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Abstract

The thesis consists of two parts. In the first part we propose several second

order in time, fully discrete, linear and nonlinear numerical schemes to solve the

phase-field model of two-phase incompressible flows in the framework of finite ele-

ment method. The schemes are based on the second order Crank-Nicolson method

for time disretizations, projection method for Navier-Stokes equations, as well as

several implicit-explicit treatments for phase-field equations. The energy stability,

solvability, and uniqueness for numerical solutions of proposed schemes are further

proved. Ample numerical experiments are performed to validate the accuracy and

efficiency of the proposed schemes thereafter.

In the second part we consider the numerical approximations for the model of

smectic-A liquid crystal flows. The model equation, that is derived from the varia-

tional approach of the de Gennes energy, is a highly nonlinear system that couples

the incompressible Navier-Stokes equations and two nonlinear coupled second-order

elliptic equations. Based on some subtle explicit-implicit treatments for nonlinear

terms, we develop unconditionally energy stable, linear, decoupled time discretiza-

tion scheme. We also rigorously prove that the proposed scheme obeys the energy

dissipation law. Various numerical simulations are presented to demonstrate the ac-

curacy and the stability thereafter.
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Chapter 1

Numerical analysis of certain schemes for phase

field models of two-phase incompressible flows

1.1 Introduction

Interfacial problems have attracted much attention of scientists for over a century.

A classical approach to dealing with such problems was to introduce a mesh with grid

points on the interfaces which deforms according to the motion of the boundary. This

method, however, had a drawback that large displacement or deformation of internal

domains could cause computational issues such as mesh entaglement. To overcome

this, sophisticated remeshing schemes were often times used [57]. Other methods

which proved to work well were the volume-of-fluid (VOF) [48, 49], the front-tracking

[40, 41] and the level-set [61, 78] fixed-grid methods, where the interfacial tension is

represented as a body-force or bulk-stress spreading over a narrow region covering

the interface. The VOF method is a numerical technique for tracking and locating

the interface between the fluids using the marker function. The disadvatage of this

method is in its difficulty maintaining the sharp interface between the fluids and

the computation of the surface tension. The level-set method has improved the

accuracy and, hence, the applicability of the VOF method. The problem with the

level-set method occurs when one tries to use it in an advection field, for example,

uniform or rotational velocity field. In this case the shape and size of the level set

must be conserved, however, the method does not guarantee this, so the level set

may get significantly distorted and vanish over several time steps. This requires
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the use of high-order finite difference schemes, such as high-order essentially non-

oscillatory (ENO) schemes [47], and even then, the feasibility of long-time simulations

is questionable. To overcome this difficulty, more sophisticated methods have been

designed, such as combinations of the level set method with tracing marker particles

advected by the velocity field [60]. In the front-tracking method a separate front

marks the interface but a fixed grid, only modified near the front to make a grid line

follow the interface, is used for the fuid within each phase.

Phase-field or diffuse-interface model is another mathematical model for solving

various interfacial problems. In recent years it has been successfully used to simulate

dynamical processes in many fields and has become one of the major tools to study

various systems arising from the energy-based variational formalism. The method

employs an order parameter, called the phase field, and substitutes boundary condi-

tions at the interface by the partial differential equation involving this new variable.

The phase field is assigned distinct values on each phase (for example, -1 and 1) and

a thin smooth transition layer marking the interface is defined as the set of all points

where the phase field takes a certain value (for example, 0). Hence the dynamics

of the interface can be simulated on a fixed grid without explicit interface tracking,

which renders the diffuse interface method an attractive numerical approach to sim-

ulate free moving/deforming interfacial problems. Based on variational approaches,

the governing system can be derived from the total free energy, which usually leads

to some well-posed nonlinear partial differential equations. This makes it possible to

carry out mathematical analysis and design numerical schemes which preserve the

thermo-dynamically consistent dissipation law (energy-stable) at the discrete level.

The preservation of such laws is critical for numerical methods to capture the correct

long time dynamics.

