions and the outcomes of research.

Bernstein (2000) draws attention to the ”discursive gap” between a 
theory (as a priori description) and the description related to the empiri-
cal material under study. He sees a close connection between theoretical 
model and methodology for data analysis (but not so much between the 
theoretical model and the ways in which data are collected, as for example 
through interviews or observations). For the purpose of advancing our 
discussion, we want to elaborate his distinction between what he calls 
”internal/external languages of description”. A language of description is 
a ”translation device whereby one language is transformed into another” 
(p. 132). What often is called theory or theoretical model, constitutes 
an internal language of description. It is a conceptual language with an 
explicit syntax that describes the relationships between conceptual enti-
ties. In order to describe ”something other than itself”, that is, empirical 
material, an external language of description has to be developed. It is a 
device for transforming observed empirical instances of a phenomenon 
of interest into theoretically relevant data. This point of view stresses the 
constructed (rather than collected) nature of ”data”, or the ”text”: 

A language of description constructs what is to count as an empiri-
cal referent, how such referents relate to each other to produce a 
specific text and translate these referential relations into theoretical 
objects or potential theoretical objects. In other words, the external 
language of description (L2) is the means by which the internal lan-
guage (L1) is activated as a reading device or vice versa. A language of 
description, from this point of view, consists of rules for the unam-
biguous recognition of what is to count as a relevant empirical rela-
tion, and rules (realisation rules) for reading the manifest contingent 
enactments of these empirical relations.  (Bernstein, 2000, p. 133)

This conception of the research process points to an open, dialectical 
relationship between the theoretical and the empirical and an emphasis 
on engaging in research that aims at theorising and not only at creat-
ing taxonomies of events and phenomena. From this point of view, in a 
research study, there ought to be a theoretical model, that is, an inter-
nal language (L1). For ”reading” the empirical material in relation to the 
concepts and relations described by L1, there should be always choices, 
otherwise the adventure amounts to a rather closed view that does not 
allow theory development on the base of empirical data. The develop-
ment of the L2 should be as independent as possible from the L1, that is, 
when confronted with empirical material, one should try to ignore the 
theoretical model and try to model the data with a view on the potential 
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space, that is, the repertoire of sense making on the side of the partici-
pants. Then, the question of possible ”readings” of these descriptions help 
creating an external language of description. As there are always points 
of choice, the reliability can be enhanced by making these points explicit. 
Limits of the L1 might be revealed as well as restrictions stemming from 
the assumptions made. This then initiates theory development (refine-
ment of the L1). Development of related internal and external languages 
of description might be achieved in a research programme rather than 
in a single study.

Dowling (1998) describes the external and internal language of descrip-
tion (syntax) in terms of the strength of their ”discursive saturation” 
(short DS) and provides a two-dimensional characterisation of different 
strategies of engaging with the empirical that could be linked to different 
scientific disciplines. But the characterisation is also useful on a micro-
level for describing (in their extreme forms) different constructions 
that constitute the bewildering array of ”theories”, ”theoretical models”,  
”theoretical frameworks” etc. in the field of mathematics education 
research.

The ”gaze” encompasses the principles that determine the constitu-
tion of the empirical objects. ”Discursive saturation” is a dimension that 
describes the extent to which a practice, as for example the practice of 
developing scientific theories, has explicit principles of regulation: a high 
extent is noted DS+, a low DS-. The ”discursive” is the domain of the lin-
guistic actions of a practice. Craft, for example, is a practice that usually 
does not include much explicit explanation and the utterances are highly 
context dependent. Such a practice is described as having low discursive 
saturation, that is, ”there is a low degree of saturation of the non-discur-
sive by the discursive” (Dowling, 1998, p. 30). If the regulation of a practice 
lies more within the linguistic (implying that the meanings are less con-
text-dependent), these practices are described to exhibit a high discursive 
saturation ”because there is a relatively high level of saturation of the 
non-discursive by the discursive” (p. 32). DS+ is not always to be confused 
with accessibility (e.g. a long chain of logical inferences). Also, in research 
there are practices that exhibit a relatively low discursive saturation, such 

Table 2. Grammatical modes (Dowling, 2007, p. 4; layout adjusted)

External syntax (gaze) Internal syntax 

DS+ DS-

DS+ Metonymic apparatus Method

DS- Metaphoric apparatus Fiction



Nordic Studies in Mathematics Education, 15 (1), 25–52.

