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Abstract

Let Vp denote the five dimensional vector space of binary quartic forms over the

finite field Fp, with p a prime greater than 3. There is a natural action of the group

GL1(Fp)×GL2(Fp) on Vp. This action partitions Vp into orbits, the number of which

increases with p. In this thesis, we determine explicitly, for a given p, the number

of orbits under the action of GL1(Fp) × GL2(Fp) on Vp. Moreover, we determine

the size of each orbit and the general structure of the forms each orbit contains. We

also introduce an application of understanding these orbits to the study of the Fourier

transforms of certain functions over Vp that are of interest in algebraic number theory.

We include two appendices with preliminary work towards extending key results from

existing work on binary cubic forms to the case of binary quartic forms.
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Chapter 1

Introduction

The study of integral binary quadratic, cubic and quartic forms relies on understand-

ing certain group actions. The group GL2(Z) acts on such forms by linear substitution

of variable. In the case of integral quadratic and cubic forms, this action has a unique

polynomial invariant called the discriminant; that is, any other polynomial invariant

for the action can be expressed as a polynomial in the discriminant. For quartic

forms, two unique polynomial invariants are necessary to generate all others. This

distinction creates a roadblock when attempting to extend results about quadratic

and cubic forms to the quartic case. Recently in [1], Bhargava and Shankar over-

came this challenge and applied their results on counting binary quartic forms having

bounded invariants in their proof that the average rank of elliptic curves over Q, when

ordered by their heights, is bounded. Their work indicates a strong potential for in-

teresting applications of the further study of binary quartic forms and the relevant

group actions, not only over the integers, but also over finite fields.

Integral binary quadratic forms are well understood due to the seminal work of

Gauss in Disquisitiones Arithmeticae and the contributions of many others over the

last two centuries. Of particular interest in algebraic number theory is the connection

between SL2(Z)-equivalence classes of irreducible integral binary quadratic forms and

the class numbers of quadratic fields.

Also with motivation from applications in algebraic number theory, integral binary

cubic forms have been studied extensively. Delone and Faddeev showed that there is a

bijection between the set of GL2(Z)-equivalence classes of irreducible integral binary
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cubic forms and the set of isomorphism classes of cubic rings. This correspondence

together with an asymptotic formula for the number of GL2(Z)-equivalence classes of

irreducible integral binary cubic forms with fixed discriminant, proved by Davenport,

led to Davenport and Heilbronn providing an asymptotic formula for the number

of cubic fields, up to isomorphism, with bounded discriminant. Roberts later con-

jectured the existence of a second main term in the Davenport-Heilbronn theorem,

which has been proved independently by Taniguchi and Thorne [7] and Bhargava,

Shankar, and Tsimerman [2]. The work of Bhargava, Shankar, and Tsimerman draws

from classical geometry of numbers techniques, which they extend by finding ways

to count points in fundamental domains with complicated cuspidal regions. On the

other hand, Taniguchi and Thorne build off of the theory of Shintani zeta functions.

One of the ingredients in their proof is the computation of certain cubic Gauss sums

that appear in the functional equations for these zeta functions; controlling the Gauss

sums leads to good error terms in the sieve methods that they use. Interesting ques-

tions arise when one looks at analogous sums in the case of binary quartic forms.

We investigate one sum of interest, and we take the first step towards an explicit

formula. We overcome a key hurdle that is not present in the cubic case; in particu-

lar, we classify the orbits of the natural action of GL1(Fp)×GL2(Fp) on the space of

binary quartic forms over Fp.

1.1 The Fourier Transform of a Function on the Space of Cubic

Forms and Motivating Examples

Let p be a prime greater than three, and let Wp denote the four dimensional vector

space of binary cubic forms over the finite field Fp. We express an element f ∈ Wp

in the form

f(x, y) = a1x
3 + a2x

2y + a3xy
2 + a4y

3,
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and we identify the 4-tuple a = (a1, a2, a3, a4) ∈ F4
p with f . The group GL2(Fp)

naturally acts on Wp. An element γ ∈ GL2(Fp) acts on f(x, y) by

γ · f(x, y) = 1
det(γ)f((x, y) · γ).

One consequence of including the scalar 1/(det(γ)) is thatc 0

0 c

 · f(x, y) = cf(x, y).

Let f ∈ Wp. We say that [α : β] ∈ P1(Fq), with q a power of p, is a root of f if

f(α, β) = 0. Table 1.1 shows a partition of Wp into sets corresponding to conditions

on the roots of a given form. It is straightforward to compute the number of elements

in each set by considering the number of possibilities for each root and accounting

for scaling. The cardinalities are given in the table so that they suggest the intuitive

counting argument. For our purposes, it is important to note that the sets Wp(0),

Wp(13), Wp(121), Wp(111), Wp(21), andWp(3) are the orbits of the action of GL2(Fp)

on Wp [6].

Table 1.1 A partition of Wp

Set notation Description Cardinality

Wp(0) The form 0 1

Wp(111) Set of forms with three distinct roots in
P1(Fp)

(
p+ 1

3

)
(p− 1)

Wp(121) Set of forms with a double root in P1(Fp) and
one other distinct root in P1(Fp)

(p+ 1)p(p− 1)

Wp(13) Set of forms with a triple root in P1(Fp) (p+ 1)(p− 1)

Wp(21) Set of forms with a conjugate pair of roots in
P1(Fp2) and one other distinct root in P1(Fp)

p2 − p
2 (p+ 1)(p− 1)

Wp(3) Set of forms with a triple of conjugate roots
in P1(Fp3)

p3 − p
3 (p− 1)
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In what remains of this section, we provide the details of an argument from the

work of Bhargava, Shankar, and Tsimerman in [2] and a result of Taniguchi and

Thorne in [6], both of which demonstrate an application of the Fourier transform of

certain functions on Wp.

We begin with section 9.4 of [2], in which the authors work through an equidis-

tribution argument that allows them to determine the main term for the weighted

count of irreducible integral binary cubic forms having bounded discriminant, where

each form is weighted by the number of its roots in P1(Z/nZ). A key component of

the argument is finding a pointwise bound for the Fourier transform of the function

wp : Wp → C, which given a form f as its input, outputs the number of roots in

P 1(Fp).

Let Ŵp be the space of additive characters χ : Wp → C×. Then the Fourier

transform ŵp of wp is given by

ŵp (χ) = p−4 ∑
f∈Wp

wp(f)χ(f).

Since Wp is a finite abelian group isomorphic to F4
p, the dual group Ŵp is also isomor-

phic to F4
p, and we can list the characters explicitly by identifying them with elements

of Wp. First, we define a bilinear form:

[f, g] = a4b1 −
1
3a3b2 + 1

3a2b3 − a1b4,

where f ∈ Wp and g ∈ Wp are identified with (a1, a2, a3, a4) ∈ F4
p and (b1, b2, b3, b4) ∈

F4
p, respectively. Recall that p is a prime greater than three, and so, 3 is invertible.

We choose this alternating form as opposed to the usual dot product because it has

the property that given γ ∈ GL2(Fp),

[γ · f, g] = det(γ)[f, γ−1 · g], (1.1)

which will be relevant when we move to the work of Taniguchi and Thorne [6]. Next,

we define a complex-valued bilinear map, which allows us to identify the elements of
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Wp with the elements of Ŵp:

〈f, g〉p = exp
(

2πi
p

[f, g]
)
.

For each g in Wp, 〈−, g〉p defines the corresponding character in Ŵp. For example,

the form 0 is identified with the trivial character 〈−, 0〉p, which maps all of Wp to 1.

We can now express the Fourier transform ŵp as a function on Wp:

ŵp (g) = p−4 ∑
f∈Wp

wp(f)〈f, g〉p.

To bound the Fourier transform of wp pointwise, Bhargava, Shankar and Tsimer-

man address ŵp(0) and ŵp(g) with g 6= 0 separately. First, we observe that

ŵp (0) = p−4 ∑
f∈Wp

wp(f).

Moreover, we have that wp(0) = p + 1; wp(f) = 3 if f ∈ Wp(111), wp(f) = 2 if

f ∈ Wp(121); wp(f) = 1 if f ∈ Wp(13) or f ∈ Wp(21); wp(f) = 0 if f ∈ Wp(3).

Hence, from Table 1.1, we have that

ŵp (0) = p−4
(
p+ 1 + 3 |Wp(111)|+ 2

∣∣∣Wp(121)
∣∣∣+ ∣∣∣Wp(13)

∣∣∣+ |Wp(21)|
)

= 1 + p−1.

Next, we consider ŵp(g) where g 6= 0. We have that

ŵp (g) = p−4 ∑
f∈Wp

wp(f)〈f, g〉p

= p−4 ∑
f :〈f,g〉p=1

wp(f) + p−4 ∑
f :〈f,g〉p 6=1

wp(f)〈f, g〉p.

Note that 〈f, g〉p = 1 if and only if [f, g] = 0. If 0 6= (b1, b2, b3, b4) ∈ F4
p is fixed, then

at least one of b1, b2, b3, b4, which we denote by b, is nonzero. For any of the p3 choices

for the three ai paired with the bj 6= b in the equation a4b1− 1
3a3b2 + 1

3a2b3−a1b4 = 0,

the ai corresponding to b is uniquely determined by the equation. Hence, there are

p3 choices for f , with g 6= 0, such that [f, g] = 0, and therefore, such that 〈f, g〉p = 1.

Moreover, we have seen that wp(0) = p+ 1 and that wp(f) ≤ 3 when f 6= 0. Thus,

∑
f :〈f,g〉p=1

wp(f) ≤ 3(p3 − 1) + (p+ 1) = 3p3 + p− 2.
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Next, note that multiplying f by a scalar c ∈ F×p does not impact the roots of f ,

and so, wp(cf) = wp(f). So,

∑
c∈F×

p

wp(cf)〈cf, g〉p = wp(f)
∑
c∈F×

p

〈cf, g〉p = wp(f)
∑
c∈F×

p

exp
(

2πic
p

[f, g]
)

= −wp(f).

Moreover, for any c ∈ F×p , if 〈f, g〉p 6= 1, then 〈cf, g〉p 6= 1, and so, for any c ∈ F×p ,

the set of forms f such that 〈f, g〉p 6= 1 is the same as the set of forms f such that

〈cf, g〉p 6= 1. It now follows that

∑
f :〈f,g〉p 6=1

wp(f)〈f, g〉p = 1
p− 1

∑
c∈F×

p

∑
f :〈f,g〉p 6=1

wp(cf)〈cf, g〉p

= 1
p− 1

∑
f :〈f,g〉p 6=1

∑
c∈F×

p

wp(cf)〈cf, g〉p

= − 1
p− 1

∑
f :〈f,g〉p 6=1

wp(f),

and also, since wp(f) ≤ 3 when f 6= 0,

1
p− 1

∑
f :〈f,g〉p 6=1

wp(f) ≤ 3
p− 1(p4 − p3) = 3p3.

Thus,

ŵp (g) = p−4 ∑
f :〈f,g〉p=1

wp(f) + p−4 ∑
f :〈f,g〉p 6=1

wp(f)〈f, g〉p � p−1

uniformly for g 6= 0.

Whereas bounding the Fourier transform of wp is sufficient for Bhargava, Shankar,

and Tsimerman to move forward with their equidistribution argument, Taniguchi and

Thorne find explicit formulas for the Fourier transforms of certain functions relevant

to their work. One example is the function φp : Wp → C defined as the characteristic

function of those f ∈ Wp with ∆(f) = 0, where ∆(f) denotes the discriminant of the

binary cubic form f . We can express the Fourier transform φ̂p of φp as a function on

Wp as we did with ŵp above:

φ̂p (g) = p−4 ∑
f∈Wp

φp(f)〈f, g〉p.

We then have the following result:

6



Proposition 1.1. (Taniguchi-Thorne) The Fourier transform of φp is given by

φ̂p(g) =



p−1 + p−2 − p−3 if g = 0

p−2 − p−3 if ∆(g) 6= 0, g 6= 0

−p−3 if ∆(g) = 0

.

Proof. Let G = GL2(Fp), and let g ∈ Wp. We will express the sum

S =
∑
a1∈Fp

∑
a2∈Fp

∑
γ∈G
〈γ · (a1x

3 + a2x
2y), g〉p

in two different ways.

As a1 and a2 vary, we obtain the form 0 when a1 = a2 = 0, p − 1 forms in the

orbit Wp(13) when a1 ∈ F×p and a2 = 0, and p(p−1) forms in the orbit Wp(121) when

a1 ∈ Fp and a2 ∈ F×p . So, instead of summing over G, we can sum over the orbits

Wp(0), Wp(13), and Wp(121). Note that ∑f∈Wp(0)〈f, g〉p = 1. Hence,

S = |G|+ (p− 1) |G|
|Wp(13)|

∑
f∈Wp(13)

〈f, g〉p + p(p− 1) |G|
|Wp(121)|

∑
f∈Wp(121)

〈f, g〉p

= |G|
1 + 1

p+ 1
∑

f∈Wp(13)
〈f, g〉p + 1

p+ 1
∑

f∈Wp(121)
〈f, g〉p

 .
On the other hand, from property (1.1), we have that

〈γ · (a1x
3 + a2x

2y), g〉p = exp
(

2πi
p

det(γ)[a1x
3 + a2x

2y, γ−1 · g]
)
.

Hence,

S =
∑
γ∈G

∑
a1∈Fp

∑
a2∈Fp

exp
(

2πi
p

det(γ)[a1x
3 + a2x

2y, γ · g]
)
.