The dynamics of phase field models can be described by either the Allen-Cahn

equation [4] or the Cahn-Hilliard equation [8, 9] based on choices of Sobolev spaces
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of the variational approach. In details, the Allen-Cahn equation is a second-order

equation, which is easier to solve numerically but does not conserve the volume frac-

tion, while the Cahn-Hilliard equation is a fourth-order equation which conserves the

volume fraction but is relatively harder to solve numerically. Basically, the coarse-

graining (macroscopic) process described by these two equations may undergo rapid

changes near the interface, so the noncompliance of energy dissipation laws may

lead to spurious numerical solutions if the grid and time step sizes are not carefully

controlled [52, 36]. Thus, from the numerical point of view, people are particularly in-

terested in designing simple, efficient and energy stable numerical schemes satisfying

discrete energy dissipations laws.

There are several challenges to construct the efficient numerical schemes to solve

the hydrodynamics coupled phase field model numerically, namely, i) the small in-

terfacial width introduces tremendous amount of stiffness into the system ii) the

nonlinear coupling between the phase variable and velocity due to the nonlinear con-

vections and stresses, iii) the coupling between the velocity and pressure in the fluid

momentum equation. It is by no means an easy task, in particular, the development

of any efficient and accurate numerical schemes while maintaining the dissipative

energy law.

It is remarkable that many attempts have been made in this direction recently (cf.

a comprehensive summary in [65]. However, due to the complexity of the nonlinear

convection terms and stresses in the system, most of developed schemes are either

only first-order in time [44, 69, 67], or are nonlinear schemes which need some efficient

iterative solvers [76, 15], or only focus on the no flow case [59, 77, 31], or unable to

provide the stability analysis [17]. There are very few works with the focus on the

development of the second order schemes for the hydrodynamics coupled phase field

model.

Recently, in [32], a second order, unconditionally stable, semi-discrete scheme for
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the hydrodynamics coupled Cahn-Hilliard phase field model was developed, which

could be regarded as one of the limited successful efforts in the development of second

order schemes. However, in [32], first, the schemes for the computation of the phase

field variable are nonlinear thanks to the application of the convex splitting approach,

thus one in turn needs some efficient iterative solvers. Second, the computation of

the phase variable is always coupled with that of the velocity. Third, the proof of

energy law is only for the time discretization case.

Therefore, the main objective of this paper is to develop some fully discrete,

second-order, unconditionally stable schemes for the hydrodynamics coupled Cahn-

Hilliard phase field model. We combine several approaches which have proved efficient

for the phase equations and for the Navier-Stokes equations, namely, linear methods

based on the Lagrangian multiplier approach (cf. [31]) and nonlinear methods based

on the convex splitting approach (cf. [71, 32, 74, 22, 35, 75]) for the phase equations,

and projection-type approaches [5, 43, 30] for the Navier-Stokes equations. For the

proposed linear schemes, in spite of the fact that the computation of the phase field

variable is still coupled with that of the velocity, one only needs to solve a linear

elliptic system. This is extremely convenient since one can explicitly find the mass

matrix for the linear system associated with the Finite Element method or Finite

Difference method. In additions, we prove that the modified discrete energy law

holds for all schemes. For the proposed nonlinear schemes, we prove rigorously its

unconditional solvability for the fully discrete case. Ample numerical experiments are

performed to validate the accuracy and efficiency thereafter.

The rest of the chapter is organized as follows. In Section 2, we present the whole

model and the PDE energy law. In Section 3, we develop the numerical schemes

and prove their unconditional stability and unconditionally unique solvability in the

time discrete case. In section 4, the schemes are further discretized in time and space

by mixed finite element approximation. Energy stabilities for fully discrete case are
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proved. For nonlinear schemes, we further prove the solvability and uniqueness.

Finally, we present some numerical experiments to validate our numerical schemes in

Section 5. Some concluding remarks are presented in Section 6.

1.2 The PDE System and Energy Law.

We consider the phase field model for a mixture of two immiscible, incompressible

fluids in a confined domain Ω ∈ Rd, (d = 2, 3). In order to label the two fluids, a

phase variable (macroscopic labeling function) φ is introduced such that

φ(x, t) =


1 fluid I ,

−1 fluid II,
(1.1)

with a smooth but thin transition layer, which is controlled by the parameter η � 1.