Theorising in mathematics education research

41

as conducting open interviews, or carrying out qualitative data analysis, 
or finding a mathematical proof. The distinction between DS+ and DS- 
is one of relative saturation because no practice (not even mathematics) 
can be fully realised within discourse (cf. Dowling, 2009, p. 104).

In the two-dimensional categorisation above, a ”fiction” cannot make 
precise empirical claims because the external language of description is 
under-developed and in addition there is a weak syntax of theoretical 
language. On the other hand, a ”metonymic apparatus” has an explicit 
syntax for both the internal and the external language, as for example 
some parts of physics (with clearly defined observational languages for 
measuring empirical instances). Such apparatus, however, appears to be 
quite inflexible in terms of further development. If the external language 
is under-developed, the reference to something that counts as an empiri-
cal instance of a theoretical object is metaphorical. A well-developed lan-
guage for describing empirical material, perhaps without the aspiration 
of developing (grand) theory, is called a ”method”.

Languages of description – some examples
To illustrate and discuss the relation between internal and external lan-
guages of description in the context of research in mathematics educa-
tion, we will use two theories presented above as examples, the APOS 
theory and the ATD.

APOS
In relation to its empirical field, the APOS theory does not set out to 
scrutinise its core claim of the mental construction of knowledge as a 
reification process. As a local theory about the acquisition of specific 
mathematical concepts, it is informed by the empirical in the form of 
outcomes of instruction. It also includes a theory of instruction. As a key 
methodological device to plan instruction and develop the (local) theory, 
a ”genetic decomposition” of the mathematical concept in focus is used. 
This is defined as ”a tool we can use to make sense of data relating to a 
student’s understanding of a concept” (Cottrill et al., 1996, p. 189). As an 
example, a genetic decomposition of the limits of functions is developed 
in Cottrill et al. (pp. 177–178) consisting of the following seven steps (other 
examples of genetic decompositions are found in Dubinsky, 1991): 

1. The action of evaluating f at a single point x that is considered 
to be close to, or even equal to a. 

2. The action of evaluating the function f at a few points, each 
successive point closer to a than was the previous point. 
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3. Construction of a coordinated schema as follows. 
(a) Interiorization of the action of Step 2 to construct a domain 

process in which x approaches a.
(b) Construction of a range process in which y approaches L. 
(c) Coordination of (a), (b) via f. That is, the function f is applied 

to the process of x approaching a to obtain the process of f (x) 
approaching L. 

4. Perform actions on the limit concept by talking about, for 
example, limits of combinations of functions. In this way, the 
schema of Step 3 is encapsulated to become an object. 

5. Reconstruct the processes of Step 3(c) in terms of intervals and 
inequalities. This is done by introducing numerical estimates 
of the closeness of approach, in symbols, 0 < | x – a | < δ and 
| f (x) – L | < ε. 

6. Apply a quantification schema to connect the reconstructed 
process of the previous step to obtain the formal definition of 
a limit. 

7. A completed ε – δ conception applied to specific situations. 

This description provides an (a priori) operationalisation of the theory 
into a prescription (in terms of key concepts of the theory) for how to learn 
a specific mathematical concept. It can be seen as the part of the internal 
language of description that informs the external language of descrip-
tion on how to read the empirical observations, that is how to interpret 
them as research data. To be able to develop the external language of 
description, it is necessary to place the genetic decomposition within 
the research cycle advocated by the theory: a theoretical perspective is 
applied on the mathematical topic chosen, both related to its historical 
development and to individuals’ learning processes; a genetic decomposi-
tion is constructed; based on the genetic decomposition, an instructional 
sequence is designed and implemented; students are observed and inter-
viewed; the outcomes of the observations are analysed in terms of the 
theory; a (revised) genetic decomposition is constructed, etc.

The instructional design is open in relation to the theory. In the case 
of limits of functions in Cottrill et al. (1996), instruction included a focus 
on a variety of computer activities, followed by classroom tasks (without 
computers), discourse, and exercises. This design was a choice made by 
the researchers informed by arguments based on their interpretations 
of the theory. By this choice, the external language of description was 
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strongly influenced by the internal when the empirical observations were 
transformed into empirical data by searching for indicators that students 
who succeeded in the tasks seemed to be interiorizing a particular action 
into a process or encapsulating a certain process to an object, and by con-
firming that these indicators were not present in those students who did 
not succeed. Such influence is often inevitable but one should, not only 
for the sake of the validity of the research outcomes but also for ethical 
reasons, struggle to minimize it:

[T]he external description, irrespective of the translation demands 
of L1 (the model), must as far as possible, be permeable to the poten-
tial enactments of those being described. Otherwise their voice will 
be silenced.  (Bernstein, 2000, p. 135)

By the cyclic research process in the example discussed here, the re-
searchers’ attempt to let data take precedence over theory may seem to  
counteract this risk:

When a step in the genetic decomposition does not appear to arise 
in the data, and if we feel that the questions we asked did relate to 
the particular issue in the step, then we may drop it from the genetic 
decomposition. This is not a problem if the step arose mainly from 
theoretical considerations. If, however, it arose from data in previous 
experiments, then it becomes necessary to revise the genetic decom-
position so as to be consistent with data from all experiments, past 
and present.  (Cottrill et al., 1996, p. 169)

However, as it is only the specific genetic decomposition that is open to 
revision, the internal language of description will retain its precedence 
over the external language of description, and the empirical research is 
imposing the theory on the subjects studied. By the research process, the 
external language of description (i.e. the realisation rule by way of the 
genetic decomposition) remains hidden in the tasks and the interview 
questions, and it is only the researchers, and not the participating sub-
jects (the students), who have access to the recognition rule 2. This kind 
of phenomenon is, according to Bernstein (2000), inherent in research 
using experimental design.

The ATD
As one part of its empirical realisations, researchers employing the ATD 
as a theoretical framework set out to describe the specific mathemati-
cal praxeologies that can be observed in a certain institution at different 
levels of the didactic transposition process. A purpose for such analysis is 
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to study how institutional and didactic restrictions affect teachers’ prac-
tice. As an example, in Barbé et al. (2005) it was shown, in the context 
of limits of functions in the Spanish high school, how the mathemati-
cal praxeology observed at the level of knowledge to be taught, due to a 
complex historical process of didactic transposition, was ”split” between 
a ”topology of limits” and an ”algebra of limits”, where the former was 
seen to be historically rooted in scholarly questions about the nature 
and existence of limits, and the latter in the problem of how to calculate 
(algebraically) the limit for a given family of functions (in the high school 
mainly quotients of polynomials). As the practical part of the praxeol-
ogy by tradition focused only on the algebra of limits with no link to 
the theoretical part outlining a topology of limits, the observed math-
ematical praxeology at the level of knowledge actually taught, the teacher 
in this study, as well as the students, had problems to explain, justify 
and give meaning to the work on limits, ”distortions” on the classroom 
practice that are due to constraints coming from the first steps of the  
didactic transposition. 

These conclusions were based on empirical material consisting of 
syllabi and textbooks, and classroom observations, questionnaires, teach-
ers’ and students’ notes and interviews. The reading of the empirical data 
material was mediated by a language employing key notions from the 
theory and a description of the didactic process in the classroom in terms 
of six ”moments” (Barbé et al., p. 238). This external language of descrip-
tion organised the empirical data in one table outlining a ”transcript 
of the teaching process”, and one table with an ”analysis of the teach-
ing process” (pp. 247–248), thus describing the didactical praxeology by 
which the mathematical praxeology was set up. The number and sequen-
tial order of the didactic moments are independent of the theory but 
described by way of its key notions and motivated by stating that ”each 
moment has a specific function to fulfil which is essential for a success-
ful completion of the didactic process” (p. 238). To be able to describe the 
mathematical praxeologies, a ”reference mathematical organisation” was 
constructed by the researchers, by way of an analysis of current syllabi 
documents and textbooks, which constituted their

epistemological model of the ”scholarly knowledge” that legiti-
mates the knowledge to be taught. It is the broader map with refer-
ence to which we can interpret the mathematical contents that are  
proposed to be studied at school. (p. 241) 

These different elements of the external language of description make it 
possible to read (and analyse) the empirical data in terms of the theory, 
such as describing the types of tasks, techniques and technologies used 
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in the institution (for another example, see Hardy, 2009). However, the 
language does not provide an unambiguous description of the objects to 
analyse as it employs the (ambiguous) categories of the study process, in 
terms of the postulated six moments, and the derived reference math-
ematical organisation. In addition, the data are interpreted with respect 
to the hierarchy of levels of co-determination, the categories of which 
are not clearly delineated to the extent that ambiguous interpretations 
of the data are avoided. This top-down approach with respect to the role 
of theory sets constraints to establishing an open, dialectical relation-
ship between the theoretical and the empirical, and thereby delimits  
empirically grounded theory development. 

How theory is used
In research practice, theory use may vary both with respect to the extent 
to which the research refers to a particular theory and to the attitude 
towards the theory. One may use the whole theory, that is, asking a para-
digmatic research question, adopting the set of basic principles and meth-
odology, and/or delimiting and modelling the objects studied using the 
tools of the theory (as for example the APOS in Cottrill et al., 1996, and 
the ATD in Barbé et al., 2005). There are also cases where the research-
ers do not employ the whole ”package” but confine themselves to what 
could be called a pitching on particular key concepts for the purpose of 
orienting oneself towards the object of study, thus using the concepts of 
the theory as thinking tools (as for example in da Ponte & Marques, 2007, 
who employ some of the item classification categories used in the PISA 
framework; or in Selter, 2009, where reference is made to the notion of 
the didactical contract to account for students’ word problem solving 
behaviour). Yet other modes include the use of theory that may consist of 
mainly employing analytical tools that often have their origin in a particu-
lar branch of theorising in mathematics education or in a related social 
science (such as critical discourse analysis, see e.g. Le Roux, 2008), or as 
general background in asking research questions that bear the spirit of a 
theory (such as the mere stating that a study will adopt a socio-cultural 
perspective).

Concerning attitudes to theories, there are at least two main ways of 
”reading” a theory. In a dogmatic reading there is an explicit reference 
to the intellectual roots of the approach and to the set of basic proposi-
tions. This results in the obligation to also take up the key concepts (and 
perhaps also the methodology). With a creative or ”heretic” misreading one 
is trying to specify and develop, modify, or reject a theory and/or (some 
of) its concepts. A dogmatic reading of the ATD is found in, for example, 
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Barbé et al. (2005). The study by Hardy (2009) provides an example of a 
creative misreading of the same theory, as it is not simply run over the 
data but pointing to possible theory development by combining the ATD 
with a complementary framework of institutions. Similarly, the Joint 
action theory in didactics is an example of an attempt to overcome some 
weaknesses of the ATD and the TDS (The theory of didactic situations, 
as developed by Guy Brousseau) by employing an integrative approach 
(Ligozat & Schubauer-Leoni, 2009). 

Bernstein (2000) points to the issue of a reduced research economy, in 
the British context, and as a consequence lack of time, as an explanation 
for a decrease of proper theorising in educational research. Also in the 
Nordic context the increased number, in recent years, of doctoral theses 
presented as collections of papers contribute to this trend. A support 
for employing such less developed theoretical frameworks is found in 
recent methodological literature advocating the use of so called ”concep-
tual frameworks” (or bricolage) as appropriate in mathematics education 
research (e.g. Cobb, 2007; Lester, 2005).

Discussion
The constraints theories put on the methodologies differ with the extent 
to which they contain an external language of description. In summary, 
the examples of proper theories (in contrast to ad-hoc constructions and 
conglomerates) discussed above contain more or less specified external 
languages of description and set up different relations to the empirical. 
They include key concepts, basic principles and define what constitutes 
a problématique. The relation to the empirical can be prescriptive or 
descriptive. In the example of APOS, a constructivist theory of learning 
in undergraduate mathematics, there are at least two basic principles: 
(1) All mathematical entities can be analysed in terms of actions, proc-
esses, objects, and schemas, and (2) Individuals deal with mathematical 
problem situations by constructing mental actions, processes, objects and 
organizing them in schemas (in this order). This theory is a prescrip-
tive model for constituting teaching units and a descriptive model for 
failure/ success of students on a task in relation to their specific mental 
constructions. The method for constructing the empirical (teaching 
units) is unspecified, as well as the method for gathering data and ana-
lysing the empirical (students’ solutions). This theory does not include 
a specified external language of description, which implies low validity 
for the interpretation of the data. We find a normalising effect of pre-
scriptive use of theories of instruction: the model of the empirical reality 
eventually becomes what it intended to analyse (if everyone would teach  
according to the theory).
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By the analyses and the examples presented above, we want to emphasise 
that, in our view, theorising, with high relational density and intertextu-
ality (see table 1), is both an essential component and a goal of research. As 
pointed out by Dowling and Brown ”[s]ome form of theory is absolutely 
essential” (2010, p. 87). Atheoretical research (that is, research based on 
conglomerates and ad-hoc constructions, see table 1) might amount only 
to collections of unconnected re-descriptions of empirical phenomena. 
Such cataloguing could be termed ”botany”. However, it is only by means 
of theorising that singular events with apparent differences can be related 
to general principles. General principles allow seeing these different 
events as exemplars, and at the same time define the relevant qualities 
they have in common. Theories that include generating principles can 
depict possible empirical realisations that have not yet been observed.

In our discussion, we only provided examples of home-grown theoris-
ing, that is, of theories that emerged from within the field of mathemat-
ics education. This does not necessarily mean that these do not draw on 
theories from outside the field; the reference might just remain implicit 
(in the case of the APOS theory such reference is explicit). Further, 
home-grown theories have the potential of productively interacting 
with theories developed outside the field of mathematics education, if 
resemblances are noted. The notion of didactic transposition in the ATD, 
for example, echoes Bernstein’s notion of recontextualisation (see e.g. 
Bernstein, 2000). If references are explicit, the combination and mutual 
amendment of theories sharing common intellectual roots is facilitated. 
This could be fruitful especially in cases when a theory with an under-
developed external language is supplemented by a methodology from 
a cognate branch of theorising. By this, development of contradictory 
conglomerates can be obviated.

However, many researchers in mathematics education explicitly 
employ and adapt theories from other fields without attempting to 
develop genuine theories of phenomena related to the teaching and learn-
ing of mathematics. As researchers in mathematics education usually are 
not working in sociology, or social anthropology, psychology, philosophy, 
history of mathematics, or linguistics, there might be a problem of being 
not fully acquainted with the traditions of theorising in those fields. 
Consequently it might be hard to decide which sets of key propositions, 
concepts, methodologies to draw on and to combine, without produc-
ing a contradictory framework for analysis. Theories and methodologi-
cal devices taken from other fields inevitably have to be adapted to the 
peculiarities of mathematics education. Some of their complex theo-
retical insights and relations might get distorted or lost in this process. 
However, by only taking into account home-grown theories as a resource 
in a research study, there is a danger of doing so without taking notice 
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of the profound theorising that has been developed over long periods 
in philosophy, psychology, linguistics, anthropology and sociology. By 
saying this, we want to stress (in line with Steiner, 1985; see also Sriraman 
& English, 2010) the importance of paying serious attention to develop-
ments outside the field of mathematics education in order to advance 
theory. Also, thinking about relationships between different theories, 
can be assisted by drawing on thinking about those relationships in other 
areas. 

For the purpose of synthesising outcomes of research in mathematics 
education, it is necessary to consider the consistency and affinity of the 
basic propositions of the underpinning theories. If researchers in math-
ematics education draw on well-developed theories from other fields, 
this is not problematic, if the theories are not fragmented into too many 
pieces before imported, and if the meaning of basic notions borrowed is 
not distorted beyond recognition. Without paying attention to the theo-
retical consistency of research, educational studies in mathematics are at 
risk to become more detached and isolated from each other.
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Notes

1 The category ”relational density” used in table 1 describes an aspect of dis-
cursive saturation (see below on this term).

2 This phenomenon is evidenced in Bergsten and Jablonka (2009), by com-
paring the outcomes of interpretations of the same data from the point of 
view of two different theoretical orientations.
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