If γ · g(x, y) = b1x
3 + b2x

2y + b3xy
2 + b4y

3, then

[a1x
3 + a2x

2y, γ · g] = 1
3a2b3 − a1b4.

So, by orthogonality relations, S = 0 unless there is some γ ∈ G such that γ · g(x, y)

can be expressed in the form b1x
3 + b2x

2y, in which case

exp
(

2πi
p

det(γ)[a1x
3 + a2x

2y, γ · g]
)

= 1.
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If g ∈ Wp(0), then γ · g is in this form, namely with b1 = b2 = 0. If g ∈ Wp(13), then

there are (p−1)|G|/|Wp(13)| choices for γ such that γ · g(x, y) is in this form, namely

such that b1 ∈ F×p and b2 = 0. If g ∈ Wp(121), then there are p(p − 1)|G|/|Wp(121)|

choices for γ such that γ · g(x, y) is in this form, namely such that b1 ∈ Fp and

b2 ∈ F×p . Otherwise, [0, 1] is not a double root of γ · g(x, y), and so, γ · g(x, y) cannot

be expressed in the form b1x
3 + b2x

2y. Thus,

S =



|G|p2 if g ∈ Wp(0)

(p− 1) |G|
|Wp(13)|p

2 if g ∈ Wp(13)

p(p− 1) |G|
|Wp(121)|p

2 if g ∈ Wp(121)

0 otherwise.

Combining the two expressions for S and dividing through by |G|, we have

1 + 1
p+ 1

∑
f∈Wp(13)

〈f, g〉p + 1
p+ 1

∑
f∈Wp(121)

〈f, g〉p =



p2 if g ∈ Wp(0)

1
p+1p

2 if g ∈ Wp(13)

1
p+1p

2 if g ∈ Wp(121)

0 otherwise,

and so,

∑
f∈Wp(13)

〈f, g〉p +
∑

f∈Wp(121)
〈f, g〉p =



p3 + p2 − p− 1 if g ∈ Wp(0)

p2 − p− 1 if g ∈ Wp(13) or g ∈ Wp(121)

−p− 1 otherwise.
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Finally, since ∆(f) = 0 if and only if f has a repeated root, we have

φ̂p(g) = 1
p4

∑
f∈Wp

φp(f)〈f, g〉p

= 1
p4

 ∑
f∈Wp(0)

〈f, g〉p +
∑

f∈Wp(13)
〈f, g〉p +

∑
f∈Wp(121)

〈f, g〉p



=



p−1 + p−2 − p−3 if g = 0

p−2 − p−3 if ∆(g) 6= 0, g 6= 0

−p−3 if ∆(g) = 0.

Proposition 1.1 serves as the primary motivating example for our work.

1.2 The Space of Binary Quartic Forms over Fp

We now shift our focus to binary quartic forms. Let Vp denote the five dimensional

vector space of binary quartic forms over the finite field Fp, with p a prime greater

than 3. We express an element f ∈ Vp in the form

f(x, y) = a1x
4 + a2x

3y + a3x
2y2 + a4xy

3 + a5y
4,

and we identify the 5-tuple a = (a1, a2, a3, a4, a5) ∈ F5
p with f . As in the cubic case,

the group GL2(Fp) naturally acts on Vp. An element γ ∈ GL2(Fp) acts on f(x, y) by

linear substitution of variable:

γ · f(x, y) = f((x, y) · γ).

The group GL1(Fp) also naturally acts on Vp by scalar multiplication. We will consider

the action of GL1(Fp)×GL2(Fp) on Vp given by

(c, γ) · f(x, y) = cf((x, y) · γ).

In the cubic case, we partitioned Wp into sets corresponding to conditions on the

roots of a given form. An analogous partition of Vp is given in Table 1.2. It is again
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straightforward to compute the number of elements in each set by considering the

number of possibilities for each root and accounting for scaling. Does this partition

correspond to the orbits of the action of GL1(Fp) × GL2(Fp) on Vp? Unfortunately,

the answer is no, but it does provide a starting point. Before exploring the orbits

further, we use the final section of Chapter 1 to introduce the function on Vp that we

would like to study.

1.3 The Fourier Transform of a Function on the Space of Quartic

Forms

Our goal is to find a result similar to Proposition 1.1 in the quartic case. We begin

by redefining ∆(f) to be the discriminant of the binary quartic form f , and let νp

be the characteristic function of those f ∈ Vp with ∆(f) = 0. Next, we define the

Fourier transform ν̂p of νp as we did in the cubic case. Let V̂p be the space of additive

characters χ : Vp → C×. Then the Fourier transform ν̂p of νp is given by

ν̂p (χ) = p−5 ∑
f∈Vp

νp(f)χ(f).

Since Vp is a finite abelian group isomorphic to F5
p, the dual group V̂p is also isomorphic

to F5
p, and we can list the characters explicitly by identifying them with elements of

Vp. We define a different bilinear form for the quartic case:

[f, g] = a5b1 −
1
4a4b2 + 1

6a3b3 −
1
4a2b4 + a1b5,

where f ∈ Vp and g ∈ Vp are identified with (a1, a2, a3, a4, a5) ∈ F5
p and

(b1, b2, b3, b4, b5) ∈ F5
p, respectively. Recall that p is a prime greater than three, and

so, 4 and 6 are invertible. We choose this alternating form because it has a property

similar to property (1.1), namely, that given γ ∈ GL2(Fp),

[(c, γ) · f, g] = (det γ)4[f, (c, γ−1) · g]. (1.2)
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Table 1.2 A partition of Vp

Set notation Description Cardinality

Vp(0) The form 0 1

Vp(1111) Set of forms with four distinct roots in
P1(Fp)

(
p+ 1

4

)
(p− 1)

Vp(1211) Set of forms with a double root in P1(Fp)
and two other distinct roots in P1(Fp)

(p+ 1)
(
p

2

)
(p− 1)

Vp(1212) Set of forms with two distinct double roots
in P1(Fp)

(
p+ 1

2

)
(p− 1)

Vp(131) Set of forms with a triple root in P1(Fp) and
one other distinct root in P1(Fp)

(p+ 1)(p)(p− 1)

Vp(14) Set of forms with one root in P1(Fp)
repeated four times

(p+ 1)(p− 1)

Vp(211) Set of forms with a conjugate pair of roots
in P1(Fp2) and two distinct roots in P1(Fp)

p2 − p
2

(
p+ 1

2

)
(p− 1)

Vp(212) Set of forms with a conjugate pair of roots
in P1(Fp2) and one double root in P1(Fp)

p2 − p
2 (p+ 1)(p− 1)

Vp(22) Set of forms with two distinct conjugate
pairs of roots in P1(Fp2)

(
p2−p

2
2

)
(p− 1)

Vp(22) Set of forms with a conjugate pair of roots
in P1(Fp2) repeated two times

p2 − p
2 (p− 1)

Vp(31) Set of forms with a triple of conjugate roots
in P1(Fp3) and one root in P1(Fp)

p3 − p
3 (p+ 1)(p− 1)

Vp(4) Set of forms with four conjugate roots in
P1(Fp4)

p4 − p2

4 (p− 1)

It is straightforward to verify this property by expanding both sides of the equation.

As in the cubic case, we define a complex-valued bilinear map, which allows us to

identify the elements of Vp with the elements of V̂p:

〈f, g〉p = exp
(

2πi
p

[f, g]
)
.
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For each g in Vp, 〈−, g〉p defines the corresponding character in V̂p. We can now

express the Fourier transform ν̂p as a function on Vp:

ν̂p (g) = p−5 ∑
f∈Vp

νp(f)〈f, g〉p.

Given g ∈ Vp, we want an explicit formula for ν̂p. In the proof of Proposition 1.1,

we exploit the fact that Wp(0), Wp(13), and Wp(121) are orbits under the action of

GL2(Fp) on Wp. We will show in Chapter 2 that analogously, each of the sets Vp(0),

Vp(14), Vp(131), Vp(1212), Vp(22), Vp(1211), and Vp(212) are orbits under the action of

GL1(Fp) × GL2(Fp) on Vp. Since ∆(f) = 0 if and only if f has a repeated root, we

have that

p5ν̂p(g) =
∑
f∈Vp

νp(f)〈f, g〉p

=
∑

f∈Vp(0)
〈f, g〉p +

∑
f∈Vp(14)

〈f, g〉p +
∑

f∈Vp(131)
〈f, g〉p +

∑
f∈Vp(1212)

〈f, g〉p

+
∑

f∈Vp(1211)
〈f, g〉p +

∑
f∈Vp(212)

〈f, g〉p +
∑

f∈Vp(22)
〈f, g〉p.

Let G = GL1(Fp)×GL2(Fp). We can compute sums over a single orbit by choosing

a representative from the orbit and summing over the elements of G. For example,

|G|
|Vp(14)|

∑
f∈Vp(14)

〈f, g〉p =
∑

(c,γ)∈G
〈(c, γ) ·x4, g〉p =

∑
(c,γ)∈G

exp
(
2πi(det γ)4[x4, (c, γ) · g]/p

)
,

where the last equality follows from property (1.2). In order to exploit orthogonal-

ity relations, we might instead consider the following equations, again using prop-

erty (1.2):

|G|
∑

f∈Vp(0)
〈f, g〉p + (p− 1) |G|

|Vp(14)|
∑

f∈Vp(14)
〈f, g〉p

=
∑
a∈Fp

∑
(c,γ)∈G

〈(c, γ) · ax4, g〉p

=
∑
a∈Fp

∑
(c,γ)∈G

exp
(
2πi(det γ)4[ax4, (c, γ) · g]/p

)

=
∑

(c,γ)∈G

∑
a∈Fp

exp
(
2πi(det γ)4[ax4, (c, γ) · g]/p

)
.

12



Now, if (c, γ) · g = b1x
4 + b2x

3y + b3x
2y2 + b4xy

3 + b5y
4 for a fixed g, then

∑
a∈Fp

exp
(
2πi(det γ)4[ax4, (c, γ) · g]/p

)
=
∑
a∈Fp

exp
(
2πi(det γ)4ab5/p

)
=


0 if b5 6= 0

p if b5 = 0.

Since we have that ∑f∈Vp(0)〈f, g〉p = 1, we have reduced the problem of computing∑
f∈Vp(14)〈f, g〉p to the question of how many binary quartic forms over Fp in a given

orbit under the action of G have 0 as the coefficient of the y4 term.

We can see from this example that we might be able to adapt the general strategy

used in the proof of Proposition 1.1 to the quartic case. Unlike in the proof of

Proposition 1.1, however, we now need to compute multiple sums, some of which

require detailed analysis of the distribution of certain coefficients in a given orbit.

While this work is largely outside the scope of this thesis, some preliminary results

are included in the appendices, and in the remaining two chapters, we complete a key

first step towards solving the problem by classifying the orbits of the natural action

of GL1(Fp)×GL2(Fp) on the space of binary quartic forms over Fp.
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Chapter 2

The Orbits of the Action of GL1(Fp)×GL2(Fp) on

Vp Containing Forms with Repeated Roots

This chapter and the one that follows are organized so that the simplest cases appear

first and the most complicated cases appear last. The techniques used as we progress

through the different cases require more and more machinery, which we develop along

the way.

First, we establish notation and conventions for discussing the roots of a form

f ∈ Vp, which are elements of P1(Fq), with q a power of p. There is a bijection

between P1(Fq) and Fq ∪ {∞}, where ∞, called the point at infinity, satisfies the

conditions 0−1 = ∞ and x · ∞ = ∞ if 0 6= x ∈ Fq. More precisely, we define

ϕ : P1(Fq)→ Fq∪{∞} by ϕ([α : β]) = αβ−1. Since for any λ ∈ F×q , λα(λβ)−1 = αβ−1,

ϕ is well-defined. The inverse of ϕ is given by the map ϕ−1 : Fq ∪ {∞} → P1(Fq)

defined by ϕ−1(α) = [α : 1] if α 6=∞ and ϕ−1(∞) = [1 : 0].

Now, consider the map ψ1 : P1(Fq) × PGL2(Fq) → P1(Fq), with q a power of p,

defined by

ψ1 ([α : β], γ) = [rα + sβ : tα + uβ],

where

γ =

λ
r t

s u

 : λ ∈ F×q

 .
This map defines a right group action of PGL2(Fq) on P1(Fq). We can define a right

action of PGL2(Fp) on P1(Fq) in the same way.
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Next consider the map ψ2 : (Fq ∪ {∞})× PGL2(Fq)→ Fq ∪ {∞} defined by

ψ2 (α, γ) = (rα + s)(tα + u)−1,

when α 6=∞, and ψ2 (∞, γ) = rt−1, with γ as above. This map defines a right group

action of PGL2(Fq) on Fq ∪ {∞}. Again, we can analogously define a right action of

PGL2(Fp) on Fq ∪ {∞}.

We claim that P1(Fq) and Fq∪{∞} are isomorphic as PGL2(Fq)-sets (or PGL2(Fp)-

sets). Indeed, with γ as above, we have that

ϕ ([α : β] · γ) = ϕ([rα + sβ : tα + uβ]) = (rα + sβ)(tα + uβ)−1

= β−1(rα + sβ)(tα + uβ)−1
(
β−1

)−1
= (rαβ−1 + s)(tαβ−1 + u)−1

=
(
αβ−1

)
· γ = ϕ ([α : β]) · γ,

and also that

ϕ−1 (α · γ) = ϕ−1
(
(rα + s)(tα + u)−1

)
= [(rα + s)(tα + u)−1 : 1]

= [rα + s : tα + u] = [α : 1] · γ = ϕ−1 (α) · γ

when α 6=∞, and

ϕ−1 (∞ · γ) = ϕ−1
(
rt−1

)
= [rt−1 : 1] = [r : t] = [1 : 0] · γ = ϕ−1 (∞) · γ.