The (equilibrium) configuration of this mixing layer, in the neighborhood of the level

set Γt = {x : φ(x, t) = 0}, is determined by the microscopic interactions between

fluid molecules. For the isotropic interactions, the classical self consistent mean field

theory (SCMFT) in statistical physics [10] yields the following Ginzburg-Landau type

of Helmholtz free energy functional: where the first term contributes to the “hydro-

philic" type (tendency of mixing) of interactions between the materials and the second

part, the double well bulk energy F (φ) = (φ2−1)2

4η2 represents the “hydro-phobic" type

(tendency of separation) of interactions. As a consequence of the competition between

the two types of interactions, the equilibrium configuration will include a diffusive

interface with thickness proportional to the parameter η; and, as η approaches zero,

we expect to recover the sharp interface separating the two different materials (cf.,

for instance, [80, 6, 21]).

The total energy of the hydrodynamic system is a sum of the kinetic energy Ek

and the mixing energy Emix:

E = Ek + Emix =
∫

Ω

(1
2 |u|

2 + λ
( |∇φ|2

2 + F (φ)
))
dx, (1.2)
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where we assume the density of the two fluids are matched with ρ = 1 and u is

the fluid velocity field. Assuming a generalized Fick’s law that the mass flux be

proportional to the gradient of the chemical potential [9, 8, 24, 55], one can derive

the following (non-conserved) Allen-Cahn-Navier-Stokes (ACNS) system:

φt + (u · ∇)φ = −Mµ, (1.3)

µ = δE

δφ
= λ(−∆φ+ f(φ)), (1.4)

ut + (u · ∇)u+∇p− ν∆u = µ∇φ, (1.5)

∇ · u = 0, (1.6)

where f(φ) = F ′(φ) = (φ2−1)φ
η2 , p is the pressure, M is the relaxation or mobility

parameter of the phase function, and ν is the viscosity parameter. If the variational

derivative can be taken in the H−1, leading to the (conserved) Cahn-Hilliard-Navier-

Stokes (CHNS) equations,

φt + (u · ∇)φ = M∆µ, (1.7)

µ = λ(−∆φ+ f(φ)). (1.8)

Throughout the paper, we assume the boundary conditions

u|∂Ω = 0, ∂nφ|∂Ω = 0, ∂nµ|∂Ω = 0, (1.9)

although all results are valid for periodic boundary conditions as well.

Since the above system was derived from the energetic variational formulation, it

can be readily established that the total energy of the ACNS system ((1.3)–(1.6)), and

CHNS system ((1.7)–(1.8)–(1.5)–(1.6)) are dissipative. More precisely, by taking the

inner product of (1.3) with ∂E
∂φ

, (1.5) with u, and then summing up these equalities,

we obtain the following energy dissipation law for ACNS system:

d

dt
E = −

∫
Ω
ν|∇u|2 +M

∣∣∣∣∂E∂φ
∣∣∣∣2dx. (1.10)
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For CHNS system, by taking the L2 inner product of (1.7) with µ, of (1.8) with φt,

of (1.5) with u and summarize all equalities, we obtain

d

dt
E = −

∫
Ω

(
ν|∇u|2 +M |∇µ|2

)
dx. (1.11)

However, for Allen-Cahn equation (1.3), the variational derivative δE
δφ

involves

the second order derivative, thus it is not suitable to use them as test functions in

numerical approximations, making it difficult to prove the discrete energy dissipation

law. Hence, it is a common practice to rewrite (1.5)-(1.6) as the following equivalent

form [79, 37, 65].

ut + u · ∇u− ν∆u+∇p+ 1
M

(
φt + (u · ∇)φ

)
∇φ = 0, (1.12)

∇ · u = 0. (1.13)

Now, by taking the L2 inner product of (1.3) with φt and (1.12) with u, we obtain

d

dt
E = −

∫
Ω

(
ν|∇u|2 + 1

M
|φ̇|2

)
dx, with φ̇ = φt + (u · ∇)φ. (1.14)

We emphasize that the above derivation is suitable in a finite dimensional approxi-

mation since test function φt is in the same subspaces as φ. Hence, it allows us to

design numerical schemes which satisfy a discrete energy law.

Remark 1.2.1. • It is well known that the solutions of the conserved Cahn–

Hilliard phase equation, with suitable boundary conditions, satisfy the desired

conservation property ∂t
∫

Ω φdx = 0, which is not satisfied by the solutions of

the non-conserved Allen–Cahn equation. In fact, one can add a scalar Lagrange

multiplier in (1.3) to enforce this conservation property (cf. [79, 68]), or modify

the free energy functional by adding a penalty term for volume, similar as [18].

Both ways will not introduce any mathematical or numerical difficulty, thus we

shall not include it in the discussions below.
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• For simplicity, we consider only in this paper the ACNS model (1.3)-(1.4)-

(1.12)-(1.13). All theoretical proof can be generalized to the CHNS model (1.7)-

(1.8)-(1.5)-(1.6) without any further difficulty. The detailed stability proof for

CHNS system will be left to the interested readers.

1.3 Second Order, Semi-Discrete Schemes and Their Energy

Stability.

In this section, we construct several second order in time, semi-discrete schemes

and present their energy stabilities. Let δt > 0 be a time step size and set tn =

nδt for 0 ≤ n ≤ N = [T/δt]. Without ambiguity, we denote by (f(x), g(x)) =

(
∫

Ω f(x)g(x)dx) 1
2 the L2 inner product between functions f(x) and g(x), by ‖f‖ =

(f, f) the L2 norm of function f(x).

1.3.1 The Linear Scheme.

We first construct a linear scheme based on a Lagrange multiplier approach in

[31], where it is first developed to solve the Cahn-Hilliard equation without flow.

A function q = φ2−1
η2 is introduced such that one can write f(φ) = qφ. It then

follows that qt = 2
η2φφt. By using the variable q, the total energy can be written as

E =
∫

Ω

(
1
2 |u|

2 + λ
( |∇φ|2

2 + η2

4 q
2
))
dx. (1.15)

It is remarkable that energy dissipation laws (1.11) and (1.14) still hold.

A linear scheme for solving the ACNS system is constructed as follows:

Given the initial conditions φ0, u0, q0 = (φ0)2−1
η2 and p0 = 0, we compute φ1, u1, q1

and p1 by any first order methods (cf. [31, 69, 70]). Having computed φn−1, qn−1, un−1,

pn−1 and φn, qn, un, pn for n ≥ 1, we compute φn+1, qn+1, ũn+1, un+1, pn+1 by the fol-

lowing steps.
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Step 1:

φ̇n+1 − λM
(

∆φn+1 + φn

2 −
(3

2φ
n − 1

2φ
n−1

)qn+1 + qn

2

)
= 0, (1.16)

η2

2
qn+1 − qn

δt
=
(3

2φ
n − 1

2φ
n−1

)φn+1 − φn

δt
, (1.17)

ũn+1 − un

δt
− ν∆

( ũn+1 + un

2
)

+B

((3
2u

n − 1
2u

n−1
)
,
( ũn+1 + un

2
))

+∇pn + φ̇n+1

M
· ∇

(3
2φ

n − 1
2φ

n−1
)

= 0, (1.18)

with boundary conditions

∂nφ
n+1|∂Ω = 0, ũn+1|∂Ω = 0, ∂nqn+1|∂Ω = 0, (1.19)

where

B(u, v) := (u · ∇)v + 1
2(∇ · u)v, (1.20)

φ̇n+1 = φn+1 − φn

δt
+
( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
)
. (1.21)

Step 2:

un+1 − ũn+1

δt
+ 1

2∇(pn+1 − pn) = 0, (1.22)

∇ · un+1 = 0, (1.23)

un+1 · n|∂Ω = 0. (1.24)

Several remarks are in order.

Remark 1.3.1. In fact, (1.17) can be rewritten as

qn+1 = qn + 2
η2 φ̄

n+ 1
2 (φn+1 − φn), (1.25)

where φ̄n+ 1
2 = 3

2φ
n − 1

2φ
n−1. Thus we can replace the qn+1 in (1.16), it is equivalent

to the following.

φ̇n+1 − λM(∆φn+1 + φn

2 ) + λMφ̄n+ 1
2

( 1
η2 φ̄

n+ 1
2 (φn+1 − φn) + qn

)
= 0. (1.26)
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Therefore, we can solve for φn+1 and ũn+1 directly from (1.26) and (1.18). Once we

obtain φn+1, the qn+1 is automatically given in (1.25). Namely, the new variable q

does not involve any extra computational costs.

Remark 1.3.2. We note that qn+1 is formally a second order approximation of φ2−1
η2 .

Indeed, Eq. (1.17) implies that

qn+1 − (φn+1)2 − 1
η2 + 1

2
(φn+1 − φn)2

η2 = qn − (φn)2 − 1
η2 + 1

2
(φn − φn−1)2

η2 +Rn+1,(1.27)

where Rn+1 = − 1
2η2 (φn+1 − 2φn + φn−1)2. Since, heuristically, Rk = O(δt4) for

0 ≤ k ≤ n and assuming q1 − (φ1)2−1
η2 + 1

2
(φ1−φ0)2

η2 = O(δt2) (for instance, by a first

order approximation), we then get qn+1 − (φn+1)2−1
η2 + 1

2
(φn+1−φn)2

η2 = O(δt2). Notice

that (φn+1 − φn)2 ∼ O(δt2), therefore, qn+1 is formally a second order approximation

to φ2−1
η2 .

Remark 1.3.3. A second order pressure correction scheme [43] is used to decouple

the computations of pressure from that of the velocity. This projection methods are

analyzed in [66] where it is shown (discrete time, continuous space) that the schemes

are second order accurate for velocity in `2(0, T ;L2(Ω)) but only first order accurate

for pressure in `∞(0, T ;L2(Ω)). The loss of accuracy for pressure is due to the ar-

tificial boundary condition (1.22) imposed on pressure [20]. We also remark that the

Crank-Nicolson scheme with linear extrapolation is a popular time discretization for

the Navier-Stokes equation. We refer to [39] and references therein for analysis on

this type of discretization.

Remark 1.3.4. B(u, v) is the skew-symmetric form of the nonlinear advection term

in the Navier-Stokes equation, which is first introduced by Temam [72]. If the velocity

is divergence free, then B(u, u) = (u · ∇)u. We define

b(u, v, w) := (B(u, v), w). (1.28)

10



In our numerical scheme
(
ũn+1+un

2

)
is not divergence free, but notice the following

identity

b(u, v, v) = (B(u, v), v) = 0, if u · n|∂Ω = 0. (1.29)

In other words, this identity holds regardless of whether u or v are divergence free or

not, which would help to preserve the discrete energy stability.

Remark 1.3.5. • It is remarkable that in [70], the authors proposed some lin-

earized schemes for Allen-Cahn equation (no flow case) using the second order

backward differentiation formulas (BDF2), where the nonlinear term f(φ) is

treated by second order extrapolation. However, the linear second order scheme

in [70] is conditionally stable where there exists a constraint on the time step.

The authors in [70] also developed a second order, unconditional stable scheme

based on the Crank-Nicolson method, however, the obtained schemes are non-

linear. In [77], the authors developed a second order, linear, unconditionally

stabilized scheme for Cahn-Hilliard equation (no flow case) based on the con-

vex splitting approach for the modified functional F̃ (φ) (the functional F (φ) is

modified to get uniform upper bound for its second order derivative). However,

a high order stabilizer term (∆2(φn+1 − φn) for Cahn-Hilliard equation, analo-

gously ∆(φn+1−φn) for Allen-Cahn equation) is added in their scheme that has

higher splitting error O(δt‖φt‖H2) from spatial derivatives, that is somewhat not

resonable because the splitting error is much higher than the explicit treatment

for the nonlinear term of f(φn).

• The framework of the above scheme takes the second order Crank-Nicolson to

discretize the phase equation (1.16)-(1.17). Inspired from [31], we introduce

a new variable q(x) thus the order of Ginzburg-Landau double well potential

is reduced by half. By some explicit-implicit treatments, we obtain a linear

scheme (1.16)-(1.17) while maintaining the second order accuracy As we shall

11



show below, the above scheme is unconditionally energy stable. It is noticable the

discrete energy we obtained is the modified energy (1.31), where the nonlinear

potential F (φ) is replaced by the term of q2. We emphasize that the obtained

dissipation law in (1.30) is a second order approximation of the PDE energy

law (1.14) (note that the energy law is “=" in stead of “≤"). To the best of the

our knowledge, this is the first such unconditionally stable, second order, and

linearized scheme for the hydrodynamics coupled phase field model.

Theorem 1.3.1. The solution of (1.16)-(1.24) satisfies the following discrete energy

law

E(un+1, φn+1, qn+1) + δt2

8 ‖∇p
n+1‖2

= E(un, φn, qn) + δt2

8 ||∇p
n‖2 − δt

( 1
M
‖φ̇n+1‖2 + ν

∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2)

,

(1.30)

where

E(u, φ, q) = 1
2‖u‖

2 + λ
(1

2‖∇φ‖
2 + η2

4 ‖q‖
2
)
, (1.31)

thus the scheme is unconditionally stable.

Proof. By taking the L2 inner product of (1.16) with φn+1−φn

Mδt
, and performing inte-

gration by parts, we obtain

1
M
‖φ̇n+1‖2 − 1

M

(
φ̇n+1,

( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
))

+ λ

δt

(1
2‖∇φ

n+1‖2 − 1
2‖∇φ

n‖2
)

+ λ

δt

((3
2φ

n − 1
2φ

n−1
)qn+1 + qn

2 , φn+1 − φn
)

= 0.

(1.32)

By taking the L2 inner product of (1.17) with λ qn+1+qn

2 , we obtain

λη2

4δt (‖qn+1‖2 − ‖qn‖2)− λ

δt

((3
2φ

n − 1
2φ

n−1
)qn+1 + qn

2 , φn+1 − φn
)

= 0. (1.33)
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By taking the L2 inner product of (1.18) with ũn+1+un

2 , and using identity (1.29), we

obtain
1

2δt(‖ũ
n+1‖2 − ‖un‖2) + ν

∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2

+
(
∇pn, ũ

n+1 + un

2

)
+ 1
M

(
φ̇n+1∇

(3
2φ

n − 1
2φ

n−1
)
,
ũn+1 + un

2
)

= 0,

(1.34)

By taking the L2 inner product of (1.22) with un+1 and performing integration by

parts, we have

1
2δt(‖u

n+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2) = 0, (1.35)

where we use explicitly the divergence-free condition for un+1,

(
∇(pn+1 − pn), un+1

)
= −

(
(pn+1 − pn),∇ · un+1

)
= 0.

We rewrite the projection step (1.22) as

1
δt

(
un+1 + un − 2

( ũn+1 + un

2
))

+ 1
2∇(pn+1 − pn) = 0.

By taking the inner product of the above equation with δt
2∇p

n, one arrives at

δt

8

(
‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2

)
=
(
∇pn,

( ũn+1 + un

2
))
. (1.36)

On the other hand, it follows directly from (1.22) that

δt

8 ‖∇(pn+1 − pn)‖2 = 1
2δt‖u

n+1 − ũn+1‖2. (1.37)

Hence, by combining (1.32)-(1.37), we obtain

1
M
‖φ̇n+1‖2 + λ

δt

(1
2‖∇φ

n+1‖2 − 1
2‖∇φ

n‖2
)

+ λ

δt

η2

4 (‖qn+1‖2 − ‖qn‖2)

+ 1
2δt(‖u

n+1‖2 − ‖un‖2) + ν
∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2

+ δt

8

(
‖∇pn+1‖2 − ‖∇pn‖2

)
= 0.

(1.38)

This concludes the proof.
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Remark 1.3.6. It is obvious that 1
δt

(
E(un+1, φn+1, qn+1)+ δt2

8 ‖∇p
n+1‖2−E(un, φn, qn)−

δt2

8 ‖∇p
n‖2

)
is a second order approximation of d

δt
E(u, φ, q) at tn+ 1

2 .

The similar scheme can be applied to the CHNS model, the scheme reads as

follows.

Step 1:

φn+1 − φn

δt
+
( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
)
−M∆µn+ 1

2 = 0, (1.39)

µn+ 1
2 = −λ

(
∆φn+1 + φn

2 −
(3

2φ
n − 1

2φ
n−1

)qn+1 + qn

2 )
)
, (1.40)

η2

2
qn+1 − qn

δt
=
(3

2φ
n − 1

2φ
n−1

)φn+1 − φn

δt
, (1.41)

ũn+1 − un

δt
− ν∆

( ũn+1 + un

2
)

+B

((3
2u

n − 1
2u

n−1
)
,
( ũn+1 + un

2
))

+∇pn + µn+1/2 · ∇
(3

2φ
n − 1

2φ
n−1

)
= 0, (1.42)

∂nφ
n+1|∂Ω = 0, ∂nµ

n+1/2|∂Ω = 0, ũn+1|∂Ω = 0. (1.43)

Step 2:

un+1 − ũn+1

δt
+ 1

2∇(pn+1 − pn) = 0, (1.44)

∇ · un+1 = 0, (1.45)

un+1 · n|∂Ω = 0. (1.46)

Similary, we obtain the energy stability as follows. The detailed proof is left to the

interested readers.

Theorem 1.3.2. The solution of (1.39)-(1.46) satisfies the following discrete energy

law

E(un+1, φn+1, qn+1) + δt2

8 ‖∇p
n+1‖2

= E(un, φn, qn) + δt2

8 ‖∇p
n‖2 −Mδt‖∇µn+ 1

2‖2 − δtν
∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2

.

where E(u, φ, q) = 1
2‖u‖

2 + λ
(

1
2‖∇φ‖

2 + η2

4 ‖q‖
2
)
, thus the scheme is unconditionally

stable.
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1.3.2 The Nonlinear Scheme.

We now propose a second order, semi-discrete numerical scheme to solve the ACNS

system based on the convex-splitting approach for the nonlinear potential F (φ). A

similar scheme for solving the CHNS system had been proposed in [32].

For the nonlinear potential, we can rewrite F (φ) as the sum of a convex function

and a concave function as

F (φ) = Fv(φ) + Fc(φ) := 1
4η2φ

4 + 1
4η2 (−2φ2 + 1),

and accordingly f(φ) = F ′v(φ) + F ′c(φ). The idea of convex-splitting is to use explicit

discretization for the concave part (i.e. F ′c(3
2φ

n− 1
2φ

n−1)) and semi-implicit discretiza-

tion for the convex part. Further we approximate F ′v(φ
n+1+φn

2 ) by the Crank-Nicolson

scheme

F ′v(
φn+1 + φn

2 ) ≈ Fv(φn+1)− Fv(φn)
φn+1 − φn

= 1
η2

((φn+1)2 + (φn)2

2

)
φn+1 + φn

2 .

Such a second order convex-splitting scheme is originally proposed and analyzed in

[35, 2] in the context of phase field crystal equation, see also [71] for applications in

thin film epitaxy.

Having computed φn−1, qn−1, un−1, pn−1 and φn, qn, un, pn for n ≥ 1, we compute

φn+1, qn+1, ũn+1, un+1, pn+1 by the following steps.

Step 1:

φ̇n+1 − λM
(

∆φn+1 + φn

2 − f0(φn+1, φn)
)

= 0, (1.47)

ũn+1 − un

δt
− ν∆

( ũn+1 + un

2
)

+B

((3
2u

n − 1
2u

n−1
)
,
( ũn+1 + un

2
))

+∇pn + φ̇n+1

M
· ∇

(3
2φ

n − 1
2φ

n−1
)

= 0, (1.48)

∂nφ
n+1|∂Ω = 0, ũn+1|∂Ω = 0. (1.49)

where

φ̇n+1 = φn+1 − φn

δt
+
( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
)
, (1.50)
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f0(φn+1, φn) = 1
η2

((φn+1)2 + (φn)2

2

)(
φn+1 + φn

2

)
− 1
η2

(3
2φ

n − 1
2φ

n−1
)
(1.51)

Step 2:

un+1 − ũn+1

δt
+ 1

2∇(pn+1 − pn) = 0, (1.52)

∇ · un+1 = 0, (1.53)

un+1 · n|∂Ω = 0. (1.54)

We show the energy stability theorem as follows.

Theorem 1.3.3. The solution of the scheme (1.47)-(1.54) satisfies the discrete energy

law of

E(un+1, φn+1) + λ

4η2 (‖φn+1 − φn‖2) + δt2

8 ‖∇p
n+1‖2

≤ E(un, φn) + λ

4η2 (‖φn − φn−1‖2) + δt2

8 ‖∇p
n‖2

− δt
( 1
M
‖φ̇n+1‖2 + ν

∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2)

,

where E(u, φ) = 1
2‖u‖

2 +λ
(

1
2‖∇φ‖

2 + (F (φ), 1)
)
, thus the scheme is unconditionally

stable.

Proof. The only difference between the linear scheme (1.16)-(1.24) and convex split-

ting scheme (1.47)-(1.54) is in the discretization of the Allen-Cahn equation.

By taking the L2 inner product of (1.47) with φn+1−φn

Mδt
, and performing integration

by parts, one obtains
1
M
‖φ̇n+1‖2 − 1

M

(
φ̇n+1,

( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
))

+ λ

δt

(1
2‖∇φ

n+1‖2 − 1
2‖∇φ

n‖2
)

+ λ

δt

(
f0(φn+1, φn), φn+1 − φn

)
= 0.

(1.55)

Recall the definition of f0(φn+1, φn) from (1.51) and the equality as follows,
1
2
(
3φn − φn−1, φn+1 − φn

)
= 1

2
(
φn+1 + φn, φn+1 − φn

)
− 1

2
(
φn+1 − 2φn + φn−1, φn+1 − φn

)
= 1

2
(
‖φn+1‖2 − ‖φn‖2

)
− 1

4

(
‖φn+1 − φn‖2 − ‖φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2

)
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we obtain

1
M
‖φ̇n+1‖2 − 1

M

(
φ̇n+1,

( ũn+1 + un

2
)
· ∇

(3
2φ

n − 1
2φ

n−1
))

+ λ

δt

(1
2‖∇φ

n+1‖2 − 1
2‖∇φ

n‖2 + (F (φn+1)− F (φn), 1)
)

+ λ

δt

1
4η2

(
‖φn+1 − φn‖2 − ‖φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2

)
= 0.

(1.56)

For the momentum equation, we get the same results as (1.34)-(1.37). Thus, by

combining with (1.56), we obtain

1
M
‖φ̇n+1‖2 + λ

δt

(1
2‖∇φ

n+1‖2 − 1
2‖∇φ

n‖2 + (F (φn+1)− F (φn), 1)
)

+ 1
2δt(‖u

n+1‖2 − ‖un‖2) + ν
∥∥∥∥∇( ũn+1 + un

2
)∥∥∥∥2

+ δt

8

(
‖∇pn+1‖2 − ‖∇pn‖2

)
+ λ

δt

1
4η2

(
‖φn+1 − φn‖2 − ‖φn − φn−1‖2 + ‖φn+1 − 2φn + φn−1‖2

)
= 0.

(1.57)

This completes the proof.

Remark 1.3.7. Heuristically, E(un+1, φn+1) + λ
4η2‖φn+1 − φn‖2 + δt2

8 ‖∇p
n+1‖2 is a

second order approximation of E(un+1, φn+1), as one can write

‖φn+1 − φn‖2 = δt2‖(φn+1 − φn)/δt‖2,

and (φn+1 − φn)/δt is an approximation of φt at tn+1/2.

1.4 Fully Discrete Schemes and Energy Stability.

We now consider the fully discrete versions of schemes (1.16)-(1.24) and (1.47)-

(1.54) to solve the system in the framework of finite element method.

Let Th be a quasi-uniform triangulation of the domain Ω of mesh size h. We intro-

duce Xh and Yh the finite element approximations of H1
0 (Ω) and H1(Ω) respectively

based on the triangulation Th. In addition, we define Mh = Yh ∩ L2
0(Ω) := {qh ∈

Yh;
∫

Ω qhdx = 0}. We assume that Xh and Mh are stable approximation spaces for
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the velocity and pressure in the sense that there exists a constant c such that

sup
vh∈Xh

(∇ · vh, qh)
‖vh‖H1

≥ c‖qh‖L2 , ∀qh ∈Mh.

It is pointed out [28] that the inf-sup condition is necessary for the stability of pressure

even though one may solve the projection step as a pressure Poisson equation.

For simplicity, the following notations will be used thereafter.

φ
n+ 1

2
h = φn+1

h + φnh
2 , φ

n+ 1
2

h = 3φnh − φn−1
h

2 , (1.58a)

ũ
n+ 1

2
h = ũn+1

h + unh
2 , u

n+ 1
2

h = 3unh − un−1
h

2 , (1.58b)

f0(φn+1
h , φnh) = 1

η2

(1
2
(
(φn+1

h )2 + (φnh)2
)
φ
n+ 1

2
h − φn+ 1

2
h

)
. (1.58c)

1.4.1 The fully discrete Linear scheme.

We now give the fully discrete formulation for the linear scheme (1.16)-(1.24). In

the framework of the finite element spaces above, the scheme reads as follows.

Find (φn+1
h , qn+1

h , ũ
n+ 1

2
h , pn+1

h , un+1
h ) ∈ Yh × Yh × