
University of South Carolina
Scholar Commons

Theses and Dissertations

12-14-2015

Fast Methods for Variable-Coefficient Peridynamic
and Non-Local Diffusion Models
Che Wang
University of South Carolina - Columbia

Follow this and additional works at: http://scholarcommons.sc.edu/etd

Part of the Mathematics Commons

This Open Access Dissertation is brought to you for free and open access by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact SCHOLARC@mailbox.sc.edu.

Recommended Citation
Wang, C.(2015). Fast Methods for Variable-Coefficient Peridynamic and Non-Local Diffusion Models. (Doctoral dissertation). Retrieved
from http://scholarcommons.sc.edu/etd/3258

http://scholarcommons.sc.edu?utm_source=scholarcommons.sc.edu%2Fetd%2F3258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarcommons.sc.edu%2Fetd%2F3258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.sc.edu/etd/3258?utm_source=scholarcommons.sc.edu%2Fetd%2F3258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:SCHOLARC@mailbox.sc.edu


Fast methods for variable-coefficient peridynamic and non-local
diffusion models

by

Che Wang

Bachelor of Science
Shandong University, 2009

Bachelor of Finance
Shandong University, 2009

Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Mathematics

College of Arts and Sciences

University of South Carolina

2015

Accepted by:

Hong Wang, Major Professor

Qi Wang, Committee Member

LiLi Ju, Committee Member

Yi Sun, Committee Member

GuiRen Wang, Committee Member

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies



c© Copyright by Che Wang, 2015
All Rights Reserved.

ii



Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Hong Wang for

his continuous encouragement and help of my Ph.D study and related research, for

his motivation, patience, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis.

I would like to thank my dissertation committee members: Professors Qi Wang,

LiLi Ju, Yi Sun, and GuiRen Wang, for their insightful comments and valuable

suggestions.

I would like to thank all my friends, especially Wei Cheng, XiaoDi Deng, GenSong

Gao, Hao Tian, YongQiang Ren, LiWei Wang, Su Yang, Jia Zhao, and XuHao Zhang.

They were always willing to help and give their best suggestions.

Last but not the least, I am deeply thankful to my family for their love, support,

and sacrifices.

iii



Abstract

In previous studies, scientists developed the classical solid mechanic theory. The

model has been widely used in scientific research and practical production. The main

assumption of the classical theory of solid mechanics is that all internal forces act

through zero distance. Because of this assumption, the mathematical model always

leads to partial differential equations, which meet with problems when describing the

spontaneous formation of discontinuities and other singularities.

A peridynamic model was proposed as a reformation of solid mechanics [40, 41,

43, 44, 45], which leads to a non-local framework that does not explicitly involve the

notion of deformation gradients, and so provides a more accurate description of the

problems[5, 15, 27].

With a steady state, the two dimensional non-local diffusion model has the same

properties as the peridynamic model[13, 14]. Hence, we can consider it as a scalar-

valued version of a peridynamic model. Our discussion will focus on the one dimen-

sional peridynamic model and two dimensional non-local diffusion model.

Starting in the 1970s, scientists began to focus on the research of numerical simu-

lation of integral or boundary integral equations by collocation methods and Galerkin

finite element methods[7, 24, 25, 47]. After the peridynamic model was developed, an

enormous amount of research effort went to the peridynamic and its numerical simu-

lation[17, 18, 42]. It was found that there are close relations between the peridynamic

model[22], non-local diffusion model and fractional partial differential equations [12,

13, 19, 28, 29, 30, 31, 32, 33, 35, 37]. In contrast to those for classical elasticity

models of solid mechanics and integer-order partial differential equations, numerical
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methods for peridynamic models, like those for space-fractional partial differential

equations [19, 28, 29, 30, 32, 33], usually generate dense or full stiffness matrices

for which widely used direct solvers typically require O(N3) operations and O(N2)

memory storage where N refers to the number of unknowns.

A simplified peridynamic model was proposed to reduce the computational cost

and memory requirement of the corresponding numerical methods, in which the hori-

zon of the material δ in the peridynamic model was assumed to be δ = O(N−1) [10].

The advantage of the simplified model was that it reduced the computational cost

and memory requirement to O(N), but at the cost of a reduced convergence rate of

their numerical approximation. Furthermore, it is not clear from the physical rele-

vance that the material property (the radius of the horizon) can be assumed to be of

the same order as the numerical mesh size.

In previous research, we developed a fast numerical method for the constant-

coefficient one dimensional peridynamic model and two dimensional non-local diffu-

sion model[50, 49, 46], which reduced the memory requirement from O(N2) to O(N),

and the computational cost from O(N3) to O(NlogN). These works relied heavily

on the Toeplitz-like structure of the stiffness matrix like fractional partial differential

equations[48, 53, 51, 52].

After Mengesha and Du developed the variable-coefficient peridynamic model[34],

we found that the stiffness matrix was no longer in Toeplitz structure, and our fast

method could not be applied. Moreover, the variable coefficient also increased the

computational work of evaluating the entries of the stiffness matrix. Since our fast

method significantly reduced the computational complexity and memory requirement

of the constant coefficient models, we hope to reform the stiffness matrix in order to

explore useful structure and improve the efficiency of the numerical simulation.

In this thesis, we will briefly introduce the tools we will use in developing the fast

method in Chapter 1, and show the general idea of our fast method by implementing
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it on a one dimensional peridynamic model in Chapter two. In Chapter three, we will

derive the fast method for a special case of a one dimensional peridynamic model by

collocation numerical simulation. Finally, we will extend the fast method to a two

dimensional non-local diffusion model in Chapter 4.
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Chapter 1

Review of useful tools

1.1 Introduction

In our fast method, several numerical strategies and methods are used, such as collo-

cation method, Toeplitz matrix, and Krylov subspace iteration method[1, 8, 11, 20,

26, 36, 38]. We shall give a brief introduction of those tools in this chapter.

1.2 Recall about collocation method

The collocation method has been used in many problems in applied mathematics. It

gives us a clear idea when facing some complicate problems. Here let us recall the

general idea of the collocation method. For the equation system

Ax = b (1.1)

with any linear operatorA, such as an integral operator or differential operator, where

b is given and x is going to be solved. To solve the problem numerically, we selected

a set of base vectors {v1, v2, ..., vn}, and x can be written as

x = c1v1 + c2v2 + ...+ cnvn, (1.2)

since A is a linear operator, we can rewrite

Ax =
n∑
j=1

cjAvj, (1.3)

then the equation (1.1) shall be written as
n∑
j=1

cjAvj = b. (1.4)
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As {v1, v2, ..., vn} are selected base vectors, the problem now is coming to solve for

those coefficients c1, c2, ..., c3. But it seems impossible to solve the equation system

(1.4). Here we try to make (1.4)almost true.

We now suppose that in some selected points ti, the right hand side term b has

the same value with left hand side
n∑
j=1

cjAvj, since the base vectors vj, x and b, are

all functions on the same domain. It can be written as

n∑
j=1

cj(Avj)(ti) = b(ti), 1 ≤ i ≤ n. (1.5)

Then the previous equation system becomes to a linear equation system, which

involves n linear equations. We can find out n unknown coefficients cj, by solving

the new equation system. This equation system can obviously be solved as long as

the stiffness matrix with non-singular entries (Avj)(ti), which results from the chosen

basic functions vj, and selected points ti.

1.3 Introduction of The Toeplitz matrix

Defination. An n-by-n matrix An = [ak,j; k, j = 0, 1, ..., n − 1], where ak,j = ak−j is

said to be Toeplitz if

An =



a0 a−1 . . . a2−n a1−n

a1 a0 a−1 . . . a2−n

... a−1 a0
. . . ...

an−2
. . . . . . a−1

an−1 an−2 . . . a1 a0


; (1.6)

i.e., An is constant along with its diagonals. The name Toeplitz was first used in the

early 1900s because Otto Toeplitz’s work on bilinear forms of Laurent series.

Toeplitz matrices can be found in many different applications. For example, to

consider a matrix and vector formulation for a discrete time convolution, the discrete
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time input and discrete time filter can be denoted as a column vector

x = (x0, x1, ..., xn−1)′ =



x0

x1

...

xn−1


(1.7)

and a Toeplitz matrix

Tn =



t0 0 0 . . . 0

t1 t0 0

t2 t1 t0
...

. . .
. . .

tn−1 . . . t0


(1.8)

. Then the matrix and vector formulation can be represented as a product of Tn and

x, where

y = Tnx =



t0 0 0 . . . 0

t1 t0 0

t2 t1 t0
...

. . .
. . .

tn−1 . . . t0





x0

x1

...

xn−1


=



x0t0

t1x0 + t0x1
2∑
i=0

t2−ixi

...
n−1∑
i=0

t2−ixi


(1.9)

, and each entry yk =
k∑
i=0

tk−ixi can be seen as the output of the discrete time and

causal time invariant filter h with "impulse response" tk.

We can easily find more applications of Toeplitz system in engineering and math-

ematics. In the signal Processing, let a discrete time random process Xn, and

mk = E(XK), KX(k, j) = E[(Xk −mk)(Xj −mj)] be the mean function and covari-

ance function of the process. Many signal process theories are based on the assump-

tion that the mean is constant and the covariance is Toeplitz, which is KX(k, j) =

KX(k − j). Since we assume that the covariance is Toeplitz, the covariance station-
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ary and second order stationary are also used. Then the n by n covariance matrices

Kn = [KX(k, j); k, j = 0, 1, ..., n− 1] are Toeplitz matrices.

There is a very useful special case of Toeplitz matrix called circulant matrix. A

matrix Cn is called circulant matrix, if it is in the form below

Cn =



t0 t−1 t−2 . . . t−(n−1)

t−(n−1) t0 t−1

t−(n−2) t−(n−1) t0
...

. . .
. . .

t−1 t−2 . . . t0


(1.10)

where tk = t−(n−k) = tk−n for k = 1, 2, ..., n− 1. This kind of matrix may be arose

in the applications which are related to the discrete Fourier transformation and the

study of cyclic codes for error correction.

We are going to use the special structure of Toeplitz matrices and circulant ma-

trices to derive our fast faithful method, in solving the Toeplitz system Ax = b.

Many works have already been done in a variety of applications. In time series

analysis, we need to solve Toeplitz systems in order to get the unknown parameters

of stationary autoregressive models. We shall need to obtain the filter coefficients in

designing recursive digital filters by solving Toeplitz systems. And also, in this paper,

solving Toeplitz systems is the key part in order to get the numerical solution of the

non-local diffusion model.

1.4 Motivation of accelerating the computing of solving Toeplitz

systems

At the first seeing of a Teoplitz matrix system Ax = b with an n by n Toeplitz matrix

A, where
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A =



a0 a−1 . . . a2−n a1−n

a1 a0 a−1 . . . a2−n

... a−1 a0
. . . ...

an−2
. . . . . . a−1

an−1 an−2 . . . a1 a0


(1.11)

, as a full matrix, if we consider the direct solver such as Gaussian elimination,

the matrix equation system will result in an algorithm of O(n3) depending on our

discretization. If the number of partition n goes to large, the cost will become very

expansive. And in normal cases, we need O(n2) of storage space.

Whereas the special structure of Toeplitz matrices, the matrix in our problem is

actually just determined by (2n − 1) entries. To consider a more efficient storage,

we can simply store these information by a (2n − 1) vector, but it will bring some

difficulties when we need to implement the direct solver. And in the consideration of

computational cost, we for surely expect to obtain the solution of the Toeplitz system

in less than O(n3) operations.

There are some early works focusing on the direct method for solving Toeplitz sys-

tems[4, 9, 20]. From 1940s on, the complexity has been decreased to O(n2) operations

by numbers of mathematicians such as Levinson(1946), Baxter(1961), Trench(1964)

and Zohar(1974). The invertibility of the (n−1) by (n−1) principle sub-matrix ofA is

required by these algorithms. The computational cost has been reduced toO(n log2 n)

by Brent, Gustavson, and Yun(1980), Bitmead and Anderson(1980), Morf(1980), de

Hoog(1987), and Ammar and Gragg(1988) around 1980th. The invertibility of the

bn/2c by bn/2c principle sub-matrix of A is required by these algorithms.

In this paper, the non-local diffusion model is being discussed, some works also

have been done to accelerate the computation. For peridynamic model, Chen and

Gunzburger proposed a finite element method by assuming the horizon of the material

δ = Mh. Here M is a constant number, this method reduces the computational cost
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to M2O(N), and reduces the memory cost to MO(N). As we derived in previous

chapter, in order to solve the non-local diffusion model numerically, we discretized the

integral equation, then trying to solve the matrix system Ax = b, where the stiffness

matrix A is a Toeplitz matrix.

If we did not consider the Toeplitz structure of the stiffness matrix, we suppose to

use conjugate gradient method to solve the system Ax = b. Since the stiffness matrix

is dense, and the computation of the matrix-vector multiplication will be O(N2), but

others only need O(N) computational work. Therefore, by considering the Krylov

subspace method, the key point is to use the special structure of the stiffness matrix,

and to accelerate the computation of matrix-vector multiplication. Then we can

improve the computational work of the whole scheme.

1.5 The conjugate gradient method

In searching of numerical solutions for mathematical models, such as solving differ-

ential and integral equations, we always come to solve the matrix equation Ax = b.

Many direct solvers have been explored, and lots of special methods depend on the

structures of the stiffness matrices those have been used in this area. In this paper,

the problem is about the Toeplitz matrix, which can be embedded into a symmet-

ric matrix. Hence we are going to consider one of the most popular method, the

Hestenes-Stiefel conjugate gradient method.

The method of successive over-relaxation, Chebyshev semi-iterative and many

related methods have been used in these kind of problems. The difficulty is that

they usually depend on parameters, sometimes hard to be chosen properly. For

example, the Chebyshev acceleration scheme needs good estimates of the largest

and smallest eigenvalues of the underlying iteration matrix M−1N . However, the

conjugate gradient method will not have these kind of difficulties.

We shall recall the conjugate gradient method in this section.
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Discussion of solving a linear system

To solve the matrix equation Ax = b with a positive definite stiffness matrix, we are

going to consider the function

φ(x) = 1
2x

TAx− xT b, (1.12)

where b ∈ R, and A ∈ Rn×n which is positive definite and symmetric matrix.

Because x = A−1b minimized the equation φx, where φ(x) = −bTAb/2. Solving the

problem Ax = b is equivalent to minimize the equation φ(x), if A is symmetric and

positive definite.

We shall a searching direction in order to use the iteration method, the up coming

idea is the method of steepest descent, at some point xp, the function φ(x) shall

decreases most rapidly in the direction of the negative gradient,

−∇φ(xp) = b−Axp. (1.13)

Here we name that

rp = −∇φ(xp) = b−Axp, (1.14)

the residual of xp. There is a positive α, such that φ(xp + αrp) < φ(xp), if rp is not

zero. Then we define

α = rTp rp/r
T
pArp

, and plug it back to φ(xp + αrp). We have

φ(xp + αrp) = φ(xp)− αrTp rp + 1
2α

2rTp rp/r
T
pArp

.
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Now we can conclude a simplest iteration scheme as the following

set x0 = initial guess

r0 = b−Ax0

k = 0

while rk 6= 0

k = k + 1

αk = rTk−1rk−1/r
T
k−1Ark−1

xk = xk−1 + αkrk

rk = b−Axk

end

(1.15)

and the global convergence can be given as

(φ(xk) + 1
2b

TA−1b) ≤ (1− 1
κ2(A))(φ(xk−1) + 1

2b
TA−1b). (1.16)

However, we can also find that when the condition number κ2(A) = λ1(A)/λn(A)

is large, the rate of convergent will slow down significantly.

This means that in searching of the lowest point in a relatively flat, steep-sided

valley. The method of steepest descent always made us forth across or traverse back

the valley, but not go down to the valley. In another word, the gradient direction

is not always a good direction to search for the result. In order to avoid this kind

of problem, we are going to find a direction which not necessarily depends on the

residual.

We suppose to search the result which shall minimize φ(x) along a set of directions

{p1, p2, ...}, these directions do not necessarily correspond to the residuals {r0, r1, ...}.

Then we set

8



α = αk

= pTk rk−1/p
T
kApk.

(1.17)

This shall minimize φ(xk + αk), and we can easily see that

φ(xk−1 + αkpk) = φ(xk−1)− (pTk rk−1)2

2pTkApk
, (1.18)

and we need to set pk that is not to be orthogonal to rk−1, in order to make sure

that φ(x) is successively reduced in these directions. Then the following scheme can

be given

x0 = initial guess

r0 = b−Ax0

k = 0

while rk 6= 0

k = k + 1

Choose a direction pk such that p
T
k rk−1 6= 0

αk = pTk rk−1/p
T
kApk

xk = xk−1 + αkpk

rk = b−Axk

end,

(1.19)

where we see

xk ∈ x0 + span{p1, ..., pk}

= {x0 + γ1p1 + ...+ γkpk : γi ∈ R}

(1.20)

Now the key point is to find the searching directions that could avoid the problem

of the steepest descent.
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Discussion about the Searching Direction of Conjugate

Gradient Method

From the previous discussion, we know that in order to get an n-th step convergent

about the problem Ax = b, it is sufficient to search for an xn, which could minimize

φ(x) over Rn. therefore, we only need to suppose that xk solved the problem

min
x∈x0+span{p1,p2,...,pk}

φ(x), (1.21)

where pi, i = 1, ..., k are linear independent. Then the scheme will be guaranteed

to be convergent in at most n steps.

Since we suppose to have a method which should be easy enough to be imple-

mented. And it is an iteration method, which means by given xk+1, we could compute

xk without expensive computational cost. Then we set

xk = x0 + Pk−1y + αk, (1.22)

with y ∈ Rk−1, Pk−1 = [p1, p2, ..., pk], and α ∈ R. Substitute x in φ(x) by xk, we

can have

φ(xk) = φ(x0 + Pk−1y) + αyTP T
k−1Apk + α2

2 p
T
kApk − αTk r0. (1.23)

In a simple case, we just let pk ∈ span{Ap1,Ap2, ...,Apk−1}⊥, and the second term

of previous equation becomes to zero, then the key part of minimization problem of

the k-yh step can be expressed as follows

min
xk∈x0+span{p1,p2,...,pk}

φ(xk) = min
y,α

φ(x0 + Pk−1y + αk)

= min
y,α

(φ(x0 + Pk−1y) + α2

2 p
T
kApk − αTk r0)

= min
y
φ(x0 + Pk−1y) + min

α
(α

2

2 p
T
kApk − αTk r0),

(1.24)

10



involving two separate minimization problems.

Now let us consider the first part of the problem, that xk−1 = x0 + Pk−1yk−1

minimizes φ over x0 + span{p1, p2, ..., pk−1} if yk−1 is the solution of that part. For

the second part, by the following A-conjugacy,

pTk rk−1 = pTk (b−Axk−1)

= pTk (b−A(x0 + Pk−1yk−1))

= pTk r0

(1.25)

we shall have a result, αk = pTk r0/p
T
kApk.

Then we can get the following scheme with xk = xk−q + αkpk

x0 = initial guess

k = 0

r0 = b−Ax0

while rk 6= 0

k = k + 1

Choosepk ∈ span{Ap1,Ap2, ...,Apk−1}⊥ so pTk rk−1 6= 0

αk = pTk rk−1/p
T
kApk

xk = xk−1 + αkpk

rk = b−Axk

end.

(1.26)

Here let us introduce the following lemma, which can support us to find the

possible direction.

Lemma If rk 6= 0, there exists a pk ∈ span{Ap1,Ap2, ...,Apk−1}⊥, such that

pTk rk−1 6= 0.
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Simply proved by the following recurrence method. For k = 1, we set p1 = r0,

then for k > 1, because of rk−1 6= 0, we have

A−1b 6∈ x0 + span{p1, p2, ..., pk−1}.

Then we have

b 6∈ Ax0 + span{Ap1,Ap2, ...,Apk−1}

which implies

r0 6∈ span{Ap1,Ap2, ...,Apk−1}

.

Hence we can say that there exists a p ∈ span{Ap1,Ap2, ...,Apk−1}⊥, such that

pT rk−1 6= 0. Moreover, since

xk−1 ∈ x0 + span{p1, p2, ..., pk−1}

,

it is true that

rk−1 ∈ r0 + span{Ap1,Ap2, ...,Apk−1}

,

and

pT rk−1 = pT r0 6= 0

.

In the scheme (1.26), the searching direction is named A-conjugate, since pTi Apj =

0 for all i 6= j.
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Also we can easily see that

P T
k APk = diag(pT1Ap1, p

T
2Ap2, ..., p

T
kApk)

is non-singular because of the properties of A and pi 6= 0, then it follows that Pk

is full column ranked. The convergence of the scheme (1.26) can be guaranteed in at

most n steps, since xn shall minimize φ(x) over Rn.

Based on the discussion above, we almost achieve our goal. Here easily comes to

an idea that to combine the method of steepest descent and the A-conjugate scheme,

we suppose to choose pk with restricted condition in the scheme (1.26), and to be the

closest vector to rk−1. By these constrains, we shall define the following "conjugate

gradient" scheme,

x0 = initial guess

k = 0

r0 = b−Ax0

while rk 6= 0, k = k + 1

if k = 1

p1 = r0

else let

pk ∈ span{Ap1,Ap2, ...,Apk−1}⊥

end

αk = pTk rk−1/p
T
kApk

xk = xk−1 + αkpk

rk = b−Axk

end

x = xk

(1.27)
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The remaining work is to find an efficient method to compute the searching di-

rection pk.

Lemmas and Theorems

In this subsection, we are going to introduce several important lemmas and theorems

to derive the faithful scheme of conjugate gradient method. First of all, let us recall

the Krylov subspace, which is defined by

K(r0,A, k) = span{r0,Ar0,A2r0, ...,Ak−1r0}.

Lemma 1.1. For k ≥ 2, the vectors pk are generated by (1.27), which satisfy

pk = rk−1 −APk−1zk−1,

where Pk = [p1, p2, ..., pk−1], and zk−1 solves the least square problem

min
z∈Rk−1

||rk−1 −APk−1z||2.

Proof. Here we set p be the associated minimum residual

p = rk−1 −APk−1zk−1,

and by the assumption that zk−1 is the solution of the previous least square prob-

lem, then we have

pTAPk−1 = 0

.

Furthermore, the orthogonal projection of rk−1 into ran(APk−1)⊥

p = [I − (APk−1)(APk−1)+]rk−1

is the closest vector in ran(APk−1)⊥ to rk−1, then

p = pk

14



.

By this lemma, we can derive many important relationships between the searching

direction pk, residual rk, and the Krylov subspace.

Next, let us recall the most important theorem, which can help us to show that

pk could be a linear combination of the direction pk−1 of last step and the current

residual rk−1.

Theorem 1.2. After k iterations of the schem (1.27), we have

rk = rk−1 − αkApk (1.28)

pTk rk = 0 (1.29)

span{p1, p2, ..., pk} = span{r1, r2, ..., rk−1}

= K(r0,A, k)

= span{r0,Ar0,A2r0, ...,Ak−1r0}

(1.30)

and the residual r0, r1, ..., rk are mutually orthogonal.

Proof. By the definition of residual rp = b−Axp, we have

rk = b−Axk

= b−A(xk−1 + αkpk)

= b−Axk−1 − αkApk

= rk−1 − αkApk

(1.31)

since xk = xk−1 + αkpk. Which is (1.28).
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And for (1.29), we use that

xk = x0 + Pkyk

, where yk minimized the equation

φ(x0 + Pky) = φ(x0) + 1
2y

T (P T
k APk)y − yTPk(b−Ax0),

however, it means that yk is the solution of the linear system

(P T
k APk)y = P T

k (b−Ax0)

.

Therefore, we have

0 = P T
k (b−Ax0)− (P T

k APk)yk

= P T
k (b−A(x0 + Pkyk))

= P T
k rk.

(1.32)

It is true that

{Ap1,Ap2, ...,Apk−1} ⊂ span{r0, r1, ..., rk−1}

, because of (1.28). By the lemma, we shall see

pk = rk−1 − [Ap1,Ap2, ...,Apk−1]zk−1

∈ span{r0, r1, ..., rk−1},

(1.33)

and then we have

[p1, p2, ..., pk] = [r0, r1, ..., rk−1]T,

16



where T is an upper triangular matrix. Because of the non-singularity of T , and

the independence of the searching directions, we could conclude that

span{p1, p2, ..., pk} = span{r0, r1, ..., rk−1}

.Again by (1.28), we say that

rk ∈ span{rk−1,Apk}

⊂ span{rk−1,Ar0, ...,Ark−1}.

(1.34)

Then, by induction we can get the Krylov space connection. And by (1.29), (1.30)

we can easily get the orthogonality of the residuals.

Theorem 1.3. The residual and searching direction in (1.27) have the property that

pk ∈ span{∂k−1, rk−1} for k ≥ 2.

Proof. We shall prove this from k = 2, since p2 ∈ span{r0, r1} from (1.30), and

p1 = r0, then p2 ∈ span{p,r1}. And for k > 2, we separate the vector zk−1 from the

lemma to

zk−1 = [ω, µ]T

where ω is an 1− by − (k − 2) vector and µ is a single number. And because of

rk−1 = rk−2 − αk−1Apk−1

,

we can have
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pk = rk−1 −APk−1zk−1

= rk−1 −APk−2ω − µApk−1

= (1 + µ

αk−1
)rk−1 + sk−1,

(1.35)

where

sk−1 = − µ

αk−1
rk−2 −APk−2ω

∈ span{rk−2,APk−2ω}

⊂ span{rk−2,Ap1,Ap2, ...,Apk−2}

⊂ span{r1, r2, ..., rk−2},

(1.36)

it is obvious that sk−1 and rk−1 are orthogonal to each other, since ri are mutually

orthogonal. Then we just need to find µ and ω, which minimized

||pk||22 = (1 + µ

αk−1
)2||rk−1||22 + ||sk−1||22.

We conclude that pk ∈ span{rk−1, pk−1}. Because sk−1 is a multiple of pk−1, which

because zk−2 minimized the 2-norm of rk−2 −APk−2z by giving residual pk−1.

The Conjugate Gradient Method

By the theorem before, we can choose that

pk = rk−1 + βkpk−1,

by the A-conjugacy pTk−1Apk = 0, we have
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βk = −p
T
k−1Ark−1

pTk−1Apk−1
,

then the conjugate gradient scheme can be given as the following

x0 = initial guess

k = 0

r0 = b−Ax0

while rk 6= 0

k = k + 1

if k = 1

p1 = r0

else

βk = −pTk−1Ark−1/pk−1TApk−1

pk = rk−1 + βkpk−1

end

αk = pTk rk−1/p
T
kApk

xk = xk−1 + αkpk

rk = b−Axk

end

x = xk

(1.37)

Since it needs three separate matrix-vector multiplications of each iteration in the

above scheme, we will use rk = rk−1 − αApk to derive out that

rTk−1rk−1 = −αk−1r
T
k−1Apk−1, (1.38)

and
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rTk−2rk−2 = αk−1p
T
k−1Apk−1. (1.39)

Then the conjugate gradient method scheme will be written as

x0 = initial guess

k = 0

r0 = b−Ax0

while rk 6= 0

k = k + 1

if k = 1

p1 = r0

else

βk = rTk−1rk−1/r
T
k−2rk−2

pk = rk−1 + βkpk−1

end

αk = rTk−1rk−1/p
T
kApk

xk = xk−1 + αkpk

rk = rk−1 − αkApk

end

x = xk

(1.40)

And we shall use this version of the scheme of the conjugate gradient method in

future computation.
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Convergence Analysis

The convergence of the conjugate gradient method is shown by the following two

famous theorems.

Theorem 1.4. If A = I +B is an n− by−n symmetric positive definite matrix and

rank(B) = r, then the scheme (1.40) converges in at most r + 1 steps.

After we defined the A-norm as

||ω||A =
√
ωTAω

, the error estimation can be given by the following theorem.

Theorem 1.5. Suppose A ∈ Rn×n is symmetric positive definite and b ∈ R. If the

scheme (1.40) produces iterates {xk} and κ = κ2(A) then

||x− xk||A ≤ 2||x− x0||A(
√
κ− 1√
κ+ 1)k. (1.41)

In conclusion, the conjugate gradient method converges rapidly in the A-norm if

κ2(A) ≈ 1.

1.6 A brief discussion of Krylov subspace iteration method

By previous study, we observed that the conjugate gradient method is the ideal

method in solving the constant-coefficient peridynamic problems. Since the constant-

coefficient peridynamic problems always lead to a symmetric positive definite stiffness

matrix. However, in later discussion we shall find that the stiffness matrix of a

variable-coefficient peridynamic or non-local diffusion problem is even not symmetric,

and always differs from entry to entry. We then hope to choose a similar Krylov

subspace method to solve our nonsymmtric linear systems.

21



There are many Krylov subspace methods have been developed for nonsymmetric

linear systems. CGNR, CGNE and GMRES are known for their easily implementa-

tions. The stability of these methods are also conspicuous. Nevertheless, we cannot

choose these methods for our fast method, since the schemes of CGNR and CGNE

involve a transpose-vector product in each iteration, and the coefficient matrix we

used is ATA or AAT , the computation has been increased and the condition numbers

have been squared. For GMRES, the storage of requirement will be huge when we

are going to solve an ill-conditioned problem.

We suppose to implement an ideal iteration method, we only need matrix-vector

multiplications, and the storage requirement should not depend on the number of the

iterations. Bi-CG has been considered at the beginning, and we have the following

algorithm

x0 = initial guess

k = 0

r = b−Ax0

r̂ = r

ρ0 = 1

p̂ = p = 0

while||r||2 > ε||b||2 and k < kmax

k = k + 1

ρk = r̂T r, β = ρk/ρk−1

p = r + βp, p̂ = r̂ + βp̂

v = Ap

α = ρk/(p̂Tv), x = x+ αp

r = r − αv; r̂ = r̂ − αAT p̂.

(1.42)
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Here the stiffness matrix A does not need to be symmetric and positive definite.

However, a transpose-vector product of the stiffness matrix A is needed. This will

cause more computational work. Furthermore, the transpose of A may not exist

sometimes.

Finally, we come to a remedy of Bi-CG method, named CGS. In order to avoid

the transpose of A, we shall use the observation that there is p̄k ∈ Pk such that

rk = p̄k(A)r0 and r̂k = p̄k(AT )r̂0,

then the scalar product r̂T r in (1.42) can be written as

rTk r̂k = (p̄k(A)r0)T (p̄k(AT )r̂0) = (p̄k(A2)r̂0)T r̂0.

Here A can be eliminated and we get the algorithm of CGS method

x0 = initial guess

p0 = u0 = r0 = b−Ax0

v0 = Ap0; r̂0 = r0

ρ0 = r̂T0 r0; k = 0

while||r||2 > ε||b||2 andk < kmax

k = k + 1, σk−1 = r̂T0 vk−1

αk−1 = ρk−1/σk−1, qk = uk−1 − αk−1vk−1

xk = xk−1 + αk−1(uk−1qk)

rk = rk−1 − αk−1A(uk−1qk)

ρk = r̂T0 rk; βk = ρk/ρk−1

uk = rk + βkqk

pk = uk + βk(qk + βkpk−1), vk = Apk,

(1.43)

where q̄k is defined by q̄0 = 1 and for k ≥ 1 by
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q̄k(z) = p̄k(z) + βkq̄k−1(z).

Although this CGS method has some disadvantages, like it is not stable, and

breakdowns occur when either ρk−1 or δk−1 vanish, it meets most of our requirement

for our fast method.
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Chapter 2

A Fast Collocation Method for a Variable

Coefficient Peridynamic Model

2.1 Introduction

Compared to the constant-coefficient peridynamic model[23], the superiority of a

variable-coefficient peridynamic model is in accounting for the heterogeneity of the

elastic material. However, it also requires much more computational cost and storage

memory. Our fast method is based on the structure of stiffness matrix of the numerical

simulations. In order to show the idea intuitively, we start our discussion with the

collocation method of a one dimensional variable-coefficient peridynamic model.

In this chapter we develop a fast numerical method for a variable-coefficient peri-

dynamic model for describing a heterogeneous finite elastic bar. In section two we

go over the finite element method for the peridynamic model. In section three we

develop a fast method with an efficient matrix assembly and storage. In section four

we conduct numerical experiments to investigate the computational benefits of the

fast method.

2.2 A variable-coefficient peridynamic model and its collocation dis-

cretization

A variable-coefficient peridynamic model for describing a finite heterogeneous microe-

lastic bar is formulated as follows
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∫ x+δ

x−δ
(α(x) + α(y))(u(x)− u(y))

|x− y|1+γ dy = f(x), x ∈ (a, b)

u(x) = g(x), x ∈ (a− δ, a] ∪ [b, b+ δ).
(2.1)

Here δ > 0 refers to the size of the material horizon, the index γ < 1 specifies the

singularity of the kernel. The elasticity coefficient α(·) has positive lower and upper

bounds.

Let N be a positive integer. We define a uniform partition xi := a + ih for

i = −1, 0, 1, . . . , N,N + 1 with h := (b − a)/N . Let ψ(ξ) := 1 − |ξ| for ξ ∈ [−1, 1]

and 0 elsewhere be the hat function on the reference element [−1, 1]. Let φi(x) :=

ψ
(
(x− xi)/h

)
. The trial function is

u(x) =
N∑
j=0

ujφj(x). (2.2)

We enforce the governing equation in (2.1) at the collocation points {xi}N−1
i=1 to

obtain the following collocation scheme

∫ xi+δ

xi−δ
(α(xi) + α(y))u(xi)− u(y)

|xi − y|1+γ dy = f(xi), 1 ≤ i ≤ N − 1. (2.3)

We substitute the trial function (2.2) into (2.3) to rewrite (2.3) as follows

ui

∫ xi+δ

xi−δ
(α(xi) + α(y)) 1− φi(y)

|xi − y|1+γ dy

−
N−1∑

j=1,j 6=i
uj

∫ xi+δ

xi−δ
(α(xi) + α(y)) φj(y)

|xi − y|1+γ dy

= f(xi) + g(a)
∫ xi+δ

xi−δ
(α(xi) + α(y)) φ0(y)

|xi − y|1+γ dy

+g(b)
∫ xi+δ

xi−δ
(α(xi) + α(y)) φN(y)

|xi − y|1+γ dy, 1 ≤ i ≤ N − 1.

(2.4)

The numerical scheme (2.4) can be formulated in the following matrix form

Au = f. (2.5)
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Here the unknown vector u := [u1, u2, . . . , uN−1]T with {uj}N−1
j=1 being given in

(2.2), and the stiffness matrix A := [Ai,j]N−1
i,j=1 and the right-hand side f := [f1, f2, . . . , fN−1]T

are defined by

Ai,j :=
∫ xi+δ

xi−δ
(α(xi) + α(y)) φj(y)

|xi − y|1+γ dy, j 6= i,

Ai,i :=
∫ xi+δ

xi−δ
(α(xi) + α(y)) 1− φi(y)

|xi − y|1+γ dy,

fi := f(xi) + g(a)
∫ xi+δ

xi−δ
(α(xi) + α(y)) φ0(y)

|xi − y|1+γ dy

+g(b)
∫ xi+δ

xi−δ
(α(xi) + α(y)) φN(y)

|xi − y|1+γ dy.

(2.6)

We observe from (2.6) that each row of the stiffness matrix A has O(K) nonzero

entries, where

K := bδ/hc (2.7)

is the floor of δ/h. We note that K = O(N) as N increases. In other words, the

stiffness matrix A is a dense matrix, for which direct solvers require O(N2) storage

and have O(N3) computational complexity. To develop a fast solution method we

shall explore the structure of the stiffness matrix.

The goal of this paper is to develop a fast numerical solution technique for the

numerical scheme (2.5)–(2.6), whicn in turn relies on the Toeplitz-like structure of

the stiffness matrix. However, in contrast to the case of the constant-coefficient

peridynamic model and the non-local diffusion model in which the stiffness matrices

of the corresponding numerical schemes automatically have a Toeplitz-like structure

[50, 49], it is not clear whether the stiffness matrix of the numerical scheme (2.5)–

(2.6) has such a structure. We shall show that with a carefully chosen numerical

quadrature, the resulting stiffness matrix actually has a Toeplitz-like structure, and

then develop a corresponding fast solution technique for (2.5)–(2.6).
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2.3 An efficient evaluation of the stiffness matrix

In this section we shall study an efficient evaluation of the stiffness matrix. Recall

that the stiffness matrices of numerical methods for integer-order partial differential

equations are sparse. Consequently, the evaluation of these matrices naturally has

linear complexity. However, in the current context of nonlocal diffusion or peridy-

namic models, the stiffness matrices are dense, which requires O(N2) computational

work to assemble and O(N2) memory to store. In the context of a constant-coefficient

peridynamic or nonlocal diffusion model, we proved a Toeplitz-like structure for the

stiffness matrices of the corresponding numerical methods [50, 49]. However, in the

current context, the presence of a variable coefficient destroys a Toeplitz-like struc-

ture of the stiffness matrix A of the numerical scheme (2.5)–(2.6). Hence, we have to

carefully design an efficient evaluation mechanism to assemble the matrix A.

Evaluation of the diagonal entries of the stiffness matrix

We begin by evaluating the diagonal entries of the stiffness matrix A in (2.6) for

i = 1, 2, . . . , N − 1

Ai,i = α(xi)
∫ xi+δ

xi−δ

1− φi(y)
|xi − y|1+γ dy +

∫ xi+δ

xi−δ

α(y)(1− φi(y))
|xi − y|1+γ dy, (2.8)

We utilize the symmetry of the integration to evaluate the first term on the right-hand

as follows ∫ xi+δ

xi−δ

1− φi(y)
|xi − y|1+γ dy

= 2
∫ xi+δ

xi+1

1
(y − xi)1+γ dy + 2

∫ xi+1

xi

1− φi(y)
(y − xi)1+γ dy

= 2(h−γ − δ−γ)
γ

+ 2h−γ
1− γ ,

(2.9)

However, the evaluation of the second term on the right-hand side of (2.8) presents

a sustantial numerical difficulty. As the variable-coefficient α(y) is inside the inte-

gration with respect to y, a numerical quadrature has to be applied to evaluate the
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integral in general. Furthermore, the domain of integration, i.e., the horizon of the

material at the collocation point xi, is (xi−δ, xi+δ), which is asymptotically of order

O(N). A naive application of a numerical quadrature would require O(N2) compu-

tations to assemble the matrix A. To reduce the computational work to assemble the

stiffness matrix A, we need to evaluate this term very carefully. We note that this

term can be decomposed as∫ xi+δ

xi−δ

α(y)(1− φi(y))
|xi − y|1+γ dy

=
∫ xi−1

xi−δ

α(y)
(xi − y)1+γ dy +

∫ xi+δ

xi+1

α(y)
(y − xi)1+γ dy

+
∫ xi

xi−1

α(y)(1− φi(y))
(xi − y)1+γ dy +

∫ xi+1

xi

α(y)(1− φi(y))
(y − xi)1+γ dy.

(2.10)

We use a piecewise-constant approximation αI(x) to approximate α(x)

αI(x) :=
N∑
i=1

α(x− 1
2
)1[xi−1,xi)(x), x ∈ [a, b]. (2.11)

Here 1[xi−1,xi)(x) is the indicator function such that 1[xi−1,xi)(x) = 1 for x ∈ [xi−1, xi)

or 0 elsewhere. xi− 1
2

:= (xi−1 + xi)/2 are the cell centers of the cells [xi−1, xi].

We substitute αI for α in the last two terms on the right-hand side of (2.9) to

evaluate these two terms in a similar fashion to (2.9) as follows

α(xi− 1
2
)
∫ xi

xi−1

(1− φi(y))
(xi − y)1+γ dy + α(xi+1/2)

∫ xi+1

xi

(1− φi(y))
(y − xi)1+γ dy

=
h−γ

(
α(xi− 1

2
) + α(xi+1/2)

)
1− γ .

(2.12)
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We similarly evaluate the first two terms on the right-hand side of (2.9) as

α(xi−K− 1
2
)
∫ xi−K

xi−δ

1
(xi − y)1+γ dy

+
i−1∑

k=i−K+1
α(xk− 1

2
)
∫ xk

xk−1

1
(xi − y)1+γ dy

+
xi+K∑
k=i+2

α(xk− 1
2
)
∫ xk

xk−1

1
(xi − y)1+γ dy

+α(xi+K+ 1
2
)
∫ xi+δ

xi+K

α(y)
(y − xi)1+γ dy

= α(xi−K− 1
2
)(Kh)−γ − δ−γ

γ

+
i−1∑

k=i−K+1
α(xk− 1

2
)((i−K)−γ − (i−K + 1)−γ)h−γ

γ

+
xi+K∑
k=i+2

α(xk− 1
2
)((K − 1− i)−γ − (K − i)−γ)h−γ

γ

+α(xi+K+ 1
2
)(Kh)−γ − δ−γ

γ

(2.13)

Evaluation of the off-diagonal entries of the stiffness matrix

We now turn to the off-diagonal entries of the matrix A given in (2.6)

Ai,j = α(xi)
∫ xi+δ

xi−δ

φj(y)
|xi − y|1+γ dy +

∫ xi+δ

xi−δ

α(y)φj(y)
|xi − y|1+γ dy, j 6= i. (2.14)

Since the support of φj is the interval [xj−1, xj+1], it is clear that

Ai,j = 0, |i− j| ≥ K + 2. (2.15)

In other words, the stiffness matrix A is a dense banded matrix with the band width

of O(N) asymptotically.

We need only evaluate the off-diagonal entries Ai,j for 1 ≤ |i − j| ≤ K + 1 in

different cases.

Case 1: We consider the case i + 1 ≤ j ≤ i + K − 1, when the support of φj lies
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inside [xi, xi+K ]. In this case, we evaluate Ai,j as in Section 3.1

Ai,j = α(xi)
∫ xj+1

xj−1

φj(y)
(y − xi)1+γ dy +

∫ xj+1

xj−1

α(y)φj(y)
(y − xi)1+γ dy

≈ α(xj− 1
2
)
∫ xj

xj−1

φLj (y)
(y − xi)1+γ dy + α(xj+ 1

2
)
∫ xj+1

xj

φRj (y)
(y − xi)1+γ dy

]

+α(xi)
[ ∫ xj

xj−1

φLj (y)
(y − xi)1+γ +

∫ xj+1

xj

φRj (y)
(y − xi)1+γ dy

]

= α(xj− 1
2
)l(1)
j−i + α(xj+ 1

2
)r(1)
j−i

+α(xi)(l(1)
j−i + r

(1)
j−i),

(2.16)

where we have

l
(1)
j−i =

∫ xj
xj−1

φLj (y)
(y−xi)1+γ dy

=



((i− j + 1)h−γ
γ

((j − i− 1)−γ − (j − i)−γ)

+h−γ

1−γ ((j − i)1−γ − (j − i− 1)1−γ))

for γ 6= 0

1 + (i− j + 1)ln
j−i
j−i−1

for γ = 0

,

(2.17)

r
(1)
j−i =

∫ xj+1
xj

φRj (y)
(y−xi)1+γ dy

=



((j − i+ 1)h−γ
γ

((j − i)−γ − (j − i+ 1)−γ)

+h−γ

1−γ ((j − i)1−γ − (j − i+ 1)1−γ))

for γ 6= 0

(j − i+ 1)ln
j−i+1
j−i − 1

for γ = 0

,

(2.18)

then we defined
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l
(1)
k =



((1− k)h−γ
γ

((k − 1)−γ − (k)−γ)

+h−γ

1−γ ((k1−γ − (k − 1)1−γ))

for γ 6= 0

1 + (1− k)ln
k
k−1

for γ = 0

, (2.19)

r
(1)
k =



((k + 1)h−γ
γ

((k)−γ − (k + 1)−γ)

+h−γ

1−γ ((k)1−γ − (k + 1)1−γ))

for γ 6= 0

(k + 1)ln k+1
k − 1

for γ = 0

, (2.20)

Case 2: We can similarly evaluate Ai,j for i−K + 1 ≤ j ≤ i− 1 as follows

Ai,j = α(xi)
∫ xj+1

xj−1

φj(y)
(xi − y)1+γ dy +

∫ xj+1

xj−1

α(y)φj(y)
(xi − y)1+γ dy

≈ α(xj− 1
2
)
∫ xj

xj−1

φLj (y)
(xi − y)1+γ dy + α(xj+ 1

2
)
∫ xj+1

xj

φRj (y)
(xi − y)1+γ dy

]

+α(xi)
[ ∫ xj

xj−1

φLj (y)
(xi − y)1+γ +

∫ xj+1

xj

φRj (y)
(xi − y)1+γ dy

]

= α(xj− 1
2
)r(1)
i−j + α(xj+ 1

2
)l(1)
i−j

+α(xi)(l(1)
i−j + r

(1)
i−j),

(2.21)

Case 3: We consider the case j = i + K when part of the support of φj, the

interval [xj, xj+1], does not lie in the interval [xi, xi + δ] in general. In this case, we

evaluate Ai,j as follows
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Ai,j = α(xi)
∫ xj+δ−Kh

xj−1

φj(y)
(y − xi)1+γ dy +

∫ xj+δ−Kh

xj−1

α(y)φj(y)
(xi − y)1+γ dy

≈ α(xj− 1
2
)
∫ xj

xj−1

φLj (y)
(y − xi)1+γ dy + α(xj+ 1

2
)
∫ xj+δ−Kh

xj

φRj (y)
(y − xi)1+γ dy

]

+α(xi)
[ ∫ xj

xj−1

φLj (y)
(y − xi)1+γ +

∫ xj+δ−Kh

xj

φRj (y)
(xi − y)1+γ dy

]

= α(xj− 1
2
)l(1)
j−i + α(xj+ 1

2
)r(2)
j−i

+α(xi)(l(1)
j−i + r

(2)
j−i),

(2.22)

for which,

r
(2)
j−i =

∫ xj+δ−Kh
xj

φRj (y)
(y−xi)1+γ dy

=



((j − i+ 1) 1
γ
((j − i)−γh−γ − ((j − i−K)h+ δ)−γ)

− 1
h(1−γ)(((j − i−K)h+ δ)1−γ − (j − i)1−γ))

for γ 6= 0

(j − i+ 1)ln
(j−i−K)h+δ

(j−i)h + Kh−δ
h

for γ = 0

,

(2.23)

here we defined

r
(2)
k =



((k + 1) 1
γ
((k)−γh−γ − ((k −K)h+ δ)−γ)

− 1
h(1−γ)(((k −K)h+ δ)1−γ − (k)1−γ))

for γ 6= 0

(k + 1)ln
(k−K)h+δ

kh + Kh−δ
h

for γ = 0

, (2.24)

Case 4: We can similarly treat the case j = i−K .
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Ai,j = α(xi)
∫ xj+1

xj−δ+Kh

φj(y)
(xi − y)1+γ dy +

∫ xj+1

xj−δ+Kh

α(y)φj(y)
(xi − y)1+γ dy

≈ α(xj− 1
2
)
∫ xj

xj−δ+Kh

φLj (y)
(xi − y)1+γ dy + α(xj+ 1

2
)
∫ xj+1

xj

φRj (y)
(xi − y)1+γ dy

]

+α(xi)
[ ∫ xj

xj−δ+Kh

φLj (y)
(xi − y)1+γ +

∫ xj+1

xj

φRj (y)
(y − xi)1+γ dy

]

= α(xj− 1
2
)r(2)
i−j + α(xj+ 1

2
)l(1)
i−j

+α(xi)(r(2)
i−j + l

(1)
i−j),

(2.25)

Case 5: We consider the case j = i + K + 1 when part of the support of φj,

[xj−1, xj] does not necessarly lie in the interval [xi, xi+ δ]. We evaluate Ai,j as follows

.

Ai,j = α(xi)
∫ xj−1+δ−Kh

xj−1

φj(y)
(y − xi)1+γ dy +

∫ xj−1+δ−Kh

xj−1

α(y)φj(y)
(y − xi)1+γ dy

≈ α(xi)
∫ xj−1+δ−Kh

xj−1

φLj (y)
(y − xi)1+γ dy + α(xj− 1

2
)
∫ xj−1+δ−Kh

xj−1

φLj (y)
(y − xi)1+γ dy

= α(xj− 1
2
)l(2)
j−i + α(xi)l(2)

j−i,

(2.26)

and we simply write
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l
(2)
j−i =

∫ xj−1+δ−Kh
xj−1

φLj (y)
(y−xi)1+γ dy

=



((i− j + 1) 1
γ
((j − i− 1)−γh−γ − ((j − i− 1−K)h+ δ)−γ)

+ 1
h(1−γ)(((j − i− 1−K)h+ δ)1−γ − (j − i− 1)1−γ))

for γ 6= 0

(i− j + 1)ln
(j−i−1−K)h+δ

(j−i−1)h + δ−Kh
h

for γ = 0

,

(2.27)

again we can define

l
(2)
k =



((1− k) 1
γ
((k − 1)−γh−γ − ((k − 1−K)h+ δ)−γ)

+ 1
h(1−γ)(((k − 1−K)h+ δ)1−γ − (k − 1)1−γ))

for γ 6= 0

(1− k)ln
(k−1−K)h+δ

(k−1)h + δ−Kh
h

for γ = 0

, (2.28)

Case 6: We can similarly treat the case j = i−K − 1.

Ai,j = α(xi)
∫ xj+1

xj+1−δ+Kh

φj(y)
(xi − y)1+γ dy +

∫ xj−1+δ−Kh

xj−1

α(y)φj(y)
(xi − y)1+γ dy

≈ α(xi)
∫ xj+1

xj+1−δ+Kh

φRj (y)
(xi − y)1+γ dy + α(xj+ 1

2
)
∫ xj+1

xj+1−δ+Kh

φRj (y)
(xi − y)1+γ dy

= α(xj+ 1
2
)l(2)
i−j + α(xi)l(2)

i−j.

(2.29)
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2.4 Structure of the stiffness matrix

In this subsection, we shall introduce two important theorems, which can be used to

achieve our fast method.

Theorem 2.1. The stiffness matrix A of the collocation method of previous variable

coefficients non-local peridynamic model can be written as

A = Ad+ A(1)T (1) + T (2)A(2) + T (3)A(3)

, where Ad contains all the diagonal entries of A.

Proof. By previous discussion, we can first set Ad as a diagonal matrix and all the

diagonal entries are the same as the diagonal entries of A.

For remaining parts, let us recall the expressions of the entries of A, (2.16), (2.21),

(2.22), (2.25), (2.26), and (2.29), then we write A1 in the following structure

T (1) =



0 T
(1)
1,2 . . . T

(1)
1,m+1 . . . 0

T
(1)
1,2 0 . . . . . . . . . ...
... . . . . . . . . . . . . T

(1)
N−m−1,N−1

T
(1)
m+1,1

. . . . . . 0 . . . ...
... . . . . . . . . . T

(1)
N−2,N−1

0 . . . T
(1)
N−1,N−m−1 . . . T

(1)
N−1,N−2 0



, (2.30)

where for j = i+m

T
(1)
i,i+m = −

∫ xj−1+δ−nh

xj−1

φLi+m(y)
(y − xi)1+γ dy, (2.31)

and for j = i−m

T
(1)
i,i−m = −

∫ xj+1

xj+1+nh−δ

φRi−m(y)
(xi − y)1+γ dy, (2.32)

36



when j = i+ n and j = i− n, we can have

T
(1)
i,i+n = −

∫ xi+n

xi+n−1

φLi+n(y)
(y − xi)1+γ dy −

∫ xi+n+δ−nh

xi+n

φRi+n(y)
(y − xi)1+γ dy

T
(1)
i,i−n = −

∫ xi−n+1

xi−n

φLi+n(y)
(xi − y)1+γ dy −

∫ xi−n

xi−n−δ+nh

φRi−n(y)
(xi − y)1+γ dy,

(2.33)

then for j = i+ 1, ..., i+ n− 1

T
(1)
i,j = −

∫ xj

xj−1

φLj (y)
(y − xi)1+γ dy −

∫ xj+1

xj

φRj (y)
(y − xi)1+γ dy, (2.34)

finally, for j = i− 1, ..., i− n+ 1

T
(1)
i,j = −

∫ xj

xj−1

φLj (y)
(xi − y)1+γ dy −

∫ xj+1

xj

φRj (y)
(xi − y)1+γ dy. (2.35)

Next, we shall let the structure of T 2 to be

T (2) =



0 T
(2)
1,2 . . . T

(2)
1,m+1 . . . 0

T
(2)
1,2 0 . . . . . . . . . ...
... . . . . . . . . . . . . T

(2)
N−m−1,N−1

T
(2)
n+1,1

. . . . . . 0 . . . ...
... . . . . . . . . . T

(2)
N−2,N−1

0 . . . T
(2)
N−1,N−n−1 . . . T

(2)
N−1,N−2 0



. (2.36)

We then consider the entries in several cases, for j = i + m T
(2)
i,j = T

(1)
i,j and for

j = i+ n

T
(2)
i,i+n = −

∫ xi+n

xi+n−1

φLi+n(y)
(y − xi)1+γ dy. (2.37)

When j = i+ 1, ..., i+ n− 1, we have

T
(2)
i,j = −

∫ xj

xj−1

φLj (y)
(y − xi)1+γ dy. (2.38)
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Similarly, T (2)
i,i−n can be expressed as

T
(2)
i,i−n = −

∫ xi−n

xi−n−δ+nh

φRi−n(y)
(xi − y)1+γ dy. (2.39)

The last case for j = i− 1, ..., i− n+ 1

T
(2)
i,j = −

∫ xj

xj−1

φLj (y)
(xi − y)1+γ dy. (2.40)

Finally we set T 3 as

T (2) =



0 T
(2)
1,2 . . . T

(2)
1,n+1 . . . 0

T
(2)
1,2 0 . . . . . . . . . ...
... . . . . . . . . . . . . T

(2)
N−n−1,N−1

T
(2)
m+1,1

. . . . . . 0 . . . ...
... . . . . . . . . . T

(2)
N−2,N−1

0 . . . T
(2)
N−1,N−m−1 . . . T

(2)
N−1,N−2 0



, (2.41)

where T (3)
i,j = T

(1)
i,j when j = i−m. For j = i+ n

T
(3)
i,i+n = −

∫ xi+n+δ−nh

xi+n

φRi+n(y)
(y − xi)1+γ dy, (2.42)

when j = i+ 1, ..., i+ n− 1

T
(3)
i,j = −

∫ xj+1

xj

φRj (y)
(y − xi)1+γ dy, (2.43)

and for j = i− n

T
(3)
i,i−n = −

∫ xi−n+1

xi−n

φLi+n(y)
(xi − y)1+γ dy. (2.44)

Again, for j = i− 1, ..., i− n+ 1

T
(3)
i,j = −

∫ xj+1

xj

φRj (y)
(xi − y)1+γ dy. (2.45)
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Then we can write {A(i)}3
i=1 as three diagonal matrices, where A(1)

i,i = α(xi),

A
(2)
i,i = α(xi + h

2 ), and A(3)
i,i = α(xi−1 + h

2 ).

Now we have

A = Ad+ A(1)T (1) + T (2)A(2) + T (3)A(3)

.

Theorem 2.2. The matrices {A(i)}3
i=1 in Theorem 1 are diagonal matrices, and

{T (i)}3
i=1 are Toeplitz matrices.

Proof. From Theorem 1, we already set {A(i)}3
i=1 as diagonal matrices, then we only

need to prove that {T (i)}3
i=1 are Toeplitz matrices.

Since the proof of T (1), T (2), and T (3) are almost the same, without losing gener-

ality, we will only prove the up triangular entries of T (1).

Firstly, for j = i+m we do the following substitution

y = xj + s, dy = ds

,

then s ∈ [−h,−h+ δ − nh], (2.31) can be written as

T
(1)
i,i+m = −

∫ xj−1+δ−nh

xj−1

φLi+m(y)
(y − xi)1+γ dy

= −
∫ −h+δ−nh

−h

ψ(xj+s−xj
h

)
(xj + s− xi)1+γ ds

= −
∫ −h+δ−nh

−h

ψ( s
h
)

((j − i)h+ s)1+γ ds,

(2.46)

so its value only depends on j − i.

Then for j = i+ n, we do the substitution
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y = xj + s, dy = ds

,

where s ∈ [−h, δ − nh], (2.33) can be written as

T
(1)
i,i+n = −

∫ xj+δ−nh

xj−1

φi+n(y)
(y − xi)1+γ dy

= −
∫ δ−nh

−h

ψ(xj+s−xj
h

)
(xj + s− xi)1+γ ds

= −
∫ −h+δ

−h

ψ( s
h
)

((j − i)h+ s)1+γ ds,

(2.47)

the value of T (1)
i,i+n also only depends on j − i.

Finally, for j = i+ 1, ..., i+ n− 1, the expression

T
(1)
i,j = −

∫ xj+1

xj−1

φj(y)
(y − xi)1+γ dy, (2.48)

after doing the substitution y = xj + s, where s ∈ [−h, h], we have

T
(1)
i,j = −

∫ xj+1

xj−1

φj(y)
(y − xi)1+γ dy

= −
∫ h

−h

ψ(xj+s−xj
h

)
(xj + s− xi)1+γ ds

= −
∫ −h
−h

ψ( s
h
)

((j − i)h+ s)1+γ ds.

(2.49)

We have the same conclusion, such that the value of T (1) only depends on j − i,

the values of the entries are the same if j−i is a constant, so T (1) is a Toeplitz matrix.

We do not need to repeat the procedure, and observed that T (2), T (3) are also

Toeplitz matrices.
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Now we can implement our fast method. Since we are going to accelerate the

matrix vector multiplication Apk, by Theorem 1, we rewrite

Apk = (Ad+ A(1)T (1) + T (2)A(2) + T (3)A(3))pk

= Adpk + A(1)T (1)pk + T (2)A(2)pk + T (3)A(3)pk

= Adpk + A(1)(T (1)pk) + T (2)(A(2)pk) + T (3)(A(3)pk)

, (2.50)

Because A(2) and A(3) are diagonal matrices, A(2)pk and A(2)pk can be found out

with computational cost O(N). We simply write A(2)pk = p
(2)
k and A(3)pk = p

(3)
k ,

so the Toeplitz matrix vector multiplication T (1)pk, T (2)p
(2)
k , and T (3)p

(3)
k could be

accelerated.

By previous studies, Toeplitz matrices can be embedded into an circulant matrix

C as follows, without losing generality, we shall use T (1) as our example

C :=

T (1) B

B T (1)

 B :=



0 q−m . . . q−1 0

qm 0 q−m . . . q−1

... qm 0 . . . ...

q1
... . . . . . . q−m

0 q1 . . . qm 0


. (2.51)

In our problem, C should be an 2(N − 1) × 2(N − 1) circulant matrix, where

qu = T
(1)
i,j , u = j − i.

By previous studies, we know that C has the following decomposition

C = F−1diag(Fc)F, (2.52)

where c is the first column of C, F is the 2(N − 1) × 2(N − 1) discrete Fourier

transform matrix.

Then we we embed pk into an 2(N − 1) dimensional vector w, where
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w :=

pk
0

 . (2.53)

Here we can get T (1)pk by keeping the first N − 1 entries of Cw, since Fc and Fw

only need O(NlogN) computational cost, we can implement the conjugate gradient

squared method by our fast matrix vector multiplication in only O(NlogN) steps

per iteration, which is a big improvement compared to the standard matrix vector

multiplication.

2.5 Numerical experiments

In this section, we will implement our fast method to a series of numerical exper-

iments, to investigate the performance of the fast method. To run the numer-

ical examples, we set the spatial domain (a, b) = (−1, 1), and the real solution

u(x) = (1− x)2(1 + x)2, with the variable coefficient α(x) = 1 + ε(1− x2), where we

choose ε = 0.1, and δ = 1/32.

In our numerical examples, the analytic expression of the right-hand side term

b(x) could be find out in each collocation point xi. Then we shall use Gaussian

Elimination, standard Conjugate Gradient Squared, and our Fast Conjugate Gradient

Squared method to seek the numerical solution of the linear equation system (2.5).

We ran those Matlab programs in a 16GB-ROM laptop.

We inspected the performance of our fast method by switching the size of the

grid from h = 2−7 to h = 214, and observed that all three of the above numerical

solvers have the same computational error and convergence rate. Then the order of

convergence could be fitted by linear regression. If we set uh as the numerical solution

and u as the real solution of our problem, the error estimate could be expressed as

follows
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||uh − u||Lp(a,b) ≤ Cβh
β, p = 2,∞

We concluded that the order of convergence of the numerical methods we used in

our experiments is second order, and since when h = 2−13 the error is small enough,

the numerical scheme loses the second order accuracy as h gets smaller[16, 15].

There were no research findings have been announced directly on the collocation

method for peridynamic or nonlocal diffusion model, but it has been shown that

the singularity of the stiffness matrix depends on the power γ in the kernel function
1

|x−y|1+γ when performing the Galerkin finite element method in previous studies[1, 10,

16, 36, 56]. We tentatively chose γ = 1/10, 1/2, 3/4, and − 1/2, and try to observed

the effect on our collocation method.

Example 1. We set γ = 1/10, where the kernel function 1
|x−y|1+γ is nonintegrable,

and has little singularity. We showed the numerical solution in Table 1.

Example 2. We set γ = 1/2, where the kernel function 1
|x−y|1+γ is still noninte-

grable, but has more singularity and we found that the convergence rate is almost

second order. However, the number of iterations increased a lot. We showed the

numerical solution in Table 2.

Example 3. We set γ = 3/4, where the kernel function 1
|x−y|1+γ is still nonintegrable

and the singularity became even larger. We shall inspect that the convergence rate

decreased to 1.5 order, and we need more iterations to get the ideal numerical solution.

We showed the numerical solution in Table 3.

Example 4. We set γ = −1/2, where the kernel function 1
|x−y|1+γ is integrable

and we found that the convergence rate was about second order. We will need fewer

iterations. We showed the numerical solution in Table 4.

Example 5. Finally, consider γ = 1/10, where the kernel function 1
|x−y|1+γ is still

non-integrable, but we set δ = 1/16. We will have better accuracy with a smaller

grid size and need fewer iteration steps. We showed the numerical solution in Table
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Table 2.1: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 1/10, δ = 1/32

h ||eh||L2 # of Iter. CPU Time

2−7 3.04166771e− 02 − 0.05s

2−8 8.18334943e− 03 − 0.23s

2−9 1.89265584e− 03 − 1.47s

2−10 4.17492908e− 04 − 12.11s

Gauss 2−11 9.62105995e− 05 − 1m58s

2−12 2.70050257e− 05 − 16m54s

2−13 8.67911833e− 06 − 2h54m

2−14 2.78957323e− 06 − 1d5h

2−7 3.04166771e− 02 462 0.2s

2−8 8.18334943e− 03 496 0.35s

2−9 1.89265584e− 03 500 1.53s

2−10 4.17492908e− 04 549 8.72s

CGS 2−11 9.62105995e− 05 527 22.9s

2−12 2.70050257e− 05 495 1m02s

2−13 8.67911833e− 06 527 5m27s

2−14 2.78957323e− 06 570 21m21s

2−7 3.04166771e− 02 462 1.38s

2−8 8.18334943e− 03 496 1.38s

2−9 1.89265584e− 03 500 1.39s

2−10 4.17492908e− 04 549 3.11s

FCGS 2−11 9.62105995e− 05 527 6.02s

2−12 2.70050257e− 05 495 11.4s

2−13 8.67911833e− 06 527 57s

2−14 2.78957323e− 06 570 1m01s
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Table 2.2: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 1/2, δ = 1/32

h ||eh||L2 # of Iter. CPU Time

2−8 1.80518676e− 02 − 0.22s

2−9 5.45753657e− 03 − 1.37s

Gauss 2−10 1.49600916e− 03 − 12.12s

2−11 3.95745488e− 04 − 2m18s

2−12 1.05727455e− 04 − 16m57s

2−8 1.80518676e− 02 758 0.68s

2−9 5.45753657e− 03 896 2.57s

CGS 2−10 1.49600916e− 03 1011 14.6s

2−11 3.95745488e− 04 1139 51.98s

2−12 1.05727455e− 04 1358 3m58s

2−8 1.80518676e− 02 758 1.19s

2−9 5.45753657e− 03 896 3.00s

FCGS 2−10 1.49600916e− 03 1011 5.35s

2−11 3.95745488e− 04 1139 12.02s

2−12 1.05727455e− 04 1358 30.07s

5.

In conclusion, a heuristic observation a obtained through the previous discussion

and numerical experiments. Namely, that the convergence rate and number of it-

erations all depend on the kernel function 1
|x−y|1+γ . When γ < 0, we have a better

convergence rate and fewer iteration steps; when γ is close to 1, the singularity causes

more iteration steps and a lower convergence rate.
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Table 2.3: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 3/4, δ = 1/32

h ||eh||L2 # of Iter. CPU Time

2−8 3.45784187e− 02 − 0.22s

2−9 1.38426155e− 02 − 1.42s

Gauss 2−10 4.82842571e− 03 − 12.31s

2−11 1.55326827e− 03 − 2m20s

2−12 4.81220832e− 04 − 16m59s

2−8 3.45784187e− 02 1005 0.74s

2−9 1.38426155e− 02 1464 4.07s

CGS 2−10 4.82842571e− 03 1836 29.75s

2−11 1.55326827e− 03 2362 1m43s

2−12 4.81220832e− 04 2954 6m14s

2−8 3.45784187e− 02 1005 1.82s

2−9 1.38426155e− 02 1464 4.94s

FCGS 2−10 4.82842571e− 03 1836 9.57s

2−11 1.55326827e− 03 2362 24.97s

2−12 4.81220832e− 04 2954 1m06s
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Table 2.4: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = −1/2, δ = 1/32

h ||eh||L2 # of Iter. CPU Time

2−8 3.76621601e− 03 − 0.28s

2−9 7.35901274e− 04 − 1.61s

Gauss 2−10 1.52092692e− 04 − 13.18s

2−11 4.13432509e− 05 − 2m7s

2−12 1.81069791e− 05 − 18m43s

2−8 3.76621601e− 03 322 0.23s

2−9 7.35901274e− 04 291 0.8s

CGS 2−10 1.52092692e− 04 252 4.19s

2−11 4.13432509e− 05 254 11.53s

2−12 1.81069791e− 05 259 34.85s

2−8 8.18334943e− 03 322 0.67s

2−9 1.89265584e− 03 291 1.02s

FCGS 2−10 4.17492908e− 04 252 1.41s

2−11 9.62105995e− 05 254 2.64s

2−12 2.70050257e− 05 259 5.78s
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Table 2.5: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 1/10, δ = 1/16

h ||eh||L2 # of Iter. CPU Time

2−8 2.76438847e− 03 − 0.25s

2−9 6.65091032e− 04 − 1.36s

Gauss 2−10 1.96415968e− 04 − 12.32s

2−11 8.51694885e− 05 − 1m58s

2−12 4.94857046e− 05 − 17m40s

2−8 2.76438847e− 03 259 0.12s

2−9 6.65091032e− 04 285 0.48s

CGS 2−10 1.96415968e− 04 281 1.92s

2−11 8.51694885e− 05 299 7.94s

2−12 4.94857046e− 05 293 25.4s

2−8 2.76438847e− 03 259 0.59s

2−9 6.65091032e− 04 285 1.15s

FCGS 2−10 1.96415968e− 04 281 1.48s

2−11 8.51694885e− 05 299 3.05s

2−12 4.94857046e− 05 293 6.46s
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Chapter 3

A Fast Galerkin Method for a variable

Coefficient Peridynamic Model

3.1 Introduction

In the previous chapter, we worked out the numerical solution of the variable-coefficient

peridynamic model by using collocation method. And in the studying of constant

coefficient peridynamic problems, we observed that it will lead to a bilinear form

when implement finite element method to search for numerical solution.

In this chapter, we consider a special case of the variable-coefficient peridynamic

model[55, 54]. When the material horizon δ goes to infinity, our globel variable-

coefficient peridynamic model can be seen as

∫ b

a
C(x, y)(u(x)− u(y))dy = f(x), x ∈ (a, b)

u(a) = ua, (b) = ub,

(3.1)

then we will use the finite element method to find the numerical solution. Since

this model will lead to a full stiffness matrix, and the stiffness matrix does not have

a Toeplitz structure directly, we shall analyze the entries of it and make it a sum

of several special matrices. Moreover, we will show that the diagonal entries of the

stiffness matrix of the variable-coefficient peridynamic model also require a great

deal of computation, a numerical approximation of the variable coefficient technically

helped us with accelerating the computation of the diagonal entries by using the

Toeplitz structure again.
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3.2 Numerical scheme of one dimensional variable-coefficient peri-

dynamic model

In order to discuss the numerical scheme, we see the model which is derived out from

(3.1),

∫ b

a
(α(x) + α(y))(u(x)− u(y))

|x− y|1+γ dy = f(x),

u(a) = ua, u(b) = ub.

(3.2)

where we considered α(x, y) = α(x) + α(y) be the elasticity coefficient, and the

kernel function κ(x, y) = 1
|x−y|1+γ . Then we are going to discuss the variational

formulation of our model. For convenience, we simply introduce the notation

C(x, y) = α(x, y)κ(x, y), (3.3)

To see the variational formulation, we multiply both sides of the non-local diffusion

equation by a test function v(x), v ∈ L2(Ω;R), and integral both sides about x over

the whole filed Ω, we get the weak formulation

a(u, v) = l(v), (3.4)

where

a(u, v) =
∫ b

a

∫ b

a
C(x, y)(u(x)− u(y))v(x)dydx, (3.5)

and

l(v) =
∫ b

a
v(x)f(x)dydx. (3.6)

First, let us work on the right-hand side of the equation,
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a(u, v) =
∫ b

a

∫ b

a
(α(x) + α(y))C(x, y)(u(x)− u(y))v(x)dydx (3.7)

=
∫ b

a

∫ b

a
(α(x) + α(y))u(x)− u(y)

|x− y|1+γ v(x)dydx (3.8)

=
∫ b

a

∫ b

a
(α(y) + α(x))u(y)− u(x)

|y − x|1+γ v(y)dxdy (3.9)

=
∫ b

a

∫ b

a
(α(x) + α(y))u(y)− u(x)

|x− y|1+γ v(y)dydx, (3.10)

we first interchanged x and y from (3.7) and (3.8) to (3.9), and then exchanged

the order of integration. Since we have (3.8) and (3.10) are equivalent, subtract (3.10)

from (3.8), the following equation is true

∫ b

a

∫ b

a
C(x, y) ((u(x)− u(y))v(x)− (u(y)− u(x)v(y)) dydx = 0. (3.11)

Let us consider the inside part of the integration above

(u(x)− u(y))v(x)− (u(y)− u(x))v(y)

= v(x)((u(x)− u(y))− (u(y)− u(x)))

+ v(x)(u(y)− u(x))− v(y)(u(y)− u(x))

= v(x)((u(x)− u(y))− (u(y)− u(x)))

− (v(y)− v(x))(u(y)− u(x))

= v(x)(u(x)− u(y))− v(x)(u(y)− u(x))

− (v(y)− v(x))(u(y)− u(x))

= 2v(x)(u(x)− u(y))− (v(y)− v(x))(u(y)− u(x)),

(3.12)
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then we plug in the last expression of (3.12) to (3.11), and get

∫ b
a

∫ b
a C(x, y)(2v(x)(u(x)− u(y))

−(v(y)− v(x))(u(y)− u(x)))dydx = 0,
(3.13)

so that

∫ b

a

∫ b

a
C(x, y) (2v(x)(u(x)− u(y))) dydx

=
∫ b

a

∫ b

a
C(x, y) ((v(y)− v(x))(u(y)− u(x))) dydx,

(3.14)

and here come to the second form of a(u, v)

a(u, v) = 1
2

∫ b

a

∫ b

a
C(x, y) ((v(y)− v(x))(u(y)− u(x))) dydx, (3.15)

so we can conclude that a(u, v) is symmetric.

Next we replaced the C(x, y) in (3.16) by

C(x, y) = (α(x) + α(y)) 1
|x− y|1+γ

,

then (3.16) can be expressed as

a(u, v)

= 1
2

∫ b

a

∫ b

a
C(x, y) ((v(y)− v(x))(u(y)− u(x))) dydx

= 1
2

∫ b

a

∫ b

a
(α(x) + α(y))((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx

= 1
2(
∫ b

a

∫ b

a
α(x)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx

+
∫ b

a

∫ b

a
α(y)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx),

(3.16)
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in which,

∫ b

a

∫ b

a
α(y)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx

=
∫ b

a

∫ b

a
α(y)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dxdy,

(3.17)

then if we interchanged x and y in the previous expression, we shall find

∫ b

a

∫ b

a
α(y)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dxdy

=
∫ b

a

∫ b

a
α(x)((v(x)− v(y))(u(x)− u(y)))

|x− y|1+γ dydx,

(3.18)

so

a(u, v)

= 1
2(
∫ b

a

∫ b

a
α(x)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx

+
∫ b

a

∫ b

a
α(y)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx)

= 1
2(
∫ b

a

∫ b

a
α(x)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx

+
∫ b

a

∫ b

a
α(x)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx)

=
∫ b

a

∫ b

a
α(x)((v(y)− v(x))(u(y)− u(x)))

|x− y|1+γ dydx.

(3.19)

In order to discrete the integral equation and use the Galerkin finite element

method to find the numerical solution of this model, we perform uniform partition

on the whole field Ω ∪ Ωε, in which Ωε is an area around the boundary, and in this

section, we considered Ω ∪ Ωε as (a − ε, b + ε). Then we defined the partition as

following
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xi = a+ ih,

−K ≤i ≤ N +K,

h = b− a
N

.

(3.20)

We shall introduce the standard hat function as we need, that is

ψ(ξ) = 1− |ξ|, ξ ∈ [−1, 1],

then we can define φi(x) = ψ(x−xi
h

), x ∈ [xi−1, xi+1] in our one dimensional

problem. In other words,

φi(x) =


x− xi−1

h
x ∈ [xi−1, xi]

xi+1 − x
h

x ∈ [xi, xi+1]

, (3.21)

with the hat functions {φi(x)}Ni=0 we introduced, the numerical solution of u(x)

can be approximated by the following equation

u(x) = φ0(x)ua +
N−1∑
j=1

φj(x)uj + φN(x)ub, (3.22)

for further discussion, we sometimes use the notations u0 and uN for ua and ub.

Then we choose the test function v(x) = φi(x), for i = 1, ..., N − 1. According to

(3.3), we proceed to discretization of a(u, v),

a(u, v)

=
∫ b

a

∫ b

a
α(x)

(
N∑
j=0

φj(y)uj −
N∑
j=0

φj(x)uj)(φi(y)− φi(x))

|x− y|1+γ dydx

= uj

∫ b

a

∫ b

a
α(x)

(
N∑
j=0

φj(y)−
N∑
j=0

φj(x))(φi(y)− φi(x))

|x− y|1+γ dydx

, (3.23)
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Before proceeding further, a simple manipulation is necessary

(
N∑
j=0

φj(y)−
N∑
j=0

φj(x))(φi(y)− φi(x))

= (φ0(y)− φ0(x) + φ1(y)− φ1(x)

+ ...+ φN(y)− φN(x))(φi(y)− φi(x))

= (φ0(y)− φ0(x))(φi(y)− φi(x))

+ (φ1(y)− φ1(x))(φi(y)− φi(x))

+ ...+ (φN(y)− φN(x))(φi(y)− φi(x))

=
N∑
j=0

(φj(y)− φj(x))(φi(y)− φi(x))

, (3.24)

finally, we remark that

a(u, v)

=
N∑
j=0

∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))(φi(y)− φi(x))

|x− y|1+γ dydxuj.

(3.25)

After this sequence of works, we can derive out the following finite element for-

mulation

N∑
j=0

a(φi, φj)uj = l(φi), (3.26)

since we have u0 = ua and uN = ub on the boundary, the above formulation is

equivalent to

N−1∑
j=a

a(φi, φj)uj = l(φi)− a(φi, φ0)ua − a(φi, φN)ub, (3.27)

for i = 1, ..., N − 1.
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Now we get the matrix form of the equations system,

A~u = ~b (3.28)

where ~u is the numerical solution of u(x), ~u = (u1, u2, ..., uN−1)T ,~b = (b1, b2, ..., bN−1),

bi = l(φi)− a(φi, φ0)ua − a(φi, φN)ub, (3.29)

and A is the stiffness matrix, which can be expressed as

A =



A11 A12 A13 . . . A1N−1

A21 A22 A23

A31 A32 A33
...

. . .
. . .

AN−11 AN−12 AN−13 . . . AN−1N−1


, (3.30)

for each entry, we have

Aij =
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))(φi(y)− φi(x))

|x− y|1+γ dydx

= a(φi, φj).

(3.31)

Up to now, we have gotten the general numerical scheme of the entries of stiffness

matrix and right-hand terms, which can be used in standard numerical solver to find

out the numerical solutions.

There are many previous studies that focus on the error estimates and computa-

tional difficulties. Since non-local peridynamic models always lead to a full stiffness

matrix, when we are going to consider a problem with high partition density or high

dimension, the cost of memory and computation will become very expensive. That

is also our motivation of us to discover the structure of the stiffness matrix and use

it to perform the fast method. We shall do some computation and then make some

manipulation about the stiffness matrix, then try to introduce the fast method of
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this one dimensional variable coefficient non-local peridynamic model in the follow-

ing sections.

3.3 A second look about the entries of the stiffness matrix

By using the expression of Aij we derived before, we shall have

Aij =
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))(φi(y)− φi(x))

|x− y|1+γ dydx (3.32)

=
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(y)

|x− y|1+γ dydx (3.33)

−
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(x)

|x− y|1+γ dydx, (3.34)

in order to find the structure of Aij with less computational works, we consider

(3.34) first,

−
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(x)

|x− y|1+γ dydx

= −
∫ b

a

∫ b

a
α(y)(φj(x)− φj(y))φi(y)

|y − x|1+γ dxdy

=
∫ b

a

∫ b

a
α(y)(φj(y)− φj(x))φi(y)

|x− y|1+γ dxdy,

=
∫ b

a

∫ b

a
α(y)(φj(y)− φj(x))φi(y)

|x− y|1+γ dydx

(3.35)

here we interchanged x and y, and then switched the order of integration. Now

it is obvious that (3.34) and (3.33) have a similar structure, so we shall only discuss

(3.33) later.

First, we switch the order of integration of (3.33)
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∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(y)

|x− y|1+γ dydx

=
∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(y)

|x− y|1+γ dxdy,

(3.36)

then,

∫ b

a

∫ b

a
α(x)(φj(y)− φj(x))φi(y)

|x− y|1+γ dxdy

=
∫ b

a
φi(y)

∫ b

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy,

(3.37)

since when x is on the interval [a, xi−1] ∪ [xi+1, b], φi(x) = 0,

∫ b

a
φi(y)

∫ b

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)

∫ b

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy,

(3.38)

While on different subintervals of the whole field [a− ε, b+ ε], α(x) and {φi(x)}Ni=0

have different values and expressions, we write (3.33) as

∫ xi+1

xi−1
φi(y)

∫ b

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy (3.39)

=
∫ xi+1

xi−1
φi(y)

∫ xj−1

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy (3.40)

+
∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy (3.41)

+
∫ xi+1

xi−1
φi(y)

∫ b

xj+1
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy. (3.42)

Because the stiffness matrix is symmetric, we only need to consider the up trian-

gular matrix. And in order to explain the structure clearly, we shall discuss (3.39) in

three cases. For each entry, we discuss j ≥ i+ 2, j = i+ 1, and j = i one by one.

By definition, φj(x) = 0 and φj(y) = 0 when j ≥ i+ 2, which means
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∫ xi+1

xi−1
φi(y)

∫ xj−1

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)

∫ b

xj+1
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy

= 0.

(3.43)

Then we have, for j ≥ i+ 2 and x ∈ [xi−1, xi+1], φj(x) = 0

∫ xi+1

xi−1
φi(y)

∫ b

a
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x)(φj(y)− φj(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy,

(3.44)

next, we are going to show that the value of (3.41) only depends on the value of

α(x) and the value of |i− j|.

For one more step, we write (3.44) as

∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy (3.45)

=
∫ xi

xi−1
φi(y)

∫ xj

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy (3.46)

+
∫ xi

xi−1
φi(y)

∫ xj+1

xj
α(x) (−φj(x))

|x− y|1+γ dxdy (3.47)

+
∫ xi+1

xi
φi(y)

∫ j

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy (3.48)

+
∫ xi+1

xi
φi(y)

∫ j+1

xj
α(x) (−φj(x))

|x− y|1+γ dxdy. (3.49)

Since (3.46), (3.47), (3.48) and (3.49) have similar structure, it suffices to prove

that the value of (3.46) only depends on the value of α(x) and the value of |i− j|.
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Let us assume initially α(x) can be approximated by a piece-wise defined func-

tion(2.11),

We proceed to prove this, by assumption before

∫ xi

xi−1
φi(y)

∫ xj

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

= α(xj−1 + h

2 )
∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy

, (3.50)

then we set x = xj + s, and y = xi + t where s ∈ [−h, 0] and t ∈ [−h, 0], so

we shall have dx = ds, dy = dt, furthermore, let us recall the definition of the hat

function ψ(ξ) = 1− |ξ|, where

φi(x) = ψ(x− xi
h

)

.

Now we have

φj(x) = ψ(x− xj
h

)

= ψ(xj − xj + s

h
)

= ψ( s
h

)

= 1− | s
h
|,

(3.51)

similarly,
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φi(y) = ψ(y − xi
h

)

= ψ(xi − xi + t

h
)

= ψ( t
h

)

= 1− | t
h
|,

(3.52)

moreover,

|x− y|1+γ = |(j − i)h+ t− s|1+γ,

it follows that

α(xj−1 + h

2 )
∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy

= α(xj−1 + h

2 )
∫ 0

−h

∫ 0

−h

−(1− | s
h
|)(1− | t

h
|)

|(j − i)h+ t− s|1+γ dsdt,

(3.53)

then we can conclude that, the value of (3.46) only depends on the value of α(x)

and the value of |i− j|, the remainder of (3.41) is analogous to that which is shown

in before.

3.4 Analysis of the structure of the stiffness matrix

We first classified the entries of the stiffness matrix to three cases in the previous

section, and discussed the case when j ≥ i+2. We derived out the expression of each

entry, and separated it to two parts. Since two of them are similar, we focus on the

first part, which is (3.33) only involved one term for the case j ≥ i + 1. The other

two cases are much more complicated, so we shall discuss them later.

According to this kind of classification, the stiffness matrix can be written as the

sum of two matrices
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A = A(tr) + T, (3.54)

where Atr contains the two complicated cases, which is combined with diagonal

and sub-diagonal entries. T is actually the case we discussed before.

Obviously T is also symmetric, the diagonal and sub-diagonal entries of T are all

0s. The other entries of the up-triangular part is defined as (3.41).

under the assumption that α(x) could be approximated by the piece-wise defined

function
N∑
k=0

α(xk + h
2 )Λx∈[xk,xk+1](x), after manipulating them we can get

∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

=
∫ xi

xi−1
φi(y)

∫ xj

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ j

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

+
∫ xi

xi−1
φi(y)

∫ xj+1

xj
α(x) (−φj(x))

|x− y|1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ j+1

xj
α(x) (−φj(x))

|x− y|1+γ dxdy,

(3.55)

then we factor out α(x) from the above expression,

∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

= α(xj−1 + h

2 )(
∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ j

xj−1

(−φj(x))
|x− y|1+γ dxdy)

+ α(xj + h

2 )(
∫ xi

xi−1
φi(y)

∫ xj+1

xj

(−φj(x))
|x− y|1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ j+1

xj

(−φj(x))
|x− y|1+γ dxdy),

(3.56)
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and because another term of (3.32), mean (3.34) could similarly be written as

∫ xi+1

xi−1
φi(y)

∫ xj+1

xj−1
α(x) (−φj(x))

|x− y|1+γ dxdy

= α(xi−1 + h

2 )(
∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy

+
∫ xi

xi−1
φi(y)

∫ xj+1

xj

(−φj(x))
|x− y|1+γ dxdy)

+ α(xi + h

2 )(
∫ xi+1

xi
φi(y)

∫ j

xj−1

(−φj(x))
|x− y|1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ j+1

xj

(−φj(x))
|x− y|1+γ dxdy).

(3.57)

Finally, we can say that the matrix T could be written as a sum of four matrices

T = T (a) + T (b) + T (c) + T (d), (3.58)

furthermore, we have

T (a) = T (1)A(1)

T (b) = T (2)A(2)

T (c) = A(3)T (3)

T (d) = A(4)T (4),

(3.59)

whereA(1), A(2), A(3), A(4) are diagonal matrices, and T (1), T (2), T (3), T (4) are Toeplitz

matrices.

Finally, we conclude that the stiffness matrix A can be written as the following

A = A(tr) + T (1)A(1) + T (2)A(2) + A(3)T (3) + A(4)T (4), (3.60)

Atr is a tridiagonal matrix with all tridiagonal entries of A.
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3.5 Computation and Storage about entries of the Stiffness Matrix

According to the results we got from the previous section, we can conclude that the

matrices {A(p)}4
p=1 have the following structure

A(p) =



A
(p)
11 0 0 . . . 0

0 A
(p)
22 0

0 0 A
(p)
33

...

. . .
. . .

0 0 0 . . . A
(p)
N−1N−1


, (3.61)

where for A1, A2

A
(p)
jj =


α(xj + h

2 ) p = 1

α(xj−1 + h

2 ) p = 2

, (3.62)

and for A3, A4

A
(p)
ii =


α(xi + h

2 ) p = 3

α(xi−1 + h

2 ) p = 4

. (3.63)

The structure and entries of {T (p)}4
p=1 also can be observed,

T (p) =



0 0 T
(p)
13 . . . T

(p)
1N−1

0 0 0

T
(p)
31 0 0 ...

. . .
. . .

T
(p)
N−11 T

(p)
N−12 T

(p)
N−13 . . . 0


, (3.64)

and for different p, T (p)
ij can be written as

64



T
(1)
ij = (

∫ xi

xi−1
φi(y)

∫ xj+1

xj

(−φj(x))
|x− y|1+γ dxdy (3.65)

+
∫ xi+1

xi
φi(y)

∫ j+1

xj

(−φj(x))
|x− y|1+γ dxdy) (3.66)

T
(2)
ij = (

∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy (3.67)

+
∫ xi+1

xi
φi(y)

∫ j

xj−1

(−φj(x))
|x− y|1+γ dxdy) (3.68)

T
(3)
ij = (

∫ xi+1

xi
φi(y)

∫ j

xj−1

(−φj(x))
|x− y|1+γ dxdy (3.69)

+
∫ xi+1

xi
φi(y)

∫ j+1

xj

(−φj(x))
|x− y|1+γ dxdy) (3.70)

T
(4)
ij = (

∫ xi

xi−1
φi(y)

∫ xj

xj−1

(−φj(x))
|x− y|1+γ dxdy (3.71)

+
∫ xi

xi−1
φi(y)

∫ xj+1

xj

(−φj(x))
|x− y|1+γ dxdy), (3.72)

since {T (p)}4
p=1 are N − 1 by N − 1 symmetric matrices, and by the proof from

previous section, they are Toeplitz. Therefore, we only need to find out the values of

T
(p)
13 , T (p)

14 , ..., T (p)
1N−1.

Next we are going to focus on the other two cases we have mentioned before,

which are the tridiagonal entries of A and A(tr).

Since A(tr) is a symmetric tridiagonal matrix, we can write it as the following

A(tr) =



A
(tr)
11 A

(tr)
12 0 . . . 0

A
(tr)
21 A

(tr)
22 A

(tr)
23

0 A
(tr)
32 A

(tr)
33

...

. . .
. . .

0 0 A
(tr)
N−1N−2 . . . A

(tr)
N−1N−1


, (3.73)
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and only consider the cases j = i+ 1 and j = i.

Let us start from the case j = i+ 1, recalling the first term of (3.32), we have

∫ b

a

∫ b

a
α(x)(φi+1(y)− φi+1(x))φi(y)

|x− y|1+γ dydx (3.74)

=
∫ b

a

∫ b

a
α(x)(φi+1(y)− φi+1(x))φi(y)

|x− y|1+γ dxdy (3.75)

=
∫ xi+1

xi−1
φi(y)

∫ xi

a
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy (3.76)

+
∫ xi+1

xi−1
φi(y)

∫ xi+2

xi
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy (3.77)

+
∫ xi+1

xi−1
φi(y)

∫ b

xi+2
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy, (3.78)

in our previous discussion, we know that when j ≥ i + 2, the terms (3.76) and

(3.78) are 0.

But in this case, for (3.76), we shall find that

x ∈ [a, xi], φi+1(x) = 0;

y ∈ [xi−1, xi+1], φi(y) 6= 0;

y ∈ [xi, xi+1], φi+1(y) 6= 0.

(3.79)

Again, we assume the α(x) could be approximated by a piece-wise defined function

α(x) =
N∑
k=0

α(xk + h

2 )Λx∈[xk,xk+1](x), (3.80)

the term (3.76) could be expressed as
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∫ xi+1

xi−1
φi(y)

∫ xi

a
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)φi+1(y)

∫ xi

a

(α(x)
(y − x)1+γ dxdy

=
i−1∑
k=0

∫ xi+1

xi−1
φi(y)φi+1(y)

∫ xk+1

xk

(α(xk + h
2 )

(y − x)1+γ dxdy

=
i−1∑
k=0

(α(xk + h

2 )
∫ xi+1

xi−1
φi(y)φi+1(y)

∫ xk+1

xk

1
(y − x)1+γ dxdy

=
i−1∑
k=0

(α(xk + h

2 )
∫ xi+1

xi−1
(xi+1 − y

h
)(y − xi

h
)
∫ xk+1

xk

1
(y − x)1+γ dxdy.

(3.81)

We then discuss the second term (3.77)

∫ xi+1

xi−1
φi(y)

∫ xi+2

xi
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy

=
∫ xi+1

xi−1
φi(y)

∫ xi+1

xi
α(xi + h

2 )(φi+1(y)− φi+1(x))
|x− y|1+γ dxdy

+
∫ xi+1

xi−1
φi(y)

∫ xi+2

xi+1
α(xi+1 + h

2 )(φi+1(y)− φi+1(x))
|x− y|1+γ dxdy

= α(xi + h

2 )(
∫ xi

xi−1

y − xi−1

h

∫ xi+1

xi

−x−xi
h

(x− y)1+γ dxdy

+
∫ xi+1

xi

xi+1 − y
h

∫ y

xi

y−xi
h
− x−xi

h

(y − x)1+γ dxdy

+
∫ xi+1

xi

xi+1 − y
h

∫ xi+1

y

y−xi
h
− x−xi

h

(x− y)1+γ dxdy)

+ α(xi+1 + h

2 )(
∫ xi+1

xi

xi+1 − y
h

∫ xi+2

xi+1

y−xi
h
− xi+2−x

h

(y − x)1+γ dxdy

+
∫ xi

xi−1

y − xi−1

h

∫ xi+2

xi+1

−xi+2−x
h

(x− y)1+γ dxdy),

(3.82)

now the remainder works are computing each part of the above expression.
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For the last term (3.78), the following should be true

x ∈ [xi+2, b], φi+1(x) = 0;

y ∈ [xi−1,xi ], φi+1(y) = 0.
(3.83)

we consider the piece-wise defined approximation of α(x), which is defined by

(2.11), the term (3.78) can be written as

∫ xi+1

xi−1
φi(y)

∫ b

xi+2
α(x)(φi+1(y)− φi+1(x))

|x− y|1+γ dxdy

=
∫ xi−1

xi
φi(y)φi+1(y)

∫ b

xi+2

α(x)
(x− y)1+γ dxdy

=
N−1∑
k=i+2

α(xk + h

2 )
∫ xi−1

xi
(xi+1 − y

h
)(y − xi

h
)
∫ xk+1

xk

1
(x− y)1+γ dxdy.

(3.84)

Here we discussed all terms of the case when j = i + 1. We are now going to

consider the last case, where j = i.

We consider it in different intervals

∫ b

a

∫ b

a
α(x)(φi(y)− φi(x))φi(y)

|x− y|1+γ dydx (3.85)

=
∫ b

a

∫ b

a
α(x)(φi(y)− φi(x))φi(y)

|x− y|1+γ dxdy (3.86)

=
∫ xi+1

xi−1
φi(y)

∫ xi−1

a
α(x)(φi(y)− φi(x))

(y − x)1+γ dxdy (3.87)

+
∫ xi+1

xi−1
φi(y)

∫ xi+1

xi−1
α(x)(φi(y)− φi(x))

|x− y|1+γ dxdy (3.88)

+
∫ xi+1

xi−1
φi(y)

∫ b

xi+1
α(x)(φi(y)− φi(x))

(x− y)1+γ dxdy. (3.89)

For (3.87), we see
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x ∈ [a, xi−1], φi(x) = 0;

y ∈ [xi−1, xi+1], φi(y) 6= 0.
(3.90)

We first shall have the following derivation

∫ xi+1

xi−1
φi(y)

∫ xi−1

a
α(x)(φi(y)− φi(x))

(y − x)1+γ dxdy

=
∫ xi

xi−1
(y − xi−1

h
)2
∫ xi−1

a

α(x)
(y − x)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)2
∫ xi−1

a

α(x)
(y − x)1+γ dxdy,

(3.91)

then under the assumption that

α(x) =
N∑
k=0

α(xk + h

2 )Λx∈[xk,xk+1](x),

the term (3.87) could be written as

∫ xi+1

xi−1
φi(y)

∫ xi−1

a
α(x)(φi(y)− φi(x))

(y − x)1+γ dxdy

=
i−2∑
k=0

α(xk + h

2 )(
∫ xi

xi−1
(y − xi−1

h
)2
∫ xk+1

xk

1
(y − x)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)2
∫ xk+1

xk

1
(y − x)1+γ dxdy),

(3.92)

the second term of (3.85) should be a little bit complicated, since x and y sit in

the same interval. The following holds

x ∈ [xi−1, xi+1], φi(x) 6= 0;

y ∈ [xi−1, xi+1], φi(y) 6= 0.
(3.93)

And because x and y shall meet at some point, we need to discuss it in six cases
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∫ xi+1

xi−1
φi(y)

∫ xi+1

xi−1
α(x)(φi(y)− φi(x))

|x− y|1+γ dxdy

=
∫ xi

xi−1
φi(y)

∫ y

xi−1
α(xi−1 + h

2 )(φi(y)− φi(x))
(y − x)1+γ dxdy

+
∫ xi

xi−1
φi(y)

∫ xi

y
α(xi−1 + h

2 )(φi(y)− φi(x))
(x− y)1+γ dxdy

+
∫ xi

xi−1
φi(y)

∫ xi+1

xi
α(xi + h

2 )(φi(y)− φi(x))
(x− y)1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ xi

xi−1
α(xi−1 + h

2 )(φi(y)− φi(x))
(y − x)1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ y

xi
α(xi + h

2 )(φi(y)− φi(x))
(y − x)1+γ dxdy

+
∫ xi+1

xi
φi(y)

∫ xi+1

y
α(xi + h

2 )(φi(y)− φi(x))
(x− y)1+γ dxdy,

(3.94)

after manipulation we can get

∫ xi+1

xi−1
φi(y)

∫ xi+1

xi−1
α(x)(φi(y)− φi(x))

|x− y|1+γ dxdy

= α(xi−1 + h

2 )(
∫ xi

xi−1
(y − xi−1

h
)
∫ y

xi−1

((y−xi−1
h

)− (x−xi−1
h

))
(y − x)1+γ dxdy

+
∫ xi

xi−1
(y − xi−1

h
)
∫ xi

y

((y−xi−1
h

)− (x−xi−1
h

))
(x− y)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)
∫ xi

xi−1

((xi+1−y
h

)− (x−xi−1
h

))
(y − x)1+γ dxdy)

+ α(xi + h

2 )(
∫ xi

xi−1
(y − xi−1

h
)
∫ xi+1

xi

((y−xi−1
h

)− (xi+1−x
h

))
(x− y)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)
∫ y

xi

((xi+1−y
h

)− (xi+1−x
h

))
(y − x)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)
∫ xi+1

y

((xi+1−y
h

)− (xi+1−x
h

))
(x− y)1+γ dxdy),

(3.95)
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Here we find that there are many terms in case two, since we are trying to figure

out the integration involving absolute value, and later we shall use several subfunction

to simplify our coding.

The last term that needs to be discussed is (3.89), where

x ∈ [xi+1, b], φi(x) = 0;

y ∈ [xi−1, xi+1], φi(y) 6= 0.
(3.96)

And write (3.89) as

∫ xi+1

xi−1
φi(y)

∫ b

xi+1
α(x)(φi(y)− φi(x))

(x− y)1+γ dxdy

=
∫ xi

xi−1
(y − xi−1

h
)2
∫ b

xi+1

α(x)
(x− y)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)2
∫ b

xi+1

α(x)
(x− y)1+γ dxdy,

(3.97)

with the assumption of α(x), we now derive the following expression

∫ xi+1

xi−1
φi(y)

∫ b

xi+1
α(x)(φi(y)− φi(x))

(y − x)1+γ dxdy

=
N−1∑
k=i+1

α(xk + h

2 )(
∫ xi

xi−1
(y − xi−1

h
)2
∫ xk+1

xk

1
(y − x)1+γ dxdy

+
∫ xi+1

xi
(xi+1 − y

h
)2
∫ xk+1

xk

1
(y − x)1+γ dxdy),

(3.98)

we finally got all the entries of the stiffness matrix. We shall use Gaussion-

elimination and Conjugate Gradient Squared methods to find the numerical solution

of the model, and derive the fast numerical method in the next section.
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3.6 The fast method for one dimensional variable-coefficient peri-

dynamic model

In previous sections, we discussed the variational formulation, and derived out the

matrix equation of the variable coefficient non-local peridynamic model. We recall

that

A~u = ~b

,

where A could be written as the sum of the tridiagonal matrix A(tr) and a sym-

metric Toeplitz matrix T .

It is obvious that our variable coefficient non-local peridynamic model always leads

to a full stiffness matrix, so the computational cost shall be O(N3) and O(N2) storage

memory to be needed when processing a standard Gaussian elimination method. Even

by using a standard Conjugate Gradient Squared iteration method, O(N2) memory

space shall be needed to store the full stiffness matrix, and in each iteration, the

computational cost would be O(N2). Now we are going to introduce our fast method

with efficient storage.

Let us recall the Conjugate Gradient Squared iteration scheme (1.40). The most

computational cost is for the matrix vector multiplication, which is O(N2). So first,

we consider the stiffness matrix separately, say A(tr) + T .

Now for any matrix vector multiplication Ad, we can write it as

Ad = A(tr)d+ Td

,

since A(tr) is just a tridiagonal matrix, and furthermore it is a symmetric matrix,

we only need to store the entries of diagonal and subdiagonal. For an N×N matrix, it
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shall need 2N − 1 memory, which is O(N). And for the matrix vector multiplication,

we need 3N − 2 multiplications and 3N − 5 additions, which is O(N).

Here we come to the second term Td, by previous discussion, we know that A is

symmetric, so T is symmetric. Then we write T as a sum of an up-triangular matrix

T up and its transpose T low

T = T (up) + T (low)

,

as we mentioned before, T (up) and T (low) could both be written as a sum of four

matrices. Since T (low) = T (upT ), we consider the up-triangular matrix,

T (up) = T (aup) + T (bup) + T (cup) + T (dup)

,

where

T (aup) = T (1up)A(1)

T (bup) = T (2up)A(2)

T (cup) = A(3)T (3up)

T (dup) = A(4)T (4up),

(3.99)

and here T (1up), T (2up), T (3up), T (4up) involving the upper-triangular entries of

corresponding Toeplitz matrix T (1), T (2), T (3), T (4). And then T (low) can be written

as

T (low) = (T (aup) + T (bup) + T (cup) + T (dup))(T )

,
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in one more step, we can see

T (low) = A(1)T (1upT ) + A(2)T (2upT ) + T (3upT )A(3) + T (4upT )A(4)

.

To consider with our model, since in our model the entries of A are values of the

piecewise defined coefficient function α(x), A(1) = A(3), and A(2) = A(4). We can have

T = T (1up)A(1) + T (2up)A(2) + A(3)T (3up) + A(4)T (4up)

+ A(1)T (1upT ) + A(2)T (2upT ) + T (3upT )A(3) + T (4upT )A(4)

= T (1up)A(1) + T (2up)A(2) + A(1)T (3up) + A(2)T (4up)

+ A(1)T (1upT ) + A(2)T (2upT ) + T (3upT )A(1) + T (4upT )A(2)

= (T (1up) + T (3upT ))A(1) + (T (2up) + T (4upT ))A(2)

+ A(1)(T (3up) + T (1upT )) + A(2)(T (4up) + T (2upT )),

(3.100)

here we see that the multiplications of any {A(i)}i and any matrix, the compu-

tational cost is O(N). And since {T (iup)}i are upper-triangular Toeplitz matrices,

{T (iupT )}i are lower-triangular Toeplitz matrices. the sum of these two types of ma-

trices should be a full Toeplitz matrix.

Then the matrix-vector multiplication Td can be written as

Td = ((T (1up) + T (3upT ))A(1) + (T (2up) + T (4upT ))A(2)

+ A(1)(T (3up) + T (1upT )) + A(2)(T (4up) + T (2upT )))d

= (T (1up) + T (3upT ))A(1)d+ (T (2up) + T (4upT ))A(2)d

+ A(1)(T (3up) + T (1upT ))d+ A(2)(T (4up) + T (2upT ))d,

(3.101)
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because A(1) and A(2) are diagonal matrices, A(1)(T (3up)+T (1upT )) and A(2)(T (4up)+

T (2upT )) are also Toeplitz matrices. So, we can implement the fast matrix-vector

multiplication to each part of the above expression.

Without loss of generality, we consider the first one of the four multiplications.

Here we write the Toeplitz matrix (T (1up) + T (3upT ))A1(1) as T (0). Where

T (0) =



0 0 T
(0)
13 . . . T

(0)
1N−1

0 0 0

T
(0)
31 0 0 ...

. . .
. . .

T
(0)
N−11 T

(0)
N−12 T

(0)
N−13 . . . 0


, (3.102)

in order to show the fast matrix-vector multiplication clearly, we denote qj−i =

T
(0)
ij , and the sub-indices could be replaced be one group of numbers. Then we shall

embed the N − 1×N − 1 Toeplitz matrix T 0 into an 2(N − 1)× 2(N − 1) circulant

matrix C as follows

C :=

To B

B To

 B :=



0 q2−N . . . 0 0

qN−2 0 q2−N . . . 0
... qN−2 0 . . . ...

0 ... . . . . . . q2−N

0 0 . . . qN−2 0


. (3.103)

For the N dimensional vector d, we embed it into a 2N − 1 dimensional vector w,

where

w :=

d
0

 . (3.104)

And by previous studies, we know that the 2(N − 1)× 2(N − 1) circulant matrix

C has the following decomposition

C = F−1diag(Fc)F, (3.105)
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we observe that Td should be the first 2N − 1 entries of Cw.

Since F is the 2(N − 1) × 2(N − 1) discrete Fourier transform matrix, and c

is the first column of C, we can conclude that Fc and Fw can be figured out in

O(2Nlog2N) operations by applying the Fast Fourier Transform (FFT). Then for our

numerical scheme, the matrix-vector multiplication Td can be evaluated in O(NlogN)

operations.

Then by considering the previous discussion about the tri-diagonal matrix A(tr),

we shall conclude that by using our fast matrix-vector multiplication, Ad can be

carried out by O(NlogN) operations. So, if we implement our fast method to the

Conjugate Gradient Squared method, the computational cost should be O(NlogN)

per iteration.

3.7 Efficient evaluation and storage of the stiffness matrix

By previous discussion, we can see that the numerical scheme for the variable coeffi-

cient peridynamic model shall generate a 2N − 1× 2N − 1 full stiffness matrix, and

since the standard situation of all the entries are different, then we need to store the

(2N − 1)2 entries separately.

But after we write the stiffness matrix A as the sum of A(tr) and T , we can simply

store the 3N −5 entries of A(tr). And for each part of T we only need to store 2N −6

entries, since they are Toeplitz matrices with zeros on tri-diagonal entries.

Here we accurately stored the stiffness matrix without a loss of compression.

The next job is to discuss the computational cost of evaluating the stiffness matrix

A. We still consider it as two parts, A(tr) and T .

For the matrix T , as we did before, it has been considered as a sum of four parts,

and the Toeplitz matrix of each part just consists of entries we already evaluated.

The cost of the product of a diagonal matrix and a Toeplitz matrix is only O(N),

which is about
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(T (1up) + T (3upT ))A(1),

and

(T (2up) + T (4upT ))A(2).

Then we are going to consider the tri-diagonal matrix A(tr). Since A is symmetric,

we only focus on the upper-diagonal and diagonal entries.

For upper-diagonal entries, let us recall the expression (3.74), which consists three

terms (3.76), (3.77) and (3.78). After we rewrite (3.76) and (3.78) as sums in terms

of α(xk + h
2 ), it can be found that each entry of the upper-diagonal need at least

O(N) operations to be calculated, and for all the N − 2 entries, the computational

cost should be O(N2).

And recalling the expression (3.85), which is about the diagonal entries, we can

say the same is true for one type of expression of diagonal entries. The computational

cost of evaluating diagonal entries would also be O(N2).

So we say it is necessary to accelerate the computational work of evaluating diag-

onal and sub-diagonal entries of the stiffness matrix.

In order to derive out the fast method of evaluating the entries of tri-diagonal,

we first consider the upper-diagonal entries. Without loss of generality, we recall the

expression (3.74), and simply write aii+1 as following

∫ b

a

∫ b

a
α(x)(φi+1(y)− φi+1(x))φi(y)

|x− y|1+γ dydx (3.106)

=
∫ b

a

∫ b

a
α(x)(φi+1(y)− φi+1(x))φi(y)

|x− y|1+γ dxdy (3.107)

=
N−1∑
k=0

(α(xk + h

2 )
∫ xi+1

xi−1
φi(y)

∫ xk+1

xk

(φi+1(y)− φi+1(x))
|y − x|1+γ dxdy, (3.108)
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since i = 1, ..., N − 2, we can write all the entries of upper-diagonal as a vector

au, where au ∈ RN−2, and it is a product of an N − 2 × N matrix Au and a vector

α ∈ RN .

Furthermore, the entries A(u)
ik can be expressed as

A
(u)
ik =

∫ xi+1

xi−1
φi(y)

∫ xk+1

xk

(φi+1(y)− φi+1(x))
|y − x|1+γ dxdy, (3.109)

for k = i and k = i+1, which is corresponding to the term (3.77), we consider them

as the diagonal and upper-diagonal entries of A(u), and after some simple operations

we can see A(u) has the Toeplitz structure.

In a general case, then we set x = xk + s, and y = xi + t where s ∈ [0, h] and

t ∈ [−h, h], so we shall have dx = ds, dy = dt, further more, let us recall the definition

of the hat function ψ(ξ) = 1− |ξ|, where

φi(x) = ψ(x− xi
h

),

then (3.109) is equivalent to

A
(u)
ik =

∫ h

−h
ψ(xi + t− xi

h
)
∫ h

0

ψ(xi+t−xi+1
h

)− ψ(xk+t−xi+1
h

)
|xi − xk + t− s|1+γ

=
∫ h

−h
ψ( t
h

)
∫ h

0

ψ( t−h
h

)− ψ( t−(k−i−1)h
h

)
|(i− k)h+ t− s|1+γ ,

(3.110)

from the above expression, we can easily conclude that A(u)
ik only depends on the

value of i− k, which means the A(u) is a Toeplitz matrix.

Since we are going to implement the fast matrix-vector multiplication, we first

expend the N − 2×N matrix A(u) to an N ×N matrix. Here we just need to attach

two rows to the bottom of Au, which with the entries do not change the Toeplitz

structure of A(u).

78



Here we can embed the N × N Toeplitz matrix A(u) into an 2N × 2N circulant

matrix C(u) as follows

C(u) :=

A(u) B(u)

B(u) A(u)

 B(u) :=



0 q2−N . . . 0 0

qN−2 0 q2−N . . . 0
... qN−2 0 . . . ...

0 ... . . . . . . q2−N

0 0 . . . qN−2 0


, (3.111)

we use the amended notation of qj−i in above matrix, which is qj−i = Auij.

Then use the decomposition of 2N × 2N circulant matrix

C(u) = F−1diag(Fc(u))F, (3.112)

where c(u) is the first column of C(u).

The N dimensional vector then need to be embedded into a 2N dimensional

vector, which has zeros on the N + 1 to 2N entries. And the first N −2 entries of the

product of the 2N × 2N matrix and the 2N dimensional vector is the upper-diagonal

we are seeking.

As we discussed before, the computational cost of evaluating the sub-diagonal

entries of A can be reduced to O(NlogN).

For the diagonal entries, we recall its expression (3.85), and rewrite aii as

∫ b

a

∫ b

a
α(x)(φi(y)− φi(x))φi(y)

|x− y|1+γ dydx (3.113)

=
∫ b

a

∫ b

a
α(x)(φi(y)− φi(x))φi(y)

|x− y|1+γ dxdy (3.114)

=
N−1∑
k=0

(α(xk + h

2 )
∫ xi+1

xi−1
φi(y)

∫ xk+1

xk

(φi(y)− φi(x))
|y − x|1+γ dxdy, (3.115)

with a similar discussion, we can write all the entries of diagonal as a vector a(d),

where a(d) ∈ RN−1, and it is a product of an N − 1 × N matrix A(u) and a vector

α ∈ RN .
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Where A(d)
ik can be written as

A
(d)
ik =

∫ xi+1

xi−1
φi(y)

∫ xk+1

xk

(φi(y)− φi(x))
|y − x|1+γ dxdy

=
∫ h

−h
ψ(xi + t− xi

h
)
∫ h

0

ψ(xi+t−xi+1
h

)− ψ(xk+t−xi
h

)
|xi − xk + t− s|1+γ

=
∫ h

−h
ψ( t
h

)
∫ h

0

ψ( t−h
h

)− ψ( t−(i−k)h
h

)
|(i− k)h+ t− s|1+γ ,

(3.116)

then we come to the same conclusion, A(d)
ik only depends on the value of i− k, so

A(d) has the Toeplitz structure.

Here we just repeat the works we did for upper-diagonal entries of A, and we

can get all the diagonal entries of A with O(NlogN) operations without any loss of

compression.

3.8 Numerical experiments

In this section, we shall use sequence of numerical experiments to show the priorities

of our fast method. Here we use Gaussian elimination, conjugate gradient squared

(CGS) method, and fast conjugate gradient squared(FCGS) method to generate Mat-

lab codes, and ran them in a 16GB-ROM laptop.

In our numerical experiments, we set the spatial domain (a, b) = (0, 1), and the

real solution u(x) = (1−x)2(1 +x)2, with the variable coefficient α(x) = 1−x2. And

the analytic expression of right-hand side term b(x) could be found out in each point

xi. We shall use different γ in the kernel function σ(x, y) = 1
|x−y|1+γ to show that for

our simplified model, the effect of γ on convergence rate and speed has been limited.

Example 1. We set γ = 1/10, and let N be from 26 to 212. We shown the

numerical solution in Table 1.

Example 2. We set γ = −1/2, and let N be from 26 to 212. We shown the

numerical solution in Table 2.
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Table 3.1: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 1/10

h ||eh||L2 # of Iter. CPu Time

2−6 2.28624498e− 03 − 0.40s

2−7 8.88216468e− 04 − 1.51s

2−8 3.31472991e− 04 − 6.02s

Gauss 2−9 1.20887038e− 04 − 23.79s

2−10 4.34995144e− 05 − 103.08s

2−11 1.55277259e− 05 − 499.92s

2−12 5.41799011e− 06 − 2495.76s

2−6 2.28624498e− 03 31 0.38s

2−7 8.88216468e− 04 47 1.49s

2−8 3.31472991e− 04 62 5.81s

CGS 2−9 1.20887038e− 04 78 22.66s

2−10 4.34995144e− 05 94 91.39s

2−11 1.55277259e− 05 110 364.27s

2−12 5.41799011e− 06 125 1457.31s

2−6 2.28624498e− 03 31 0.07s

2−7 8.88216468e− 04 47 0.12s

2−8 3.31472991e− 04 62 0.25s

FCGS 2−9 31.20887038e− 04 78 0.61s

2−10 4.34995154e− 05 94 1.60s

2−11 1.55277269e− 05 110 7.17s

2−12 5.41798742e− 06 125 42.65s
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Table 3.2: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = −1/2

h ||eh||L2 # of Iter. CPu Time

2−6 2.99603704e− 03 − 0.40s

2−7 1.13013076e− 03 − 1.51s

2−8 4.12885038e− 04 − 5.94s

Gauss 2−9 1.48412795e− 04 − 23.69s

2−10 5.29108864e− 05 − 101.36s

2−11 1.87798603e− 05 − 476.01s

2−12 6.67340814e− 06 − 2481.82s

2−6 2.99603704e− 03 30 0.35s

2−7 1.13013076e− 03 43 1.47s

2−8 4.12885038e− 04 51 5.75s

CGS 2−9 1.48412795e− 04 55 22.93s

2−10 5.29108864e− 05 59 90.11s

2−11 1.87798603e− 05 61 357.93s

2−12 6.67340814e− 06 63 1435.33s

2−6 2.99603704e− 03 30 0.08s

2−7 1.13013076e− 03 43 0.11s

2−8 4.12885038e− 04 51 0.22s

FCGS 2−9 1.48412795e− 04 55 0.53s

2−10 5.29108866e− 05 59 1.25s

2−11 1.87798605e− 05 61 6.35s

2−12 6.67340804e− 06 63 41.46s
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Example 3. We set γ = −3/4, and let N be from 26 to 212. We shown the

numerical solution in Table 3.

Table 3.3: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = −3/4

h ||eh||L2 # of Iter. CPu Time

2−6 3.13988161e− 03 − 0.38s

2−7 1.17614357e− 03 − 1.51s

2−8 4.28042187e− 04 − 5.83s

Gauss 2−9 1.53545358e− 04 − 23.82s

2−10 5.46819955e− 05 − 105.67s

2−11 1.94029476e− 05 − 473.42s

2−12 6.87573759e− 06 − 2494.09s

2−6 3.13988161e− 03 30 0.35s

2−7 1.17614357e− 03 40 1.50s

2−8 4.28042187e− 04 45 5.69s

CGS 2−9 1.53545358e− 04 49 22.71s

2−10 5.46819955e− 05 51 91.25s

2−11 1.94029476e− 05 52 361.35s

2−12 6.87573761e− 06 53 1504.99s

2−6 3.13988161e− 03 30 0.07s

2−7 1.17614357e− 03 40 0.11s

2−8 4.28042187e− 04 45 0.21s

FCGS 2−9 1.53545358e− 04 49 0.47s

2−10 5.46819955e− 05 51 1.22s

2−11 1.94029478e− 05 52 5.59s

2−12 6.87573728e− 06 53 41.39s

Example 4. We set γ = 1/2, and let N be from 26 to 212. We show the numerical
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solution in Table 4.

Table 3.4: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 1/2

h ||eh||L2 # of Iter. CPu Time

2−6 1.51193824e− 03 − 0.37s

2−7 5.91400260e− 04 − 1.52s

2−8 2.22326309e− 04 − 5.71s

Gauss 2−9 8.18392023e− 05 − 23.26s

2−10 2.97512041e− 05 − 102.87s

2−11 1.07314245e− 05 − 471.01s

2−12 3.85395494e− 06 − 2476.10s

2−6 1.51193824e− 03 30 0.35s

2−7 5.91400260e− 04 45 1.48s

2−8 2.22326309e− 04 66 5.58s

CGS 2−9 8.18392023e− 05 95 22.38s

2−10 2.97512040e− 05 130 90.39s

2−11 1.07314243e− 05 174 359.51s

2−12 3.85395526e− 06 225 1465.47s

2−6 1.51193824e− 03 30 0.06s

2−7 5.91400260e− 04 45 0.11s

2−8 2.22326309e− 04 66 0.24s

FCGS 2−9 8.18392020e− 05 95 0.65s

2−10 2.97512051e− 05 130 1.67s

2−11 1.07314248e− 05 174 8.16s

2−12 3.85395541e− 06 225 43.56s

Example 5. We set γ = 3/4, and let N be from 26 to 212. We show the numerical

solution in Table 5.
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Table 3.5: Convergence of the Gaussian elimination, the conjugate gradient
squared(CGS) method, and the fast conjugate gradient squared(FCGS) method.
γ = 3/4

h ||eh||L2 # of Iter. CPu Time

2−6 1.00901433e− 03 − 0.40s

2−7 3.88438683e− 04 − 1.50s

2−8 1.42639480e− 04 − 5.99s

Gauss 2−9 5.13222513e− 05 − 24.00s

2−10 1.83050672e− 05 − 102.04s

2−11 6.50495908e− 06 − 478.13s

2−12 2.31089586e− 06 − 2583.39s

2−6 1.00901433e− 03 31 0.39s

2−7 3.88438683e− 04 49 1.49s

2−8 1.42639480e− 04 75 5.69s

CGS 2−9 5.13222514e− 05 111 23.32s

2−10 1.83050673e− 05 154 93.23s

2−11 6.50495937e− 06 222 370.92s

2−12 2.31089598e− 06 329 1491.85s

2−6 1.00901433e− 03 29 0.08s

2−7 3.88438683e− 04 49 0.14s

2−8 1.42639480e− 04 71 0.27s

FCGS 2−9 5.13222518e− 05 111 0.86s

2−10 1.83050696e− 05 154 1.91s

2−11 6.50496581e− 06 221 8.38s

2−12 2.31089500e− 06 328 47.38s
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Here we conclude that, for variable-coefficient peridynamic models, we need to

consider the stiffness matrix as a sum of several Toeplitz matrices and diagonal ma-

trices. The fast Fourier transforms and matrix-vector multiplication will cost more

time for computational works than the constant-coefficient problems. Especially for

the problem we considered in this chapter, the diagonal entries need a long time to be

evaluated. By implementing our fast method, when the mesh size goes to 212 we only

need 42s, the CGS needs 24m17s, and normal Gaussian elimination takes 1h60m36s to

get the numerical solution, which has significantly improved computational efficiency

without loss of accuracy.
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Chapter 4

A Fast Collocation Method for a Two

Dimensional Variable-Coefficient Non-local

Diffusion Model

4.1 Introduction

In this chapter, we develop a fast numerical method for a two dimensional variable-

coefficient non-local diffusion model for describing a heterogeneous finite elastic bar.

We shall introduce the two dimensional variable-coefficient non-local diffusion model

in section 2, and develop the fast method in section 3. Finally, we will use numerical

experiments to show the computational superiority of our fast method[34, 39].

4.2 A variable-coefficient non-local diffusion model and its bi-linear

collocation discretization

In this section, we first introduce a two dimensional variable-coefficient non-local

diffusion model, and then derive the collocation scheme to search for a numerical

solution.

A variable-coefficient non-local diffusion model

The two dimensional variable-coefficient non-local diffusion model can be expressed

as
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∫
Bδ(x,y)

(α(x, y) + α(x′, y′))σ(x− x′, y − y′)

(u(x, y)− u(x′, y′))dx′dy′

= f(x, y), for (x, y) ∈ Ω

u(x, y) = g(x, y), for (x, y) ∈ ΩC .

(4.1)

Here we specify that

σ(x, y) = 1
|x2 + y2|1+s , (4.2)

where s shows the singularity of the kernel, and α(x, y) is the elasticity coefficient

which has positive lower and upper bounds[47].

Furthermore, we define Ω as a rectangular area, and δ > 0 as the horizon param-

eter of the material. We again see f(x, y) as the prescribed source term and u(x, y)

as the density of the diffusing material.

The neighborhood of the material around the area (x, y) can always be defined as

an open area by | · |p as following

Bδ(x, y) = {(x′, y′) ∈ Ω ∪ Ωc : |(x− x′, y − y′)|p < δ}, (4.3)

with

∣∣∣(x, y)
∣∣∣
p

=


(
|x|p + |y|p

)1/p
, 1 ≤ p < +∞,

max
{
|x|, |y|

}
, p = +∞.

In this paper, we consider Bδ(x, y) as an open disk with the radius δ and center

(x, y), which means p = 2.
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A collocation discretization of the two dimensional

variable-coefficient non-local diffusion model

To derive the collocation method, we set the rectangular area to be an open domain,

where Ω = (0, xR)× (0, yR)[2]. And marked that ∆x = xR/I and ∆y = yR/J , where

I and J are integers which tell the mesh density. Then we shall define a uniform

spatial partition xi = i∆x for i = 0, 1, ..., I and yj = j∆y for j = 0, 1, ..., J . In order

to complete the partition in the whole field Ω ∪ Ωc, it is necessary to extend (xi, yj)

for i = −K,−K + 1, ...,−1, 0, 1, ..., I + K and j = −L,−L + 1, ...,−1, 0, 1, ..., J + L

where K and L are the ceilings of δ/∆x and δ/∆y. We write them as

K = dδ/∆xe, L = dδ/∆ye.

Then we introduce ψ(ξ) = 1 − |ξ|, for ξ ∈ [−1, 1] and 0 otherwise. Now we can

define the two dimensional pyramid function φi,j(x, y) as

φi,j(x, y) = ψ(x− xi∆x )ψ(y − yi∆y ), 0 ≤ i ≤ I, 0 ≤ j ≤ J, (4.4)

and the trial function u should be

u(x, y) =
I∑
i=0

J∑
j=0

ui,jφi,j(x, y), (x, y) ∈ Ω. (4.5)

Since u(xi, yj) = g(xi, yj) when i = 0, I and j = 0, J , we carry out the governing

equation (4.1) at the collocation points (xi, yj) for i = 1, 2, ..., I−1 and j = 1, 2, ..., J−

1. And then we write the collocation formulation as follow
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∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))σ(xi − x′, yj − y′)

(u(xi, yj)− u(x′, y′))dx′dy′

= f(xi, yj)

1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(4.6)

Next, we substitute u(x′, y′) by the trial function, so we replace (i, j) by (i′, j′)

and (x, y) by (x′, y′) in (4.5). The collocation numerical scheme can be written as

∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))σ(xi − x′, yj − y′)

(u(xi, yj)−
I∑

i′=0

J∑
j′=0

ui′,j′φi′,j′(x′, y′))dx′dy′

= f(xi, yj)

1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(4.7)

After manipulations, we can have

u(xi, yj)
∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))

σ(xi − x′, yj − y′)(1− φi,j(x′, y′))dx′dy′

−
∑
i′ 6=i

∑
j′ 6=j

ui′,j′
∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

= f(xi, yj)

1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1.

(4.8)

For N = (I − 1)× (J − 1), we define N dimensional vectors
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u = [u1,1, u2,1, ...uI−1,1, u1,2, u2,2, ..., uI−1,2, ..., u1,J−1, u2,J−1, ..., uI−1,J−1]T ,

f = [f1,1, f2,1, ...fI−1,1, f1,2, f2,2, ..., fI−1,2, ..., f1,J−1, f2,J−1, ..., fI−1,J−1]T ,
(4.9)

furthermore, we defined the global indices m and n as

m = (j − 1)(I − 1) + i, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1,

n = (j′ − 1)(I − 1) + i′, 1 ≤ i′ ≤ I − 1, 1 ≤ j′ ≤ J − 1.
(4.10)

Obviously, m and n are related to (i, j) and (i′, j′),

then the matrix form of our collocation method can be expressed as

Au = f,

and the entries of N ×N stiffness matrix {A}Nm,n=1 should be defined by

Am,n =
∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))

σ(xi − x′, yj − y′)(δm,n − φi′,j′(x′, y′))dx′dy′,

(4.11)

δm,n is the characteristic function, such that δm,n = 1 for m = n or 0 otherwise,

and the entries of {f}Nm=1 could be written as

fm = f(xi, yj) +
∑
i′′=0,I

∑
j′′=0,J

∫
Bδ(xi,yj)

(α(xi, yj) + α(x′, y′))

σ(xi − x′, yj − y′)g(xi′′ , yj′′)φi′′,j′′(x′, y′))dx′dy′,

(4.12)

here the indices (i”,j”) do not only refer to the boundary spatial nodes of Ω,

but also the spatial nodes on Ωc, the supports of whose basis function φi′′,j′′ has an

non-empty intersection with the neighborhood Bδ(xi, yj) of the node (xi, yj).

In consideration of physical relevance, our fast method does not rely on the as-

sumption that the material property δ depends on the computational mesh size. Then
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the block structure stiffness matrix is almost a full matrix when the mesh size is small

enough. Moreover, unlike the constant coefficient problem, the stiffness matrix does

not have a clear Toeplitz structure. So we will discuss the structure of the stiffness

matrix, and go on to develop our fast method of the variable-coefficient problem.

4.3 Development of the fast collocation method

In this section, we shall start with the discussion about the entries of the stiffness A

from previous section, and then decompose the stiffness matrix based on its corre-

sponding structure. Finally, we shall show the fast method[3, 6].

The entries of the stiffness matrix

By previous discussion, we already found the expression of the entries of the stiffness

matrix A. We rewrite A by one step manipulation

Am,n = α(xi, yj)
∫
Bδ(xi,yj)

σ(xi − x′, yj − y′)

(δm,n − φi′,j′(x′, y′))dx′dy′

+
∫
Bδ(xi,yj)

α(x′, y′)σ(xi − x′, yj − y′)

(δm,n − φi′,j′(x′, y′))dx′dy′.

(4.13)

Then we shall introduce several important theorem in order to get our fast method.

Decomposition of the stiffness matrix

The following theorems could be deduced from before (4.13).

Theorem 4.1. The stiffness matrix A of the collocation method of previous variable
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coefficients non-local diffusion model can be written as

A = DA(1) + Ad(2) + A(2−1)D(1) + A(2−2)D(2) + A(2−3)D(3) + A(2−4)D(4)

, where Ad is a diagonal matrix.

Proof. Let us recall the formula (4.13) we derived before, and simply discuss it as a

sum of two terms. For the first term,

α(xi, yj)
∫
Bδ(xi,yj)

σ(xi − x′, yj − y′)(δm,n − φi′,j′(x′, y′))dx′dy′

let it correspond to DA(1), and then we can have the entries of D and the entries

of A(1), where

Dm,m = α(xi, yj), (4.14)

which is a diagonal matrix with

A(1)
m,n =

∫
Bδ(xi,yj)

σ(xi − x′, yj − y′)

(δm,n − φi′,j′(x′, y′))dx′dy′.

(4.15)

Here m and n are the global indices defined by (4.10).

For the second term, we discuss it in two cases.

The first case, when m = n we have

∫
Bδ(xi,yj)

α(x′, y′)σ(xi − x′, yj − y′)(1− φi,j(x′, y′))dx′dy′

,

then we let Ad(2) be a diagonal matrix, and all the diagonal entries are defined by

the above expression.

For the second case, we consider that m 6= n. Before our discussion, we introduce

a piecewise-constant approximation αI(x, y) to approximate α(x, y)
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αI(x, y) := ∑N
i=1

∑N
j=1 α(xi+ 1

2
, yj+ 1

2
)1[xi,xi+1)×[yj ,yj+1)(x, y),

(x, y) ∈ [0, xR]× [0, yR].
(4.16)

And then we can have

∫
Bδ(xi,yj)

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

=
∫
Bδ(xi,yj)∩supp(φi′,j′ )

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

=
∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′ ,yj′+1)

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+
∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′ ,yj′+1)

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+
∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′−1,yj′ )

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+
∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′−1,yj′ )

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′,

(4.17)

by substituting αI for α in the above expression, which is then written as
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∫
Bδ(xi,yj)

α(x′, y′)σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

= α(xi′+ 1
2
, yj′+ 1

2
)
∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′ ,yj′+1)

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+ α(xi′− 1
2
, yj′+ 1

2
)
∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′ ,yj′+1)

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+ α(xi′− 1
2
, yj′− 1

2
)
∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′−1,yj′ )

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

+ α(xi′+ 1
2
, yj′− 1

2
)
∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′−1,yj′ )

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′.

(4.18)

Now we shall observe that D(1), D(2), D(3), and D(4) are diagonal matrices, and

their diagonal entries can be written as

D(1)
n,n = α(xi′+ 1

2
, yj′+ 1

2
)

D(2)
n,n = α(xi′− 1

2
, yj′+ 1

2
)

D(3)
n,n = α(xi′− 1

2
, yj′− 1

2
)

D(4)
n,n = α(xi′+ 1

2
, yj′− 1

2
),

(4.19)

and let the entries of A(2−1), A(2−2), A(2−3), A(2−4) be expressed as following
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A(2−1)
m,n =

∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′ ,yj′+1)

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

A(2−2)
m,n =

∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′ ,yj′+1)

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

A(2−3)
m,n =

∫
Bδ(xi,yj)∩[xi′−1,xi′ )×[yj′−1,yj′ )

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′

A(2−4)
m,n =

∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′−1,yj′ )

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′.

(4.20)

In conclusion, the stiffness matrix A can be written as

A = DA(1) + Ad(2) + A(2−1)D(1) + A(2−2)D(2) + A(2−3)D(3) + A(2−4)D(4)

.

Theorem 4.2. Let Bδ(xi, yj), K, and L are defined as before in section 1, while

the matrices A(1), A(2−1), A(2−2), A(2−3), and A(2−4) have block-Toeplitz-Toeplitz-block

structures with corresponding blocks, and matrices D, D(1), D(2), D(3), D(4) are all

diagonal matrices.

Proof. By definition in theorem 1, D, D(1), D(2), D(3), D(4) are all diagonal matrices.

Moreover, we can easily find that

A(1) = Ad(1) + A(2−1) + A(2−2) + A(2−3) + A(2−4)
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, where Ad(1) contains all the diagonal entries of A(1). If we proved that A(2−1), A(2−2),

A(2−3), and A(2−4) have block-Toeplitz-Toeplitz-block structures and all the diagonal

entries of Ad1 are a constant, we can say A(1) is also a block-Toeplitz-Toeplitz-block

matrix.

We are going to prove that A(2−1), A(2−2), A(2−3), and A(2−4) have block-Toeplitz-

Toeplitz-block structures. Let us recall (4.20), where it was found that A(2−1), A(2−2),

A(2−3), and A(2−4) have similar structures, then we can just prove that A(2−1) has a

block-Toeplitz-Toeplitz-block structure.

For convenience, we denote that P = A(2−1), and

Pm,n =
∫
Bδ(xi,yj)∩[xi′ ,xi′+1)×[yj′ ,yj′+1)

σ(xi − x′, yj − y′)φi′,j′(x′, y′)dx′dy′,

(4.21)

it can be observed that when Bδ(xi, yj)∩ [xi′ , xi′+1)× [yj′ , yj′+1) is not empty set,

Pm,n 6= 0. Then we can investigate that P has 2L bands of blocks,

P =



Q1,1 Q1,2 . . . Q1,L . . . 0

Q2,1 Q2,2 . . . . . . . . . ...

... . . . . . . . . . . . . QJ−L,J−1

QL+1,1 . . . . . . QL+1,L+1 . . . ...

... . . . . . . . . . QJ−2,J−1

0 . . . QJ−1,J−L−1 . . . QJ−1,J−2 QJ−1,J−1



, (4.22)

and each block P j,j′ has 2K bands of non-zero entries
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Qj,j′ =



qj,j
′

1,1 qj,j
′

1,2 . . . qj,j
′

1,K . . . 0

qj,j
′

2,1 qj,j
′

2,2
. . . . . . . . . ...

... . . . . . . . . . . . . qj,j
′

I−K,I−1

qj,j
′

K+1,1
. . . . . . qj,j

′

K+1,K+1
. . . ...

... . . . . . . . . . qj,j
′

I−2,I−1

0 . . . qj,j
′

I−1,I−K−1 . . . qj,j
′

I−1,I−2 qj,j
′

I−1,I−1



. (4.23)

Here we will prove that P has a block-Toeplitz structure first, and the prove that

each block of P is a Toeplitz matrix.

In order to prove that P has a block-Toeplitz structure, we need to show that

for any j1, j′1 and j2, j
′
2, Qj1,j′1 = Qj2,j′2 if j1 − j′1 = j2 − j′2. Let Pm1,n1 and Pm2,n2 be

the corresponding entries of Qj1,j′1 and Qj2,j′2 , and then investigate the corresponding

global indices

m1 = (j1 − 1)(I − 1) + i, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1,

n1 = (j′1 − 1)(I − 1) + i′, 1 ≤ i′ ≤ I − 1, 1 ≤ j′ ≤ J − 1

m2 = (j2 − 1)(I − 1) + i, 1 ≤ i ≤ I − 1, 1 ≤ j ≤ J − 1,

n2 = (j′2 − 1)(I − 1) + i′, 1 ≤ i′ ≤ I − 1, 1 ≤ j′ ≤ J − 1,

(4.24)

then by the formula (4.21), we have
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Pm1,n1 = q
j1,j′1
i,i′

=
∫
Bδ(xi,yj1 )∩[xi′ ,xi′+1)×[yj′1

,yj′1+1)

σ(xi − x′, yj1 − y′)φi′,j′1(x′, y′)dx′dy′.

(4.25)

Here we introduce the following substitution

x′ = xi + x, y′ = yj + y,

and replace x′ and y′ in the basis function φi′,j′(x′, y′). Through simple transfor-

mations, we have

φi′,j′(x′, y′) = ψ(x
′ − xi′
∆x )ψ(y

′ − yj′
∆y )

= ψ(xi + x− xi′
∆x )ψ(yj + y − yj′

∆y )

= ψ(x
′ − xi′−i

∆x )ψ(y
′ − yj′−j

∆y )

= φi′−i,j′−j(x′, y′).

(4.26)

The formula (4.25) has the following equivalent transformation

Pm1,n1 = q
j1,j′1
i,i′

=
∫
Bδ(0,0)∩[0,∆x)×[0,∆y)

σ(−x,−y)φi′−i,j′1−j1(x, y)dxdy

=
∫
Bδ(0,0)∩[0,∆x)×[0,∆y)

σ(−x,−y)φi′−i,j′2−j2(x, y)dxdy

= Pm2,n2 = q
j2,j′2
i,i′ ,

(4.27)
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then we are going to prove that each block is a Toeplitz matrix. We do the same

substitution, and show for any Qj,j′ , if i1 − i′1 = i2 − i′2, q
j,j′

i1,i′1
= qj,j

′

i2,i′2
should always

be true.

By introducing the global indices

m3 = (j − 1)(I − 1) + i1, 1 ≤ i1 ≤ I − 1, 1 ≤ j ≤ J − 1,

n3 = (j − 1)(I − 1) + i′1, 1 ≤ i′1 ≤ I − 1, 1 ≤ j′ ≤ J − 1

m4 = (j − 1)(I − 1) + i2, 1 ≤ i2 ≤ I − 1, 1 ≤ j ≤ J − 1,

n4 = (j′ − 1)(I − 1) + i′2, 1 ≤ i′2 ≤ I − 1, 1 ≤ j′ ≤ J − 1.

(4.28)

We investigate that

Pm3,n3 = qj,j
′

i1,i′1

=
∫
Bδ(0,0)∩[0,∆x)×[0,∆y)

σ(−x,−y)φi′1−i1,j′−j(x, y)dxdy

=
∫
Bδ(0,0)∩[0,∆x)×[0,∆y)

σ(−x,−y)φi′2−i2,j′−j(x, y)dxdy

= Pm4,n4 = qj,j
′

i2,i′2
.

(4.29)

Now we conclude that A(2−1) has a block-Toeplitz-Toeplitz-block structure. Since

the proofs of A(2−2), A(2−3), and A(2−4) are almost the same, we will not repeat the

proof.

Next, we are going to show that all the diagonal entries of Ad(1) are a constant.

By recalling (4.13) and doing the same substitution, the proof is obverse.
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Ad(2−2)
m,m =

∫
Bδ(xi,yj)

σ(xi − x′, yj − y′)

(1− φi′,j′(x′, y′))dx′dy′

=
∫
Bδ(0,0)

σ(−x,−y)

(1− φ0,0(x, y))dxdy,

(4.30)

which is a constant and does not depend on m.

Finally, we conclude that matrices A(1), A(2−1), A(2−2), A(2−3), and A(2−4) have

block-Toeplitz-Toeplitz-block structures.

Theorem 4.3. The matrix-vector multiplication Mv is obtained in O(NlogN) oper-

ations, if M is an N ×N block-Toeplitz-Toeplitz-block matrix with (J − 1)× (J − 1)

blocks, each block is a (I − 1)× (I − 1) Toeplitz matrix, and v could be any N dimen-

sional vector.

Proof. Without losing generality, we consider a block-Toeplitz-Toeplitz-block matrix

as the following

M =



M0 M1 . . . ML . . . 0

M−1 M0
. . . . . . . . . ...

... . . . . . . . . . . . . ML

M−L
. . . . . . M0

. . . ...
... . . . . . . . . . M1

0 . . . M−L . . . M−1 M0



, (4.31)

which has 2L + 1 Toeplitz blocks, and each block has 2K + 1 bands of Toeplitz

entries like the following
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Mi =



m
(i)
0 m

(i)
1 . . . m

(i)
K . . . 0

m
(i)
−1 m

(i)
0

. . . . . . . . . ...
... . . . . . . . . . . . . m

(i)
K

m
(i)
−K

. . . . . . mi
0

. . . ...
... . . . . . . . . . m

(i)
1

0 . . . m
(i)
−K . . . m

(i)
−1 m

(i)
0



. (4.32)

We then embed each block into an 2(I − 1)× 2(I − 1) circulant matrix, where

Ci =

Mi M̃i

M̃i Mi

 , (4.33)

and let M̃i be

M̃i =



0 . . . 0 m
(i)
−K . . . m

(i)
−1

... 0 . . . . . . . . . ...

0 . . . . . . . . . . . . m
(i)
−K

m
(i)
K

. . . . . . 0 . . . 0
... . . . . . . . . . ...

m
(i)
1 . . . m

(i)
K 0 . . . 0



. (4.34)

Now we have a block-Toeplitz-circulant-block matrix C

C =



C0 C1 . . . CL . . . 0

C−1 C0
. . . . . . . . . ...

... . . . . . . . . . . . . CL

C−L
. . . . . . C0

. . . ...
... . . . . . . . . . C1

0 . . . C−L . . . C−1 C0



. (4.35)

Finally, the block-Toeplitz-circulant-block matrix C should be embedded into a

block-circulant-circulant-block matrix B, where
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B =

C C̃

C̃ C

 , (4.36)

and C̃ is defined as

C̃ =



0 . . . 0 C−L . . . C−1

... 0 . . . . . . . . . ...

0 . . . . . . . . . . . . C−L

CL
. . . . . . 0 . . . 0

... . . . . . . . . . ...

C1 . . . CL 0 . . . 0



. (4.37)

Here the first column b should have all information of the matrix B. Let F2(J−1)⊗

F2(I−1) be the two dimensional discrete Fourier transform matrix, the the Fourier

transform b̂ of c could be written as (F2(J−1) ⊗ F2(I−1))b. Since the block-circulant-

circulant-block matrix B has the decomposition

(F2(J−1) ⊗ F2(I−1))−1diag(b̂)(F2(J−1) ⊗ F2(I−1)),

we then work on theN dimensional vector v[8, 11, 21]. BecauseN = (J−1)(I−1),

we write v = [v(1), v(2), ..., v(J−1)]T , where v(j) = [v1,j, v2,j, ..., vI−1,j], for 1 ≤ j ≤ J−1.

Our goal is to expand v to an 4N dimensional vector, so we first expand it to a 2N

dimensional vector by setting v(2N) = [v(1),~0, v(2),~0, ..., v(J−1),~0]T , where ~0 is an I − 1

dimensional 0 vector. Then we have v(4N) = [v(2N), 0]T , where 0 is a 2N dimensional

zero vector.

Since (F2(J−1)⊗F2(I−1))v(4N) and the Hadamard product of ĉ and any 4N dimen-

sional vector can be carried out in O(NlogN) operations. Mv can be carried out in

O(NlogN) operations, which is a part of Bv(4N).
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Since the stiffness matrix A is no longer symmetric, we prefer a conjugate gradient

squared method to search for numerical solutions. Based on the above theorem, we

can consider the matrix-vector multiplication Adk as

(DA(1) + Ad(2) + A(2−1)D(1) + A(2−2)D(2) + A(2−3)D(3) + A(2−4)D(4))dk,

which only involves Hadamard production and block-Toeplitz-circulant-block matrix-

vector production, so the computational cost will be reduced to O(NlogN).

4.4 Numerical experiment

Since for the two dimensional variable-coefficient non-local diffusion model, we need

to use numerical integrals to generate five Toeplitz matrices, one diagonal matrix,

and the right-hand side terms, the shall use one small mesh size with N = 25 to show

the performance of our fast method. And based on previous study, we conclude that

the advantages of our fast method are more obvious at larger mesh size.

Let the spatial domain be (0, 1) × (0, 1) and δ = 1/8, and the kernel function

σ(x, y) be expressed as

σ(x, y) = 1
(x2 + y2)1+s , (4.38)

here we choose u(x, y) = x(1 − x)y(1 − y) as the true solution of the problem

(4.1), and use it to define the value of u on the boundary zone Ωc, which means

u(x, y) = x(1 − x)y(1 − y) on the whole field Ω ∪ Ωc. The variable coefficient is

defined as α(x, y) = 1 + 16ε(x − 1
2)2(y − 1

2)2, where ε is a small constant. Without

loss of generality, we chose the same grid size in both the x and y directions i.e.,

∆x = ∆y = h. And the right-hand side term f(x, y) at each collocation point can be

computed by numerical integration.
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Then we implement the Matlab codes of standard Gaussian elimination (Gauss),

conjugate gradient squared(CGS) method, and fast conjugate gradient squared (FCGS)

method in a 16GB-ROM laptop.

Table 4.1: Gaussian elimination, conjugate gradient squared(CGS) method, and fast
conjugate gradient squared(FCGS) method. δ = 1/8

s ||eh||L2 # of Iter. CPU Time

0 7.75185824e− 03 − 28.97s

Gauss 1/4 1.26690474e− 02 − 29.18s

3/8 1.83823456e− 02 − 37.81s

0 7.75185824e− 03 14 20.02s

CGS 1/4 1.26690474e− 02 28 21.22s

3/8 1.83823456e− 02 36 21.58s

0 7.75185824e− 03 26 0.46s

FCGS 1/4 1.26690474e− 02 56 0.87s

3/8 1.83823456e− 02 72 1.08s

In conclusion, we found that the standard Gaussian elimination (Gauss), conju-

gate gradient squared(CGS) method, and fast conjugate gradient squared (FCGS)

method have the same error, but the fast conjugate gradient squared method only

needs 1/40 of times of conjugate gradients quared method in searching the numerical

solution of the problem (4.1) when N = 25, which becomes much more significant

for a larger grid size. Also, the number of iteration depends on the kernel function
1

|x2+y2|1+s [16, 15]. When s < 0, we have a better convergence rate and less iteration

steps, and when s is close to 1, the singularity of the kernel function will cause more

iteration steps.
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