Hence, we will use the actions defined by ψ1 and ψ2 interchangeably depending on

the setting.

2.1 Case 1: Orbits with a One-Term Representative

We begin our study of the orbits by showing explicitly that the orbits are at least as

refined as the partition of Vp into the sets Vp(σ) given in Table 1.2. We will make use

of the following observation. If

γ =


r t

s u


 ∈ PGL2(Fp)
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and α · γ = β, with α, β ∈ Fq ∪∞, then, since Fq has characteristic p,

αp · γ = (rαp + s)(tαp + u)−1 =
(
(rα + s)(tα + u)−1

)p
= (α · γ)p = βp.

Applying this fact repeatedly, we have that if α · γ = β, then αpn · γ = βp
n for any

n ∈ Z+. It follows that if α · γ = β and αpn = α for some n ∈ Z+, then

βp
n = αp

n · γ = α · γ = β.

Proposition 2.1. Let f ∈ Vp(σ1) and g ∈ Vp(σ2) with σ1 6= σ2. Then f and g are

not in the same orbit under the action of GL1(Fp)×GL2(Fp).

Proof. Let f ∈ Vp(σ1) and g ∈ Vp(σ2) with σ1 6= σ2. Let [α1;α2], [α3;α4], [α5;α6],

[α7;α8] ∈ P1(Fq1) be the roots of f , and let [β1; β2], [β3; β4], [β5; β6], [β7; β8] ∈ P1(Fq2)

be the roots of g, where q1 and q2 are the appropriate powers of p. We have that

f(x, y) = a(α2x− α1y)(α4x− α3y)(α6x− α5y)(α8x− α7y)

and that

g(x, y) = b(β2x− β1y)(β4x− β3y)(β6x− β5y)(β8x− β7y)

for some a, b ∈ F×p .

Assume that there exists (c, γ) ∈ GL1(Fp) × GL2(Fp) such that (c, γ) · f = g,

where

γ =

r t

s u

 ∈ GL2(Fp).

Then

g(x, y) = [(c, γ) · f ](x, y)

= ca(α2(rx+ sy)− α1(tx+ uy)) · · · (α8(rx+ sy)− α7(tx+ uy))

= ca((−α1t+ α2r)x− (α1u− α2s)y) · · · ((−α7t+ α8r)x− (α7u− α8s)y).

So, for each j ∈ {1, 3, 5, 7}, there is a unique i ∈ {1, 3, 5, 7} such that

[βj; βj+1] = [αiu− αi+1s;−αit+ αi+1r] = [αi;αi+1] · γ,
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where

γ =


 u −t

−s r


 ∈ PGL2(Fp).

Hence, f and g have the same number of distinct roots. Moreover, since P1(Fq)

and Fq ∪ {∞} are isomorphic as PGL2(Fp)-sets, we have shown that there exists

γ ∈ PGL2(Fp) such that for each j ∈ {1, 3, 5, 7}, there is a unique i ∈ {1, 3, 5, 7} such

that αiα−1
i+1 · γ = βjβ

−1
j+1. Hence, if

(
αiα

−1
i+1

)pn

= αiα
−1
i+1, then for the corresponding

j,
(
βjβ

−1
j+1

)pn

= βjβ
−1
j+1 for any n ∈ Z+. Therefore, f and g have the same number of

roots in each extension of Fp. But then f and g are both in Vp(σ) for some σ, which

is a contradiction.

Since |Vp(0)| = 1, it follows immediately from Proposition 2.1 that Vp(0) is an

orbit of the action of GL1(Fp) × GL2(Fp) on Vp. To determine how the sets Vp(σ),

with σ ∈ {14, 131, 1212}, break down into orbits under this action, we consider a

representative from each set and compute the size of its stabilizer. We recall that

|GL1(Fp)×GL2(Fp)| = (p− 1)(p2 − 1)(p2 − p).

First, we claim that Vp(14) is a single orbit. Since x4 ∈ Vp(14) and |Vp(14)| = p2−1,

it suffices to show that the size of the stabilizer of x4 is (p− 1)(p2− p). Suppose that

there exists (c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ) · x4 = x4, where

γ =

r t

s u

 ∈ GL2(Fp).

Then

x4 = c
(
r4x4 + 4r3sx3y + 6r2s2x2y2 + 4rs3xy3 + s4y4

)
.

Hence, s = 0, and for each of the p− 1 nonzero choices of r, there is a unique choice

for c such that cr4 = 1. Moreover, the only restriction on the second column of γ

is that the columns of γ must be linearly independent, and so, for each choice of r,

there are p2−p ways to assign t and u. Thus, there are indeed (p−1)(p2−p) distinct

elements (c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ) · x4 = x4.
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We show similarly that Vp(131) is a single orbit of the action of GL1(Fp)×GL2(Fp)

on Vp. Since x3y ∈ Vp(131) and |Vp(131)| = p(p2−1), it suffices to show that the size of

the stabilizer of x3y is (p−1)2. Suppose that there exists (c, γ) ∈ GL1(Fp)×GL2(Fp)

such that (c, γ) · x3y = x3y, where

γ =

r t

s u

 ∈ GL2(Fp).

Then

x3y = c
(
r3tx4 + r2(ru+ 3st)x3y + 3rs(ru+ st)x2y2 + s2(3ru+ st)xy3 + s3uy4

)
.

Since r2(ru + 3st) = 1, r 6= 0. Then, since r3t = 0, t = 0. Since γ ∈ GL2(Fp),

u 6= 0, and so, s3u = 0 implies that s = 0. So, the number of distinct elements

(c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ) ·x3y = x3y is the number of distinct ways

to assign c, r, and u such that cr3u = 1, which is (p− 1)2.

Next, we show that Vp(1212) is a single orbit. Since x2y2 ∈ Vp(1212) and

|Vp(1212)| = 1
2p(p

2 − 1), it suffices to show that the size of the stabilizer of x2y2 is

2(p−1)2. Suppose that there exists (c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ)·x2y2 =

x2y2, where

γ =

r t

s u

 ∈ GL2(Fp).

Then

x2y2 = c[r2t2x4 + 2rt(ru+ st)x3y + (r2u2 + 4rstu+ s2t2)x2y2

+ 2su(ru+ st)xy3 + s2u2y4)].

Since γ ∈ GL2(Fp), r2t2 = 0, and s2u2 = 0, either r = u = 0 or s = t = 0. In

the former case, we count the number of distinct ways to assign c, s, and t such that

cs2t2 = 1, which is (p−1)2. In the latter case, we count the number of distinct ways to

assign c, r, and u such that cr2u2 = 1, which is again (p−1)2. Thus, there are indeed

2(p− 1)2 distinct elements (c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ) · x2y2 = x2y2.
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So far, we have relied on the existence of a simple representative in each set, but

this approach does not generalize well. Instead, we will exploit properties of the

action of PGL2(Fq) on P1(Fq), which we develop in the next section.

2.2 The Action of PGL2(Fq) on P1(Fq) and the Cross Ratio

The results in this section are essential to continuing our general strategy for clas-

sifying the orbits, which is to compute the size of the stabilizer of a representative

form f ∈ Vp(σ).

Lemma 2.2. Let γ ∈ PGL2(Fq) such that γ is not the identity. Then γ is in the

stabilizer of at most two elements of Fq ∪ {∞}.

Proof. Let

γ =


r t

s u


 ∈ PGL2(Fq)

such that γ is not the identity, and let α ∈ Fq ∪{∞}. Then γ is in the stabilizer of α

if and only if α(tα+u) = rα+s. Either the quadratic equation tx2 +(u−r)x−s = 0

has at most two solutions, or t = s = 0 and u = r. Since γ is not the identity, the

latter case yields a contradiction. Hence, γ is in the stabilizer of at most two elements

of Fq ∪ {∞}.

Proposition 2.3. The action of PGL2(Fq) on Fq ∪ {∞} is simply triply transitive.

Proof. To show that the action is triply transitive, it suffices to show that for any

three distinct points α1, α2, α3 ∈ Fq ∪ {∞}, there exists γ ∈ PGL2(Fq) such that

α1 · γ = 1, α2 · γ = 0, and α3 · γ =∞. Indeed, we can take

γ =


 α1 − α3 α1 − α2

−α2(α1 − α3) −α3(α1 − α2)


 ∈ PGL2(Fq)
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so that

α1 · γ = ((α1 − α3)α1 − α2(α1 − α3))((α1 − α2)α1 − α3(α1 − α2))−1

= (α2
1 − α3α1 − α2α1 + α2α3)(α2

1 − α2α1 − α3α1 + α3α2)−1 = 1,

and also,

α2 · γ = ((α1 − α3)α2 − α2(α1 − α3))((α1 − α2)α2 − α3(α1 − α2))−1 = 0,

and lastly,

α3 · γ = ((α1 − α3)α3 − α2(α1 − α3))((α1 − α2)α3 − α3(α1 − α2))−1 =∞.

Now, let α1, α2, α3 be three distinct points in Fq ∪ {∞} and assume that there

exist γ1, γ2 ∈ PGL2(Fq) such that αi · γ1 = αi · γ2 for i = 1, 2, 3. Then γ2 ◦ γ1
−1 is

in the stabilizer of αi for i = 1, 2, 3. By Lemma 2.2, γ2 ◦ γ1
−1 is the identity, and so,

γ1 = γ2. Thus, the action of PGL2(Fq) on Fq ∪ {∞} is simply triply transitive.

Let γ be as in the proof above. Note that the action of γ on α4 ∈ Fq ∪ {∞} is

given by

α4 · γ = ((α1 − α3)α4 − α2(α1 − α3))((α1 − α2)α4 − α3(α1 − α2))−1

= (α1α4 − α3α0 − α2α1 + α2α3)(α1α4 − α2α4 − α3α1 + α3α2)−1

= ((α4 − α2)(α1 − α3))((α4 − α3)(α1 − α2))−1

= (α4 − α2)(α1 − α3)
(α4 − α3)(α1 − α2) .

The last expression is, by definition, the cross ratio of the four ordered points α1, α2,

α3, α4. The order of the points is significant. For example, if

(α4 − α2)(α1 − α3)
(α4 − α3)(α1 − α2) = C,

then the cross ratio of the four ordered points α1, α2, α3, α4 is

(α1 − α3)(α2 − α4)
(α1 − α4)(α2 − α3) = C

C − 1 ,
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The cross ratio and its properties have been studied extensively and are well-

understood. One property, which can be found in Section 1.11 of [4], is that if the

cross ratio of the four ordered points α1, α2, α3, α4 is C, then the cross ratio of these

four points in a different order is one of the following :

C,
1
C
, 1− C, 1

1− C ,
C

C − 1 ,
C − 1
C

.

Moreover, if the four ordered points are distinct, then the cross ratio is not 0, 1 or∞.

In Chapter 3, we study the orbits of the action of GL1(Fp)×GL2(Fp) on Vp containing

forms with four distinct roots, and the cross ratio plays an important role.

While Proposition 2.3 focuses on the action of PGL2(Fq) on Fq ∪ {∞}, with q a

power of p, it also leads to a useful result about the action of PGL2(Fp) on Fq ∪{∞}.

We have seen that if γ ∈ PGL2(Fp) and α·γ = β, with α, β ∈ Fq, then αp ·γ = βp. The

following proposition shows that for any element of PGL2(Fq) that has this property

when acting on three distinct points in Fq ∪ {∞}, there is an element of PGL2(Fp)

that acts in the same way on those three points.

Proposition 2.4. Let α1, α2, α3 and β1, β2, β3 be two sets of three distinct ordered

points in Fq ∪ {∞}, with q a power of p. There exists γ ∈ PGL2(Fp) such that for

each i ∈ {1, 2, 3}, αi · γ = βi if and only if there exists γ′ ∈ PGL2(Fq) such that for

each i ∈ {1, 2, 3}, αi · γ′ = βi and αpi · γ′ = βpi .

Proof. Let α1, α2, α3 and β1, β2, β3 be two sets of three distinct ordered points in

Fq ∪ {∞}, with q a power of p. First, suppose that there exists

γ =


r t

s u


 ∈ PGL2(Fp)

such that for each i ∈ {1, 2, 3}, αi · γ = βi. Let

γ′ =

λ
r t

s u

 : λ ∈ F×q

 ∈ PGL2(Fq).
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Since for each i ∈ {1, 2, 3}, αi · γ = βi, we have that αi · γ′ = βi. Moreover, since for

each i ∈ {1, 2, 3}, αpi · γ = βpi , we also have that αpi · γ′ = βpi .

Next, suppose that there exists γ′ ∈ PGL2(Fq) such that for each i ∈ {1, 2, 3},

αi · γ′ = βi and αpi · γ′ = βpi . If γ′ is a representative matrix in γ′, then γ′ has at least

one nonzero entry. Scaling by the inverse of this entry, we have

γ′ =


r t

s u




where at least one of r, s, t, u is equal to 1. Let

γp =


rp tp

sp up


 .

We have that βpi = αpi · γ′ for i = 1, 2, 3, but also, since Fq has characteristic p,

βpi = (αi · γ′)p =
(
(rαi + s)(tαi + u)−1

)p
= (rpαpi + sp)(tpαpi + up)−1 = αpi · γp

for i = 1, 2, 3. Hence, γ′ and γp act in the same way on the three distinct points

αp1, α
p
2, α

p
3. By Proposition 2.3, γ′ and γp are equal as elements of PGL2(Fq); that is

λ

r t

s u

 =

rp tp

sp up

 .
Since one of r, s, t, u is 1, λ = 1, and hence, r, s, t, u ∈ Fp. Therefore, there exists

γ ∈ PGL2(Fp) that acts as γ′ on the αi, namely

γ =

λ
r t

s u

 : λ ∈ F×p

 .

2.3 Case 2: Other Orbits of Forms with Repeated Roots

We now establish a connection between the action of GL1(Fp)×GL2(Fp) on two forms

f and g in the same set Vp(σ) and the action of PGL2(Fp) on their roots in P1(Fq),
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with q the appropriate power of p. This, in turn, allows us to make use of the results

from the previous section.

Proposition 2.5. Let f, g ∈ Vp(σ) for some fixed σ. Let [α1;α2], [α3;α4], [α5;α6],

[α7;α8] ∈ P1(Fq) be the roots of f , and let [β1; β2], [β3; β4], [β5; β6], [β7; β8] ∈ P1(Fq)

be the roots of g, where q is the appropriate power of p. There exists (c, γ) in

GL1(Fp) × GL2(Fp) such that (c, γ) · f = g if and only if there exists γ ∈ PGL2(Fp)

such that for each j ∈ {1, 3, 5, 7}, there is a unique i ∈ {1, 3, 5, 7} such that

[αi;αi+1] · γ = [βj; βj+1].

Proof. Let f, g ∈ Vp. Let [α1;α2], [α3;α4], [α5;α6], [α7;α8] ∈ P1(Fq) be the roots of f ,

and let [β1; β2], [β3; β4], [β5; β6], [β7; β8] ∈ P1(Fq) be the roots of g. We have that

f(x, y) = a(α2x− α1y)(α4x− α3y)(α6x− α5y)(α8x− α7y)

and that

g(x, y) = b(β2x− β1y)(β4x− β3y)(β6x− β5y)(β8x− β7y)

for some a, b ∈ F×p .

First, suppose that there exists (c, γ) ∈ GL1(Fp)×GL2(Fp) such that (c, γ) ·f = g,

where

γ =

r t

s u

 ∈ GL2(Fp).

Then

g(x, y) = [(c, γ) · f ](x, y)

= ca(α2(rx+ sy)− α1(tx+ uy)) · · · (α8(rx+ sy)− α7(tx+ uy))

= ca((−α1t+ α2r)x− (α1u− α2s)y) · · · ((−α7t+ α8r)x− (α7u− α8s)y).

Let

γ =


 u −t

−s r


 ∈ PGL2(Fp).
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Then for each j ∈ {1, 3, 5, 7}, there is a unique i ∈ {1, 3, 5, 7} such that

[αi;αi+1] · γ = [αiu− αi+1s;−αit+ αi+1r] = [βj; βj+1].

Next, suppose that there exists γ ∈ PGL2(Fp) such that for each j ∈ {1, 3, 5, 7},

there is a unique i ∈ {1, 3, 5, 7} such that

[αi;αi+1] · γ = [βj; βj+1],

where

γ =


r t

s u


 ∈ PGL2(Fp).

Then [βj; βj+1] = [rαi + sαi+1; tαi + uαi+1], and hence, for each j ∈ {1, 3, 5, 7}, there

is a unique i ∈ {1, 3, 5, 7} such that

(βj, βj+1) = cj(rαi + sαi+1, tαi + uαi+1)

for some cj ∈ F×q . So,

g(x, y) = b(β2x− β1y)(β4x− β3y)(β6x− β5y)(β8x− β7y)

= c1c3c5c7b((tα1 + uα2)x− (rα1 + sα2)y) · · · ((tα7 + uα8)x− (rα7 + sα8)y)

= c1c3c5c7b(α2(ux− sy)− α1(−tx+ ry)) · · · (α8(ux− sy)− α7(−tx+ ry))

= c1c3c5c7ba
−1[(1, γ) · f ](x, y),

where

γ =

 u −t

−s r

 ∈ GL2(Fp).

Since g ∈ Vp and (1, γ) · f ∈ Vp, c = c1c3c5c7ba
−1 ∈ Fp. Moreover, (c, γ) · f = g.

An important consequence of Proposition 2.5 is that given f ∈ Vp(σ), for each

element of PGL2(Fp) that acts as a permutation on the roots of f , there are p − 1

elements of GL1(Fp)×GL2(Fp) that fix f , and these are the only elements that fix f .

So, rather than compute the size of the stabilizer of f with respect to the action of
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GL1(Fp)×GL2(Fp), we can count the number of elements of PGL2(Fp) that act as a

permutation on the roots of f . It is important to observe that not all permutations

of the roots of f can be realized as an element of PGL2(Fp); in order for an element

of PGL2(Fp) to act as a permutation of the roots, the permutation must satisfy

the condition that if α → β, then αp → βp. Let N be the number of elements of

PGL2(Fp) that act as a permutation of the roots of f . Then the size of the stabilizer

of f with respect to the action of GL1(Fp) × GL2(Fp) is N(p − 1). Again, we recall

that |GL1(Fp)×GL2(Fp)| = (p− 1)(p2 − 1)(p2 − p).

Let f ∈ Vp(22), and recall that |Vp(22)| = 1
2p(p − 1)2. We will show that Vp(22)

is a single orbit by showing that there are 2(p + 1) elements of PGL2(Fp) that act

as a permutation on the roots of f . We denote the roots of f by α and αp. By

Proposition 2.3, for each β ∈ Fp2 such that β 6= α and β 6= αp, there is a unique

element γ ∈ PGL2(Fp2) such that γ · α = α, γ · αp = αp, and γ · 0 = β. Since 0p = 0,

by Proposition 2.4, there exists γ′ ∈ PGL2(Fp) such that γ′ · α = αp, γ′ · αp = α, and

γ′ · 0 = β if and only if βp = β. So, there are p + 1 elements of PGL2(Fp) that act

as the permutation of α and αp given by α 7→ α and αp 7→ αp . By an analogous

argument, there are p+1 elements of PGL2(Fp) that act as the permutation of α and

αp given by α 7→ αp and αp 7→ α.

Next, let f ∈ Vp(1211), and recall that |Vp(1211)| = 1
2(p+1)p(p−1)2. We will show

that Vp(1211) is a single orbit by showing that there are 2 elements of PGL2(Fp) that

act as a permutation on the roots of f . We denote the roots of f by α1, α2, and α3,

where α1 is the double root. Any element of PGL2(Fp) that in acting as a permutation

of the roots, changes the double root of f corresponds to a collection of elements of

GL1(Fp)×GL2(Fp) that do not fix f . Hence, there are only two permutations of the

roots to consider. The first is given by α1 → α1, α2 → α2, and α3 → α3. The second

is given by α1 → α1, α2 → α3, and α3 → α2. By Proposition 2.3, there is a unique

element of PGL2(Fp) that acts as each of these permutations.
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Finally, let f ∈ Vp(212), and recall that |Vp(212)| = 1
2(p+1)p(p−1)2. We will show

that Vp(1211) is a single orbit by showing that there are 2 elements of PGL2(Fp) that

act as a permutation on the roots of f . We denote the roots of f by α1, α2, and αp2,

where α1 is the double root. Since αp1 = α1, there are no elements of PGL2(Fp) that

act as a permutation that sends α1 to α2. Hence, there are only two permutations

of the roots to consider. The first is given by α1 → α1, α2 → α2, and αp2 → αp2.

The second is given by α1 → α1, α2 → αp2, and αp2 → α2. By Proposition 2.3, there

is a unique element of PGL2(Fp2) that acts as each of these permutations, and by

Proposition 2.4, each has a corresponding element of PGL2(Fp) that acts in the same

way.

We have now shown that each of Vp(0), Vp(14), Vp(131), Vp(1212), Vp(22), Vp(1211),

and Vp(212) is single orbit under the action of GL1(Fp)×GL2(Fp) on Vp.
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Chapter 3

The Orbits of the Action of GL1(Fp)×GL2(Fp) on

Vp Containing Forms with Four Distinct Roots

In order to extend our strategy of counting the number of elements of PGL2(Fp) that

act as a permutation of the roots of a form f to the case where f has four distinct

roots, we need to build upon Proposition 2.3 and Proposition 2.4. We do this by

considering the cross ratio of the roots.

Proposition 3.1. Let α1, α2, α3, α4 and β1, β2, β3, β4 be two sets of ordered points in

Fq ∪ {∞}. Then the two ordered sets have the same cross ratio if and only if there

exists γ ∈ PGL2(Fq) such that αi · γ = βi, i = 1, 2, 3, 4. Moreover, this γ is unique.

Proof. Let α1, α2, α3, α4 and β1, β2, β3, β4 be two sets of ordered points in Fq ∪ {∞}.

First, suppose that αi · γ = βi, i = 1, 2, 3, 4, for some

γ =


r t

s u


 ∈ PGL2(Fq).

Then βi = (rαi + s)(tαi + u)−1, and hence,

βi − βj = [(rαi + s)(tαj + u)− (rαj + s)(tαi + u)](tαi + u)−1(tαj + u)−1

= (ru− st)(αi − αj)((tαi + u)(tαj + u))−1.

So,
(β1 − β3)(β2 − β4)
(β1 − β4)(β2 − β3) = (α1 − α3)(α2 − α4)

(α1 − α4)(α2 − α3) .

Next, suppose that the two sets of ordered points have the same cross ratio. Then

(β1 − β3)(β2 − β4)
(β1 − β4)(β2 − β3) = C = (α1 − α3)(α2 − α4)

(α1 − α4)(α2 − α3) .
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By Proposition 2.3, there exists a unique γ ∈ PGL2(Fq) such that αi · γ = βi,

i = 2, 3, 4. We have already shown that the two sets of ordered points α1, α2, α3, α4

and α1 · γ, α2 · γ, α3 · γ, α4 · γ have the same cross ratio. Hence,

(α1 · γ − β3) (β2 − β4)
(α1 · γ − β4) (β2 − β3) = (α1 · γ − α3 · γ) (α2 · γ − α4 · γ)

(α1 · γ − α4 · γ) (α2 · γ − α3 · γ) = C.

So, α1 · γ and β1 both satisfy the linear equation

((β2 − β4)− C(β2 − β3))x = β3(β2 − β4)− Cβ4(β2 − β3),

and thus, α1 · γ = β1.

The proof of the following proposition is almost identical to the proof of Proposi-

tion 2.4 but it relies on Proposition 3.1 instead of Proposition 2.3.

Proposition 3.2. Let α1, α2, α3, α4 and β1, β2, β3, β4 be two sets of three distinct

ordered points in Fq ∪ {∞}, with q a power of p. There exists γ ∈ PGL2(Fp) such

that for each i ∈ {1, 2, 3, 4}, αi · γ = βi if and only if there exists γ′ ∈ PGL2(Fq) such

that for each i ∈ {1, 2, 3, 4}, αi · γ′ = βi and αpi · γ′ = βpi .

Proof. Let α1, α2, α3, α4 and β1, β2, β3, β4 be two sets of three distinct ordered points

in Fq ∪ {∞}, with q a power of p. First, suppose that there exists

γ =


r t

s u


 ∈ PGL2(Fp)

such that for each i ∈ {1, 2, 3, 4}, αi · γ = βi. Let

γ′ =

λ
r t

s u

 : λ ∈ F×q

 ∈ PGL2(Fq).

Since for each i ∈ {1, 2, 3, 4}, αi · γ = βi, we have that αi · γ′ = βi. Moreover, since

for each i ∈ {1, 2, 3, 4}, αpi · γ = βpi , we also have that αpi · γ′ = βpi .

28



Next, suppose that there exists γ′ ∈ PGL2(Fq) such that for each i ∈ {1, 2, 3, 4},

αi · γ′ = βi and αpi · γ′ = βpi . If γ′ is a representative matrix in γ′, then γ′ has at least

one nonzero entry. Scaling by the inverse of this entry, we have

γ′ =


r t

s u




where at least one of r, s, t, u is equal to 1. Let

γp =


rp tp

sp up


 .

We have that βpi = αpi · γ′ for i = 1, 2, 3, 4, but also, since Fq has characteristic p,

βpi = (αi · γ′)p =
(
(rαi + s)(tαi + u)−1

)p
= (rpαpi + sp)(tpαpi + up)−1 = αpi · γp

for i = 1, 2, 3, 4. Hence, γ′ and γp act in the same way on the three distinct points

αp1, α
p
2, α

p
3. By Proposition 3.1, γ′ and γp are equal as elements of PGL2(Fq); that is

λ

r t

s u

 =

rp tp

sp up

 .
Since one of r, s, t, u is 1, λ = 1, and hence, r, s, t, u ∈ Fp. Therefore, there exists

γ ∈ PGL2(Fp) that acts as γ′ on the αi, namely

γ =

λ
r t

s u

 : λ ∈ F×p

 .

As before, we let N be the number of elements of PGL2(Fp) that act as a per-

mutation of the roots of f so that, by Proposition 2.5, the size of the stabilizer of

f with respect to the action of GL1(Fp) × GL2(Fp) is N(p − 1). We recall that

|GL1(Fp)×GL2(Fp)| = (p− 1)(p2 − 1)(p2 − p).
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3.1 Case 1: Orbits of Forms with Four Conjugate Roots in P1(Fp4)

The results in this section, which then motivate the results in subsequent sections,

are largely based on the work of H. R. Brahana in [3]. While his work was done in

a different setting many years ago, it provides a framework from which to build our

argument.

Let f ∈ Vp(4), and recall that |Vp(4)| = 1
4p

2(p + 1)(p − 1)2. We will show that

Vp(4) is partitioned into one orbit of size 1
4p(p + 1)(p − 1)2 and p−1

2 orbits of size
1
2p(p+ 1)(p− 1)2 by showing that there are either 2 or 4 elements of PGL2(Fp) that

act as a permutation on the roots of f depending on the cross ratio of the roots. We

denote the roots of f by α, αp, αp2 , and αp3 . We need only to consider permutations

of the roots where if α→ β then αp → βp, of which there are four. The first is given

by α → α, αp → αp, αp2 → αp
2 , and αp

3 → αp
3 . The second is given by α → αp,

αp → αp
2 , αp2 → αp

3 , and αp
3 → α. The third is given by α → αp

2 , αp → αp
3 ,

αp
2 → α, and αp3 → αp. The fourth is given by α → αp

3 , αp → α, αp2 → αp, and

αp
3 → αp

2 .

It follows immediately from Proposition 3.1 and Proposition 3.2 that there is a

unique element of PGL2(Fp) that acts as the permutation given by α→ α, αp → αp,

αp
2 → αp

2 , and αp3 → αp
3 . Let C be the cross ratio of of the ordered points α, αp,

αp
2 , and αp3 . Then

(αp2 − α)(αp3 − αp)
(αp2 − αp)(αp3 − α) = (α− αp2)(αp − αp3)

(α− αp3)(αp − αp2) = C.

That is, the cross ratio of of the ordered points αp2 , αp3 , α, and αp is also C. By

Proposition 3.1, there is a unique element of PGL2(Fp4) that acts as the permutation

given by α → αp
2 , αp → αp

3 , αp2 → α, and αp3 → αp, and by Proposition 3.2, there

is a corresponding element of PGL2(Fp) that acts in the same way. Hence there are

at least 2 elements of PGL2(Fp) that act as a permutation on the roots of f .
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For the remaining two permutations, note that

(αp − αp3)(αp2 − α)
(αp − α)(αp2 − αp3) = (αp3 − αp)(α− αp2)

(αp3 − αp2)(α− αp) = C

C − 1 .

and that C = C/(C − 1) if and only if C = 0 or C = 2. Since the four roots of f are

distinct, C 6= 0. So, by Proposition 3.1 and Proposition 3.2, for each of the remaining

permutations, there is a unique element of PGL2(Fp) that acts as that permutation

if and only if C = 2. Hence, the size of the stabilizer of f is 4(p− 1) if the cross ratio

of the roots of f is 2 and 2(p− 1) otherwise. The corresponding orbit having f as a

representative has size 1
4p(p + 1)(p− 1)2 or 1

2p(p + 1)(p− 1)2, respectively. Suppose

that there are m orbits of the former size and k orbits of the latter size. Then

1
4p

2(p+ 1)(p− 1)2 = m

4 p(p+ 1)(p− 1)2 + k

2p(p+ 1)(p− 1)2,

and hence, 2k +m = p.

If m > 1, then there exist forms f, g ∈ Vp(4) such that for each form the cross

ratio of the roots, when ordered as α, αp, αp2 , and αp
3 , is 2 but also f and g are

in distinct orbits. But then by Proposition 3.1 and Proposition 3.2 there exists a

unique element of PGL2(Fp) that maps the roots of f to the roots of g, and so, by

Proposition 2.5 there exists an element of GL1(Fp)×GL2(Fp) that maps f to g, which

is a contradiction. Hence m ≤ 1. Since p is odd, m = 1 and k = (p− 1)/2.

Hence, we conclude that for the case of Vp(4), there is one orbit of size
1
4p(p+ 1)(p− 1)2, and there are (p− 1)/2 orbits of size 1

2p(p+ 1)(p− 1)2.

3.2 Case 2: Orbits of Forms with a Conjugate Pair of Roots in P1(Fp2)

and Two Distinct Roots in P1(Fp)

The argument for determining how Vp(211) is partitioned into orbits is very similar

to the argument for Vp(4) in the previous section. First, let f ∈ Vp(211), and recall

that |Vp(211)| = 1
4p

2(p+ 1)(p− 1)2. We denote the roots of f by α1, α2, α3, and αp3.
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We need only to consider permutations of the roots where if α → β then αp → βp,

of which there are again four. The first is given by α1 → α1, α2 → α2, α3 → α3, and

αp3 → αp3. The second is given by α1 → α2, α2 → α1, α3 → α3, and αp3 → αp3. The

third is given by α1 → α1, α2 → α2, α3 → αp3, and αp3 → α3. The fourth is given by

α1 → α2, α2 → α1, α3 → αp3, and αp3 → α3.

As with Vp(4), it follows immediately that there is a unique element of PGL2(Fp)

that acts as the permutation given by α1 → α1, α2 → α2, α3 → α3, and αp3 → αp3.

Let C be the cross ratio of of the ordered points α1, α2, α3, and αp3. Then

(α2 − αp3)(α1 − α3)
(α2 − α3)(α1 − αp3) = (α1 − α3)(α2 − αp3)

(α1 − αp3)(α2 − α3) = C.

That is, the cross ratio of of the ordered points α2, α1, αp3, and α3 is also C. By

Proposition 3.1, there is a unique element of PGL2(Fp2) that acts as the permutation

given by α1 → α2, α2 → α1, α3 → αp3, and αp3 → α3, and by Proposition 3.2, there is

a corresponding element of PGL2(Fp) that acts in the same way. Hence there are at

least 2 elements of PGL2(Fp) that act as a permutation on the roots of f .

For the remaining two permutations, note that

(α1 − αp3)(α2 − α3)
(α1 − α3)(α2 − αp3) = (α2 − α3)(α1 − αp3)

(α2 − αp3)(α1 − α3) = 1
C
.

and that C = 1/C if and only if C = 1 or C = −1. Since the four roots of f are

distinct, C 6= 1. So, by Proposition 3.1 and Proposition 3.2, for each of the remaining

permutations, there is a unique element of PGL2(Fp) that acts as that permutation if

and only if C = −1. Hence, the size of the stabilizer of f is 4(p− 1) if the cross ratio

of the roots of f is −1 and 2(p− 1) otherwise. The corresponding orbit having f as

a representative has size 1
4p(p+ 1)(p− 1)2 or 1

2p(p+ 1)(p− 1)2, respectively. Suppose

that there are m orbits of the former size and k orbits of the latter size. Then

1
4p

2(p+ 1)(p− 1)2 = m

4 p(p+ 1)(p− 1)2 + k

2p(p+ 1)(p− 1)2,

and hence, 2k + m = p. By the same argument used for the case of Vp(4), we have

m ≤ 1. Since p is odd, we again have that m = 1 and k = (p− 1)/2.
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In conclusion, for the case of Vp(211), there is one orbit of size 1
4p(p+ 1)(p− 1)2,

and there are (p− 1)/2 orbits of size 1
2p(p+ 1)(p− 1)2.

3.3 Case 3: Orbits of Forms with Two Distinct Conjugate Pairs of

Roots in P1(Fp2)

In this section, we address the case of Vp(22); we can draw from our work in the

previous two cases. Let f ∈ Vp(22), and recall that |Vp(22)| = 1
8(p−2)p(p+1)(p−1)2.

We denote the roots of f by α1, αp1, α2, and αp2. As before, we need only to consider

permutations of the roots where if α→ β then αp → βp. In this case, there are eight

such permutations, which we break into two sets of four. For the first set, the first

permutation is given by α1 → α1, αp1 → αp1, α2 → α2, and αp2 → αp2. The second is

given by α1 → αp1, αp1 → α1, α2 → αp2, and αp2 → α2. The third is given by α1 → α2,

αp1 → αp2, α2 → α1, and αp2 → αp1. The fourth is given by α1 → αp2, αp1 → α2, α2 → αp1,

and αp2 → α1. We saw that the ordered points αp1, α1, αp2, and α2 and the ordered

points α2, αp2, α1, and αp1 have the same cross ratio as the ordered points α1, αp1, α2,

and αp2 in the arguments for cases Vp(211) and Vp(4), respectively. Similarly, if the

cross ratio for the ordered points α1, αp1, α2, and αp2 is C, then

(αp2 − αp1)(α2 − α1)
(αp2 − α1)(α2 − αp1) = (α1 − α2)(αp1 − αp2)

(α1 − αp2)(αp1 − α2) = C.

That is, the cross ratio of of the ordered points αp2, α2, αp1, and α1 is also C. Hence,

by Proposition 3.1 and Proposition 3.2, for each of the permutations in this first set,

there is a unique element of PGL2(Fp) that acts as that permutation.

For the second set, the first permutation is given by α1 → α1, αp1 → αp1, α2 → αp2,

and αp2 → α2. The second is given by α1 → αp1, αp1 → α1, α2 → α2, and αp2 → αp2.

The third is given by α1 → α2, αp1 → αp2, α2 → αp1, and αp2 → α1. The fourth is given

by α1 → αp2, αp1 → α2, α2 → α1, and αp2 → αp1. If the cross ratio of the ordered points

α1, αp1, α2, and αp2 is C, then, as we saw in the case of Vp(211), the ordered points
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α1, αp1, αp2, and α2 and the ordered points αp1, α1, α2, and αp2 have cross ratio 1/C.

Similarly,
(α2 − αp1)(αp2 − α1)
(α2 − α1)(αp2 − αp1) = (αp2 − α1)(α2 − αp1)

(αp2 − αp1)(α2 − α1) = 1
C
.

That is, the ordered points α2, αp2, αp1, and α1 and the ordered points αp2, α2, α1, and

αp1 have cross ratio 1/C as well. Hence, by Proposition 3.1 and Proposition 3.2, for

each of the permutations in the second set, there is a unique element of PGL2(Fp)

that acts as that permutation if and only C = −1.

So, the size of the stabilizer of f is 8(p − 1) if the cross ratio of the roots of f is

−1 and 4(p− 1) otherwise. The corresponding orbit having f as a representative has

size 1
8p(p + 1)(p − 1)2 or 1

4p(p + 1)(p − 1)2, respectively. Suppose that there are m

orbits of the former size and k orbits of the latter size. Then

1
8(p− 2)p(p+ 1)(p− 1)2 = m

8 p(p+ 1)(p− 1)2 + k

4p(p+ 1)(p− 1)2,

and hence, 2k + m = p − 2. By the same argument used for the case of Vp(4), we

have m ≤ 1. Since p is odd, m = 1 and k = (p− 3)/2.

Thus, for the case of Vp(22), there is one orbit of size 1
8p(p+ 1)(p− 1)2, and there

are (p− 3)/2 orbits of size 1
4p(p+ 1)(p− 1)2.

3.4 Case 4: Orbits of Forms with a Triple of Conjugate Roots in

P1(Fp3) and One Root in P1(Fp)

The next case is Vp(31). Let f ∈ Vp(31); recall that |Vp(31)| = 1
3p(p + 1)2(p − 1)2.

We denote the roots of f by α1, α2, αp2, and αp
2

2 . As before, we need only to consider

permutations of the roots where if α → β then αp → βp, of which there are three.

The first is given by α1 → α1, α2 → α2, αp2 → αp2, and αp
2

2 → αp
2

2 . The second is

given by α1 → α1, α2 → αp2, αp2 → αp
2

2 , and αp
2

2 → α2. The third is given by α1 → α1,

α2 → αp
2

2 , αp2 → α2, and αp
2

2 → αp2. It follows immediately from Proposition 3.1

and Proposition 3.2 that there is a unique element of PGL2(Fp) that acts as the
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permutation given by α1 → α1, α2 → α2, αp2 → αp2, and αp
2

2 → αp
2

2 . Let C be the

cross ratio of the ordered points α, αp, αp2 , and αp
3 . Then for the remaining two

permutations, we have that

(α1 − αp
2

2 )(αp2 − α2)
(α1 − α2)(αp2 − αp

2

2 )
= 1

1− C

and that
(α1 − α2)(αp2 − αp

2

2 )
(α1 − αp

2

2 )(αp2 − α2)
= C − 1

C
.

That is, the cross ratio of of the ordered points α1, αp2, αp
2

2 , and α2 is 1/(1−C), and

the cross ratio of of the ordered points α1, αp
2

2 , α2, and αp2 is (C − 1)/C. Moreover,

C = 1/(1−C) if and only if C = (C−1)/C if and only if C2−C+1 = 0. Completing

the square, we have that C2−C+1 = 0 if and only if (2(C−1/2))2 = −3, which has no

solution when p ≡ −1 (mod 3) and the two solutions (1 +
√
−3)/2 and (1−

√
−3)/2

when p ≡ 1 (mod 3).

So, the size of the stabilizer of f is (p− 1) when p ≡ −1 (mod 3), in which case

the size of the corresponding orbit having f as a representative is p(p + 1)(p − 1)2.

Hence, if p ≡ −1 (mod 3), then Vp(31) is partitioned into (p + 1)/3 orbits of size

p(p+ 1)(p− 1)2.

On the other hand, suppose that p ≡ 1 (mod 3). Then by Proposition 3.1 and

Proposition 3.2, for each of the the second and third permutations above, there is

a unique element of PGL2(Fp) that acts as that permutation if and only if either

C = (1+
√
−3)/2 or C = (1−

√
−3)/2. So, the size of the stabilizer of f is 3(p−1) if the

cross ratio of the roots of f is either (1+
√
−3)/2 or (1−

√
−3)/2 and (p−1) otherwise,

and the corresponding orbit having f as a representative has size 1
3p(p + 1)(p − 1)2

or p(p + 1)(p − 1)2, respectively. Suppose that there are m orbits of the former size

and k orbits of the latter size. Then

1
3p(p+ 1)2(p− 1)2 = m

3 p(p+ 1)(p− 1)2 + kp(p+ 1)(p− 1)2,

and hence, 3k +m = p+ 1.
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If m > 2, then there exist forms f, g ∈ Vp(31) such that f and g are in distinct

orbits and either the cross ratio of the roots of each form, when ordered as α1, α2, αp2,

and αp
2

2 , is (1+
√
−3)/2 or the cross ratio of the roots of each form, when ordered as α1,

α2, αp2, and αp
2

2 , is (1−
√
−3)/2. In either case, by Proposition 3.1 and Proposition 3.2

there exists a unique element of PGL2(Fp) that maps the roots of f to the roots of g,

and so, by Proposition 2.5 there exists an element of GL1(Fp)× GL2(Fp) that maps

f to g, which is a contradiction. Hence m ≤ 2. Since p ≡ 1 (mod 3), m = 2 and

k = (p− 1)/3.

So, we conclude that for the case of Vp(31), there are two orbits of size
1
3p(p + 1)(p − 1)2 and (p − 1)/3 orbits of size p(p + 1)(p − 1)2 when p ≡ 1 (mod 3).

On the other hand, there are (p + 1)/3 orbits of size p(p + 1)(p − 1)2 when p ≡ −1

(mod 3).

3.5 Case 5: Orbits of Forms with Four Distinct Roots in P1(Fp)

The final case is Vp(1111), where all roots are in Fp. Let f ∈ Vp(1111), and recall

that |Vp(1111)| = 1
24(p− 2)p(p+ 1)(p− 1)2. We denote the roots of f by α1, α2, α3,

and α4. Unlike in all previous cases, all of the possible 24 permutations of the roots

satisfy the condition that if α → β then αp → βp. Let C be the cross ratio of the

ordered points α1, α2, α3, and α4. We break the permutations into six sets of four

based on the cross ratios of their outputs in terms of C.

The first set of permutations preserve the cross ratio C. The first permutation in

this set is given by α1 → α1, α2 → α2, α3 → α3, and α4 → α4. The second is given by

α1 → α2, α2 → α1, α3 → α4, and α4 → α3. The third is given by α1 → α3, α2 → α4,

α3 → α1, and α4 → α2. The fourth is given by α1 → α4, α2 → α3, α3 → α2, and

α4 → α1. It follows immediately from Proposition 3.1 and Proposition 3.2 that there

is a unique element of PGL2(Fp) that acts as each of the permutations in the first

set.
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The second set of permutations change the cross ratio to 1/C. The first permu-

tation in this set is given by α1 → α1, α2 → α2, α3 → α4, and α4 → α3. The

second is given by α1 → α2, α2 → α1, α3 → α3, and α4 → α4. The third is given

by α1 → α3, α2 → α4, α3 → α2, and α4 → α1. The fourth is given by α1 → α4,

α2 → α3, α3 → α1, and α4 → α2. As we showed in the case of Vp(211), there is a

unique element of PGL2(Fp) that acts as each permutation in the second set if and

only if C = −1.

The third set of permutations change the cross ratio to C/(C − 1). The first

permutation in this set is given by α1 → α1, α2 → α4, α3 → α3, and α4 → α2. The

second is given by α1 → α2, α2 → α3, α3 → α4, and α4 → α1. The third is given by

α1 → α3, α2 → α2, α3 → α1, and α4 → α4. The fourth is given by α1 → α4, α2 → α1,

α3 → α2, and α4 → α3. As we showed in the case of Vp(4), there is a unique element

of PGL2(Fp) that acts as each permutation in the set group if and only if C = 2.

The fourth set of permutations change the cross ratio to 1 − C. The first per-

mutation in this set is given by α1 → α1, α2 → α3, α3 → α2, and α4 → α4. The

second is given by α1 → α2, α2 → α4, α3 → α1, and α4 → α3. The third is given

by α1 → α3, α2 → α1, α3 → α4, and α4 → α2. The fourth is given by α1 → α4,

α2 → α2, α3 → α3, and α4 → α1. We have not addressed a permutation from this

group in previous cases, but it is similar to the second and third groups. Note that

C = 1 − C if and only if C = 1/2. Hence, by Proposition 3.1 and Proposition 3.2

there is a unique element of PGL2(Fp) that acts as each of the permutations in the

fourth set if and only if C = 1/2.

The fifth set of permutations change the cross ratio to 1/(1 − C). The first

permutation in this set is given by α1 → α1, α2 → α3, α3 → α4, and α4 → α2. The

second is given by α1 → α2, α2 → α4, α3 → α3, and α4 → α1. The third is given

by α1 → α3, α2 → α1, α3 → α2, and α4 → α4. The fourth is given by α1 → α4,

α2 → α2, α3 → α1, and α4 → α3. As we showed in the case of Vp(31), there is a
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unique element of PGL2(Fp) that acts as each permutation in the fifth set if and only

if C = (1 +
√
−3)/2 or C = (1−

√
−3)/2.

The sixth set of permutations change the cross ratio to (C − 1)/C. The first

permutation in this set is given by α1 → α1, α2 → α4, α3 → α2, and α4 → α3. The

second is given by α1 → α2, α2 → α3, α3 → α1, and α4 → α4. The third is given

by α1 → α3, α2 → α2, α3 → α4, and α4 → α1. The fourth is given by α1 → α4,

α2 → α1, α3 → α3, and α4 → α2. As we showed in the case of Vp(31), there is a

unique element of PGL2(Fp) that acts as each permutation in the sixth set if and

only if C = (1 +
√
−3)/2 or C = (1−

√
−3)/2.

So, the size of the stabilizer of f is 12(p − 1) if the cross ratio of the roots of

f is (1 +
√
−3)/2 or (1 −

√
−3)/2, the size of the stabilizer of f is 8(p − 1) if the

cross ratio of the roots of f is −1, 2, or 1/2, and the size of the stabilizer of f is

4(p − 1) otherwise. The corresponding orbit having f as a representative has size
1
12p(p+ 1)(p− 1)2, 1

8p(p+ 1)(p− 1)2, or 1
4p(p+ 1)(p− 1)2, respectively. Suppose that

there are m orbits of the first size, k orbits of the second size, and n orbits of the

third size. Then

1
24(p−2)p(p+1)(p−1)2 = m

12p(p+1)(p−1)2 + k

8p(p+1)(p−1)2 + n

4p(p+1)(p−1)2,

and hence, 2m+ 3k + 6n = p− 2.

By the same argument used for the case of Vp(31), we have m ≤ 2. Moreover,

since p > 3, p − 2 6≡ 1 (mod 3), and hence, m 6= 2. It is worth examining a more

intuitive argument for why m 6= 2 in this case whereas we had m = 2 in the case

of Vp(31). We know that we cannot have forms f, g ∈ Vp(1111) such that f and

g are in distinct orbits but also the cross ratio of the roots of each form, when

ordered as α1, α2, α3, and α4, is (1 +
√
−3)/2. Assume, however, that the forms

f and g are in distinct orbits where the cross ratio of the roots of f , when ordered

as α1, α2, α3, and α4, is (1 +
√
−3)/2, and the cross ratio of the roots of g, when

ordered as β1, β2, β3, and β4, is (1−
√
−3)/2. Noting that if C = (1 +

√
−3)/2, then
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1/(1−C) = (C−1)/C = (1+
√
−3)/2 and 1−C = C/(C−1) = 1/C = (1−

√
−3)/2,

we see that the roots of g , when ordered as β2, β1, β3, and β4, for example, have cross

ratio (1 +
√
−3)/2. By Proposition 3.1 and Proposition 3.2 there is a unique element

of PGL2(Fp) that acts as the permutation given by α1 → β2, α2 → β1, α3 → β3,

and α4 → β4. So, by Proposition 2.5 there exists an element of GL1(Fp) × GL2(Fp)

that maps f to g, which is a contradiction. This argument breaks down in the case

of Vp(31) because any map that does not satisfy the condition that if α → β then

αp → βp cannot be realized as the action of an element of PGL2(Fp) on the roots.

Suppose that f, g ∈ Vp(31) such that the cross ratio of the roots of f when ordered

as α1, α2, αp2, and αp
2

2 , is (1 +
√
−3)/2, and the cross ratio of the roots of g, when

ordered as β1, β2, βp2 , and βp
2

2 , is (1 −
√
−3)/2. We cannot rearrange the roots of g

so that we simultaneously have that the cross ratio is (1 +
√
−3)/2 and that there is

a map from the roots of f to the roots of g satisfying that if α→ β then αp → βp.

Returning to the case of Vp(1111), we see that since 3k+ 6n ≡ 0 (mod 3), m = 0

when p ≡ −1 (mod 3), and m = 1 when p ≡ 1 (mod 3). Moreover, if m = 0, then

p − 2 = 3k + 6n, and if m = 1, then p − 2 = 2 + 3k + 6n. In either case, since p is

odd, we conclude that k is also odd. We claim that k = 1.

The only other case to consider is the case where there are three orbits, with

representatives f, g, h, of size 1
8p(p+ 1)(p− 1)2 such that the cross ratio of the roots

of f , when ordered as α1, α2, α3, and α4, is 2, the cross ratio of the roots of g, when

ordered as β1, β2, β3, and β4, is −1, and the cross ratio of the roots of h, when

ordered as δ1, δ2, δ3, and δ4, is 1/2. Noting that if C = 2, then C/(C − 1) = 2,

1/(1 − C) = 1 − C = −1 and 1/C = (C − 1)/C = 1/2, we see that the roots of g,

when ordered as β4, β2, β3, and β1, for example, have cross ratio 2 and that the roots

of h, when ordered as δ2, δ1, δ3, and δ4, for example, have cross ratio 2 as well. It

now follows from Proposition 3.1, Proposition 3.2 and Proposition 2.5 that f , g, and

h lie in the same orbit, and so, this case never happens.
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Hence, we conclude that for the case of Vp(1111), there is one orbit of size
1
12p(p+ 1)(p− 1)2, one orbit of size 1

8p(p+ 1)(p− 1)2, and there are (p− 7)/6 orbits

of size 1
4p(p+ 1)(p− 1)2 when p ≡ 1 (mod 3). On the other hand, there is one orbit

of size 1
8p(p+ 1)(p− 1)2 and there are (p− 5)/6 orbits of size 1

4p(p+ 1)(p− 1)2 when

p ≡ −1 (mod 3).

We have thus completely classified the orbits of the action of GL1(Fp)×GL2(Fp)

on Vp. There is still much work to be done towards achieving our goal to find a result

similar to Proposition 1.1 in the quartic case. Ideas for the next steps, along with

some preliminary results, are included in the appendices.
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Appendix A

Outline of Strategy to Compute an Explicit

Formula for φ̂p(g)

This appendix is intended to provide a rough sketch of future work. It has not been

rigorously checked.

The next step of our general strategy is to consider collections of binary quartic

forms over Fp of a given shape, such as ax4, all of which have a repeated root.

Table A.1 shows some key examples.

Table A.1 Count of forms of a given shape in each orbit

Shape of form # in Vp(0) # in Vp(14) # in Vp(131) # in Vp(1212) # in Vp(1211) # in Vp(212) # in Vp(22)
0 1 0 0 0 0 0 0

a1x
4 1 p− 1 0 0 0 0 0

a2x
3y 1 0 p− 1 0 0 0 0

a3x
2y2 1 0 0 p− 1 0 0 0

a1x
4 + a2x

3y 1 p− 1 p(p− 1) 0 0 0 0
a1x

4 + a3x
2y2 1 p− 1 0 p− 1 1

2(p− 1)2 1
2(p− 1)2 0

a2x
3y + a3x

2y2 1 0 p− 1 p− 1 (p− 1)2 0 0
a1x

4 + a2x
3y + a3x

2y2 1 p− 1 p(p− 1) p(p− 1) 1
2p(p− 1)2 1

2p(p− 1)2 0

kx2(x2 − ay2) p p− 1 0 0 1
2(p− 1)2 1

2(p− 1)2 0

k(x2 − ay2)2 p p− 1 0 1
2(p− 1)2 0 0 1

2(p− 1)2
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We also note the sizes of the relevant stabalizers:

|G| = (p+ 1)(p)(p− 1)3; |G|
|Vp(14)| = p(p− 1)2; |G|

|Vp(131)| = (p− 1)2;

|G|
|Vp(1212)| = 2(p− 1)2; |G|

|Vp(1211)| = 2(p− 1);

|G|
|Vp(212)| = 2(p− 1); |G|

|Vp(22)| = 2(p+ 1)(p− 1).

Recall that we want to find an explicit formula for φ̂p(g), and we know that

p5φ̂p(g) =
∑
f∈Vp

φp(f)〈f, g〉p

=
∑

f∈Vp(0)
〈f, g〉p +

∑
f∈Vp(14)

〈f, g〉p +
∑

f∈Vp(131)
〈f, g〉p +

∑
f∈Vp(1212)

〈f, g〉p

+
∑

f∈Vp(1211)
〈f, g〉p +

∑
f∈Vp(212)

〈f, g〉p +
∑

f∈Vp(22)
〈f, g〉p.

So, we want to express the sums over the seven orbits containing forms with repeated

roots in terms of sums of the form
∑

coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p, where f is chosen from

the left-most column of Table A.1. Table A.2 shows the relationships between these

two types of sums.

Table A.2 Expressing
∑

coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p in terms of sums over the orbits

f copies of
∑

f∈Vp(0)
〈f, g〉p copies of

∑
f∈Vp(14)

〈f, g〉p copies of
∑

f∈Vp(131)
〈f, g〉p copies of

∑
f∈Vp(1212)

〈f, g〉p copies of
∑

f∈Vp(1211)
〈f, g〉p copies of

∑
f∈Vp(212)

〈f, g〉p copies of
∑

f∈Vp(22)
〈f, g〉p

0 p(p+ 1)(p− 1)3 0 0 0 0 0 0

a1x
4 p(p+ 1)(p− 1)3 p(p− 1)3 0 0 0 0 0

a2x
3y p(p+ 1)(p− 1)3 0 (p− 1)3 0 0 0 0

a3x
2y2 p(p+ 1)(p− 1)3 0 0 2(p− 1)3 0 0 0

a1x
4 + a2x

3y p(p+ 1)(p− 1)3 p(p− 1)3 p(p− 1)3 0 0 0 0

a1x
4 + a3x

2y2 p(p+ 1)(p− 1)3 p(p− 1)3 0 2(p− 1)3 (p− 1)3 (p− 1)3 0

a2x
3y + a3x

2y2 p(p+ 1)(p− 1)3 0 (p− 1)3 2(p− 1)3 2(p− 1)3 0 0

a1x
4 + a2x

3y + a3x
2y2 p(p+ 1)(p− 1)3 p(p− 1)3 p(p− 1)3 2p(p− 1)3 p(p− 1)3 p(p− 1)3 0

kx2(x2 − ay2) p2(p+ 1)(p− 1)3 p(p− 1)3 0 0 (p− 1)3 (p− 1)3 0

k(x2 − ay2)2 p2(p+ 1)(p− 1)3 p(p− 1)3 0 (p− 1)4 0 0 (p+ 1)(p− 1)3

Next, we use Table A.2 to choose a collection of sums that are equivalent, up to
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a factor in terms of p, to φ̂p(g). One option is the following:

(p+ 1)(p)(p− 1)3p5φ̂p(g)

= p
∑
k∈Fp

∑
a∈Fp

∑
(c,γ)∈G

〈(c, γ) · (k(x2 − ay2)2), g〉p

− p
∑
a1∈Fp

∑
(c,γ)∈G

〈(c, γ) · a1x
4, g〉p

− p2 ∑
a3∈Fp

∑
(c,γ)∈G

〈(c, γ) · a3x
2y2, g〉p

+ (p+ 1)
∑
a1∈Fp

∑
a2∈Fp

∑
a3∈Fp

∑
(c,γ)∈G

〈(c, γ) · (a1x
4 + a2x

3y + a3x
2y2), g〉p.

The last step is finding explicit formulas for these sums of the form∑
coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p. The challenge is to determine how often the sum is

nonzero. Conditions for each choice of f under which the sum∑
coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p is nonzero are provided in Table A.3.

Table A.3 Conditions on the coefficients of f such that∑
coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p 6= 0

f [f, (c, γ) · g] condition for
∑

coeff. of f

∑
(c,γ)∈G

〈(c, γ) · f, g〉p 6= 0

a1x
4 a1b5 b5 = 0

a2x
3y −1

4a2b4 b4 = 0

a3x
2y2 1

6a3b3 b3 = 0

a1x
4 + a2x

3y −1
4a2b4 + a1b5 b4 = 0 and b5 = 0

a1x
4 + a3x

2y2 1
6a3b3 + a1b5 b3 = 0 and b5 = 0

a2x
3y + a3x

2y2 1
6a3b3 − 1

4a2b4 b3 = 0 and b4 = 0

a1x
4 + a2x

3y + a3x
2y2 1

6a3b3 − 1
4a2b4 + a1b5 b3 = 0 and b4 = 0 and b5 = 0

kx2(x2 − ay2) −1
6kab3 + ab5 b3 = 0 and b5 = 0, or b3 6= 0

k(x2 − ay2)2 ka2b1 − 1
62kab3 + kb5 b1 = 0 and b3 = 0 and b5 = 0, or b1 = 0 and b3 6= 0, or b1 6= 0 and

(
−1

62b3
)2
− 4b1b5 is a square or zero
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Appendix B

Counting the Number of Forms in Each Orbit

Where the x2y2 Coefficient is 0

This appendix includes only rough arguments and has not been rigorously checked.

Let f(x, y) := a1x
4+a2x

3y+a3x
2y2+a4xy

3+a5y
4, where ai ∈ Fp for i = 1, 2, 3, 4, 5

with p a prime greater than 3. Then f factors completely over Fp:

f(x, y) = (α1x− β1y)(α2x− β2y)(α3x− β3y)(α4x− β4y),

αi, βi ∈ Fp for i = 1, 2, 3, 4. The roots of f are elements of P1
(
Fp
)
, which we denote

by [βi : αi] for i = 1, 2, 3, 4. Note that αi = 0 for some i if and only if y is a factor of

f(x, y), and similarly, βi = 0 for some i if and only if x is a factor of f(x, y).

Consider the collection of forms f with a3 = 0, which we denote by Ca3=0. Clearly,

the form f(x, y) = 0 is in Ca3=0, and so, |Vp(0) ∩ Ca3=0| = |Vp(0)| = 1. We want to

determine the size of Vp(σ) ∩ Ca3=0, where

σ ∈ {1111, 1211, 1212, 131, 14, 211, 212, 22, 22, 31, 4}.

First, we consider Vp(14) ∩ Ca3=0, which clearly contains the p − 1 forms a1x
4,

0 6= a1 ∈ Fp, and the p− 1 forms a5y
4, 0 6= a5 ∈ Fp. Any other element of Vp(14) can

be expressed as a1(x− β1y)4 with 0 6= a1, β1 ∈ Fp, but then a3 = 6a1β
2
1 6= 0. So,

|Vp(14) ∩ Ca3=0| = 2p− 2.

Next, we look at Vp(131) ∩ Ca3=0, which clearly contains the p − 1 forms a2x
3y,

0 6= a2 ∈ Fp, and the p − 1 forms a4xy
3, 0 6= a4 ∈ Fp, as well as the (p − 1)2 forms
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a1x
3(x − β1y) with 0 6= a1, β1 ∈ Fp, and the (p − 1)2 forms −a5y

3(α1x − y) with

0 6= a5, α1 ∈ Fp. Any other element of Vp(131) can be expressed as a1x(x + β1y)3

with 0 6= a1, β1 ∈ Fp, −a5y(α1x − y)3 with 0 6= a5, α1 ∈ Fp or a1(x − β1y)3(x − β2y)

with 0 6= a1, β1, β2 ∈ Fp, β1 6= β2, so that a3 = 3a1β
2
1 6= 0, a3 = 3a5α

2
1 6= 0 or

a3 = 3a1β1(β2 + β1), respectively. We see that among these cases only the (p − 1)2

forms a1(x− β1y)3(x+ β1y) have a3 = 0. Hence,

|Vp(131) ∩ Ca3=0| = 2(p− 1) + 3(p− 1)2 = 3p2 − 4p+ 1.

Now, condsider both Vp(1212) ∩ Ca3=0 and Vp(22) ∩ Ca3=0. First, note that if

f ∈ Ca3=0, then x2 is a factor of f(x, y) if and only if x3 is a factor of f(x, y), and

similarly, y2 is a factor of f(x, y) if and only if y3 is a factor of f(x, y). Hence, any

element of (Vp(1212) ∪ Vp(22)) ∩ Ca3=0 can be expressed as a1(x − β1y)2(x − β2y)2

with 0 6= a1 ∈ Fp and β1, β2 either distinct nonzero elements of Fp or conjugates in

Fp2 \ Fp. In this case, a3 = a1(β2
1 + 4β1β2 + β2

2). Completing the square, we see

that β2
1 + 4β1β2 + β2

2 = 0 if and only if β1 = (−2 ±
√

3)β2. If p ≡ 1 (mod 12) or

p ≡ 11 (mod 12), then −2 ±
√

3 ∈ Fp, and if p ≡ 5 (mod 12) or p ≡ 7 (mod 12),

then −2 ±
√

3 are conjugates in Fp2 \ Fp. In the former case, for each of the p − 1

choices for β2, β1 is determined up to the choice between −2 +
√

3 and −2−
√

3. But

also, swapping β1 and β2 does not change the form. So, there are p − 1 choices for

the roots and p− 1 choices for a1. Hence,

|Vp(1212) ∩ Ca3=0| =


p2 + 2p+ 1 if p ≡ 1 (mod 12) or p ≡ 11 (mod 12)

0 otherwise.

In the latter case, note that u + v
√

3 = (−2 +
√

3)(u − v
√

3) if and only if u = −v,

and u+ v
√

3 = (−2−
√

3)(u− v
√

3) if and only if u = v. So, there are p− 1 choices

for a conjugate pair β1 = u + v
√

3 and β2 = u − v
√

3 in Fp2 \ Fp satisfying each of

the equations β1 = (−2±
√

3)β2. But again, swapping β1 and β2 does not change the
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form, and there are p− 1 choices for a1. Hence,

|Vp(22) ∩ Ca3=0| =


p2 + 2p+ 1 if p ≡ 5 (mod 12) or p ≡ 7 (mod 12)

0 otherwise.

Next, we consider Vp(1211) ∩ Ca3=0, which clearly contains the forms

a2(x − β1y)2(x − β2y)(y) with 0 6= β1, β2 ∈ Fp, β1 6= β2. For these forms, a3 =

−a2(2β1 + β2). If we set a3 = 0, and we choose a2 and β1, then β2 is determined.

Hence, there are (p− 1)2 forms a2(x− β1y)2(x− β2y)(y) in Vp(1211) ∩ Ca3=0. Recall

that if f ∈ Ca3=0, then x2 is a factor of f(x, y) if and only if x3 is a factor of f(x, y),

and similarly, y2 is a factor of f(x, y) if and only if y3 is a factor of f(x, y). Hence, any

other element of Vp(1211)∩ Ca3=0 can be expressed as a1(x− β1y)2(x− β2y)(x− β3y)

with 0 6= a1, β1 ∈ Fp and β2, β3 distinct elements of Fp not equal to β1. In this case,

a3 = a1(β2
1 + 2(β2 +β3)β1 +β2β3). We want to count all combinations of a1, β1, β2, β3

such that a3 = 0 and then subtract any combinations that produce a form outside of

Vp(1211). By completing the square, we see that β2
1 + 2(β2 + β3)β1 + β2β3 = 0 if and

only if (β1 + β2 + β3)2− (β2
2 + β2β3 + β2

3) = 0. Completing the square again, we have

equivalently that

(β1 + β2 + β3)2 −
(
β2 + 1

2β3

)2
= 3

4β
2
3 ,

which we rewrite as
(
β1 + 2β2 + 3

2β3

)(
β1 + 1

2β3

)
= 3

4β
2
3 .

Now, if β3 = 0, then either β1 = 0 and β2 can be any element of Fp or β1 = −2β2.

Since there are p− 1 choice for a1, we have accounted for 2p(p− 1) combinations of

a1, β1, β2, β3 such that a3 = 0. If β3 6= 0, we have(
2β1

β3
+ 4β2

β3
+ 3

)(
2β1

β3
+ 1

)
= 3.

If for a fixed choice of 0 6= β3 ∈ Fp, we choose β1 ∈ Fp so that
(
2β1
β3

+ 1
)

= k 6= 0,

then β2 is uniquely determined by the above equation. With the p− 1 choices for a1,
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this accounts for an additional (p−1)3 combinations of a1, β1, β2, β3 such that a3 = 0.

Since either β3 = 0 or β3 6= 0, no other combinations exist. Since, swapping β2 and

β3 does not change the form, we have

2p(p− 1) + (p− 1)3

2

forms a1(x− β1y)2(x− β2y)(x− β3y) with a3 = 0; however, we have included forms

that do not satisfy the conditions 0 6= β1, β2 6= β3, β1 6= β2, and β1 6= β3. In

particular, we have included the p− 1 forms a1x
4 in Vp(14)∩Ca3=0, which correspond

to the case β1 = β2 = β3 = 0. We have included the (p − 1)2 forms a1x
3(x − βy) in

Vp(131) ∩ Ca3=0; these forms correspond to the equivalent cases β1 = β2 = 0, β3 6= 0

and β1 = β3 = 0, β2 6= 0. Note that β1 = β2 = 0, β3 6= 0 corresponds to the case

k = 1. We have also included the (p−1)2 forms a1(x−βy)3(x+βy) in Vp(131)∩Ca3=0;

these forms correspond to the cases β1 = β2, β1 = −β3 when k = −1 and β1 = β3,

β1 = −β2 when k = 3. Lastly, if p ≡ 1 (mod 12) or p ≡ 11 (mod 12), then we

have included the (p − 1)2 forms a1(x − β1y)2(x − β2y)2 in Vp(1212) ∩ Ca3=0, which

correspond to the case β2 = β3 when k = −3± 2
√

3. So, if p ≡ 1 (mod 12) or p ≡ 11

(mod 12), then there are

2p(p− 1) + (p− 1)3

2 − (p− 1)− 3(p− 1)2 = (p− 5)(p− 1)2

2

forms a1(x − β1y)2(x − β2y)(x − β3y) in Vp(1211) ∩ Ca3=0 with 0 6= a1, β1 ∈ Fp and

β2, β3 distinct elements of Fp not equal to β1. If p ≡ 5 (mod 12) or p ≡ 7 (mod 12),

then there are

2p(p− 1) + (p− 1)3

2 − (p− 1)− 2(p− 1)2 = (p− 3)(p− 1)2

2 .

Thus, adding in the (p− 1)2 forms a2(x− β1y)2(x− β2y)(y) discussed above,

|Vp(1211) ∩ Ca3=0| =


p3 − 5p2 + 7p− 3

2 if p ≡ 1 (mod 12) or p ≡ 11 (mod 12)
p3 − 3p2 + 3p− 1

2 otherwise.
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Next, we consider Vp(212)∩Ca3=0. Any element of Vp(212)∩Ca3=0 can be expressed

as

a1(x− β1y)2(x− (u+ v
√
n)y)(x− (u− v

√
n)y)

with u ∈ Fp, 0 6= a1, β1, v ∈ Fp, and n not a square modulo p. In this case, a3 =

a1(β2
1 + 4uβ1 + u2 − nv2). Completing the square, we see that a3 = 0 if and only if

β1 = −2u±
√

3u2 + nv2.

Let 0 6= r ∈ Fp, and let Np(q(u, v) = r) denote the number of solutions (u, v) ∈ Fp

to the equation q(u, v) = r. We follow the classical approach given in the third section

of Chapter 8 in [5]. For a fixed n in Fp,

Np(3u2 + nv2 = r) =
∑
a,b∈Fp

3a+nb=r

Np(u2 = a)Np(v2 = b)

=
∑
a,b∈Fp

3a+nb=r

(
1 +

(
a

p

))(
1 +

(
b

p

))

=
∑
a,b∈Fp

3a+nb=r

1 +
∑
a,b∈Fp

3a+nb=r

(
a

p

)
+

∑
a,b∈Fp

3a+nb=r

(
b

p

)
+

∑
a,b∈Fp

3a+nb=r

(
a

p

)(
b

p

)

=
∑
a∈Fp

1 +
∑
a∈Fp

(
a

p

)
+
∑
b∈Fp

(
b

p

)
+

∑
a,b∈Fp

3a+nb=r

(
ab

p

)

= p+ 0 + 0 +
∑
a∈Fp

(
a(r − 3a)n−1

p

)

= p+
∑
a∈Fp

a6=0,3−1r

(
a(r − 3a)n−1

p

)

= p+
∑
a∈Fp

a6=0,3−1r

(
a(r − 3a)−1n

p

)

= p+
∑
k∈Fp

k 6=0,−3−1n

(
k

p

)
= p−

(
−3−1n

p

)
= p−

(
−1
p

)(
3
p

)(
n

p

)
.
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For the case r = 0, the result changes:

Np(3u2 + nv2 = 0) =
∑
a,b∈Fp

3a+nb=0

Np(u2 = a)Np(v2 = b)

=
∑
a,b∈Fp

3a+nb=0

(
1 +

(
a

p

))(
1 +

(
b

p

))

=
∑
a,b∈Fp

3a+nb=0

1 +
∑
a,b∈Fp

3a+nb=0

(
a

p

)
+

∑
a,b∈Fp

3a+nb=0

(
b

p

)
+

∑
a,b∈Fp

3a+nb=0

(
a

p

)(
b

p

)

=
∑
a∈Fp

1 +
∑
a∈Fp

(
a

p

)
+
∑
b∈Fp

(
b

p

)
+

∑
a,b∈Fp

3a+nb=0

(
ab

p

)

= p+ 0 + 0 +
∑
a∈Fp

(
−3n−1a2

p

)

= p+ 0 + 0 +
∑
a∈Fp

a6=0

(
−3n
p

)
= p+ (p− 1)

(
−1
p

)(
3
p

)(
n

p

)
.

For each of the p− 1
2 choices for a nonzero square r ∈ Fp, there are Np(3u2+nv2 =

r) pairs (u, v), with n not a square modulo p, each having two corresponding choices

for β1 such that a3 = 0. If 3 is a square modulo p, then we have to subtract the

extraneous pairs (u, v) =
(√

r

3 , 0
)
and (u, v) =

(
−
√
r

3 , 0
)
, which do not yield forms

in Vp(212). We also have Np(3u2+nv2 = 0) pairs (u, v) each having one corresponding

choice of β1 such that a3 = 0, but we have to subtract the extraneous pair (0, 0), which

does not yield a form in Vp(212). Moreover, the solutions (u, v) and (u,−v) yield the

same form, and there are p− 1 choices for a1. Hence,

|Vp(212) ∩ Ca3=0|

=
p− 1

2 ·
Np(3u2 + nv2 = r)−

((
3
p

)
+ 1

)
2 · 2 + Np(3u2 + nv2 = 0)− 1

2

 (p− 1)

=


p3 − 3p2 + 3p− 1

2 if p ≡ 1 (mod 12) or p ≡ 11 (mod 12)
p3 − p2 − p+ 1

2 otherwise.
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Next, we consider Vp(211) ∩ Ca3=0, which clearly contains the forms

a2(x− β1y)(x− (u+ v
√
n)y)(x− (u− v

√
n)y))(y)

with u ∈ Fp, 0 6= a1, β1, v ∈ Fp, and n not a square modulo p. For these forms,

a3 = −a2(2u+ β1). If we set a3 = 0, and we choose a2 and u, then β1 is determined.

There is no restriction on the choice of v except that taking v or −v yield the same

form. Hence, there are p(p− 1)2

2 forms

a2(x− β1y)(x− (u+ v
√
n)y)(x− (u− v

√
n)y))(y)

in Vp(211) ∩ Ca3=0. Any other element of Vp(211) ∩ Ca3=0 can be expressed as

a1(x− β1y)(x− β2y)(x− (u+ v
√
n)y)(x− (u− v

√
n)y)

with u ∈ Fp, 0 6= a1, β1, β2, v ∈ Fp, and n not a square modulo p. In this case,

a3 = a1(u2 − nv2 + 2u(β1 + β2) + β1β2).

By completing the square, we see that u2 + 2(β1 + β2)u+ β1β2 − nv2 = 0 if and only

if

(u+ β1 + β2)2 − (β2
1 + β1β2 + β2

2)− nv2 = 0.

Completing the square again, we have equivalently that

(u+ β1 + β2)2 −
(
β1 + 1

2β2

)2
− 3

4β
2
2 − nv2 = 0.

Solving for u, we have

u = 1
2

(
−2(β1 + β2)±

√
(2β1 + β2)2 + 3β2

2 + n(2v)2
)
.

Let 0 6= r ∈ Fp, and let Np(q(u, v) = r) denote the number of solutions (u, v) ∈ Fp

to the equation q(u, v) = r. Then, for a fixed n in Fp,
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Np((2β1 + β2)2 + 3β2
2 + n(2v)2 = r)

=
∑

a,b,c∈Fp

3a+nb+c=r

Np((2β1 + β2)2 = a)Np(β2
2 = b)Np((2v)2 = c)

=
∑

a,b,c∈Fp

3a+nb+c=r

(
1 +

(
a

p

))(
1 +

(
b

p

))(
1 +

(
c

p

))

=
∑

a,b,c∈Fp

3a+nb+c=r

1 +
∑

a,b,c∈Fp

3a+nb+c=r

(
a

p

)
+

∑
a,b,c∈Fp

3a+nb+c=r

(
b

p

)
+

∑
a,b,c∈Fp

3a+nb+c=r

(
c

p

)

+
∑

a,b,c∈Fp

3a+nb+c=r

(
ab

p

)
+

∑
a,b,c∈Fp

3a+nb+c=r

(
ac

p

)
+

∑
a,b,c∈Fp

3a+nb+c=r

(
bc

p

)
+

∑
a,b,c∈Fp

3a+nb+c=r

(
abc

p

)

= p2 + 0 + 0 + 0 +
∑
c6=r

∑
a,b∈Fp

3a+nb=r−c

(
ab

p

)
+

∑
a,b∈Fp

3a+nb=0

(
ab

p

)
+
∑
nb6=r

∑
a,c∈Fp

3a+c=r−nb

(
ac

p

)

+
∑
a,c∈Fp

3a+c=0

(
ac

p

)
+
∑

3a6=r

∑
b,c∈Fp

nb+c=r−3a

(
bc

p

)
+

∑
b,c∈Fp

nb+c=0

(
bc

p

)

+
∑
c 6=r

(
c

p

) ∑
a,b∈Fp

3a+nb=r−c

(
ab

p

)
+
(
r

p

) ∑
a,b∈Fp

3a+nb=0

(
ab

p

)

= p2 + (p− 1)
(
−
(
−3n
p

))
+ (p− 1)

(
−3n
p

)
+ (p− 1)

(
−
(
−3
p

))

+ (p− 1)
(
−3
p

)
+ (p− 1)

(
−
(
−n
p

))
+ (p− 1)

(
−n
p

)

−
(
r

p

)(
−
(
−3n
p

))
+
(
r

p

)
(p− 1)

(
−3n
p

)

= p2 +
(
r

p

)(
−1
p

)(
3
p

)(
n

p

)
p.

For the case r = 0, the result changes:
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Np((2β1 + β2)2 + 3β2
2 + n(2v)2 = 0)

=
∑

a,b,c∈Fp

3a+nb+c=r

Np((2β1 + β2)2 = a)Np(β2
2 = b)Np((2v)2 = c)

=
∑

a,b,c∈Fp

3a+nb+c=0

(
1 +

(
a

p

))(
1 +

(
b

p

))(
1 +

(
c

p

))

=
∑

a,b,c∈Fp

3a+nb+c=0

1 +
∑

a,b,c∈Fp

3a+nb+c=0

(
a

p

)
+

∑
a,b,c∈Fp

3a+nb+c=0

(
b

p

)
+

∑
a,b,c∈Fp

3a+nb+c=0

(
c

p

)

+
∑

a,b,c∈Fp

3a+nb+c=0

(
ab

p

)
+

∑
a,b,c∈Fp

3a+nb+c=0

(
ac

p

)
+

∑
a,b,c∈Fp

3a+nb+c=0

(
bc

p

)
+

∑
a,b,c∈Fp

3a+nb+c=0

(
abc

p

)

= p2 + 0 + 0 + 0 +
∑
c6=0

∑
a,b∈Fp

3a+nb=−c

(
ab

p

)
+

∑
a,b∈Fp

3a+nb=0

(
ab

p

)
+
∑
nb6=0

∑
a,c∈Fp

3a+c=−nb

(
ac

p

)

+
∑
a,c∈Fp

3a+c=0

(
ac

p

)
+
∑

3a6=0

∑
b,c∈Fp

nb+c=−3a

(
bc

p

)
+

∑
b,c∈Fp

nb+c=0

(
bc

p

)

+
∑
c 6=0

(
c

p

) ∑
a,b∈Fp

3a+nb=−c

(
ab

p

)
+

∑
a,b∈Fp

3a+nb=0

(
0
p

)

= p2 + (p− 1)
(
−
(
−3n
p

))
+ (p− 1)

(
−3n
p

)
+ (p− 1)

(
−
(
−3
p

))

+ (p− 1)
(
−3
p

)
+ (p− 1)

(
−
(
−n
p

))
+ (p− 1)

(
−n
p

)

0 ·
(
−
(
−3n
p

))
+ 0

= p2.

For each of the p− 1
2 choices for a nonzero square r ∈ Fp, there are

Np((2β1 + β2)2 + 3β2
2 + n(2v)2 = r) triples (β1, β2, v), with n not a square modulo p,

each having two corresponding choices for u such that a3 = 0. We have to subtract

the Np((2β1 + β2)2 + 3β2
2 = r) extraneous triples (β1, β2, 0), which do not yield forms

in Vp(211). We also have Np((2β1 + β2)2 + 3β2
2 + n(2v)2 = 0) pairs (β1, β2, v) each

having one corresponding choice of u such that a3 = 0, but we have to subtract the
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Np((2β1 + β2)2 + 3β2
2 = 0) extraneous triples with v = 0 that do not yield a form in

Vp(211). Note that we are including the case where β1 = β2. Moreover, β1 and β2 are

interchangable as are the pairs (u, v) and (u,−v), and there are p− 1 choices for a1.

Hence,

|Vp(211) ∩ Ca3=0| = (p− 1) · p− 1
2 · Np((2β1 + β2)2 + 3β2

2 + n(2v)2 = r)
4 · 2

− (p− 1) · p− 1
2 · Np((2β1 + β2)2 + 3β2

2 = r)
4 · 2

+ (p− 1)Np((2β1 + β2)2 + 3β2
2 + n(2v)2 = 0)

4

− (p− 1)Np((2β1 + β2)2 + 3β2
2 = 0)

4
− 1

2 |Vp(212) ∩ Ca3=0|+
1
2p(p− 1)2

=



p4 − 2p3 + 2p2 − 2p+ 1
4 if p ≡ 1 (mod 12)

p3 − 3p2 + 3p− 1
4 if p ≡ 5 (mod 12)

p3 − 3p2 + 3p− 1
4 if p ≡ 7 (mod 12)

p3 − p2 − p+ 1
4 if p ≡ 11 (mod 12).

The cases of Vp(31) and Vp(4) remain open.
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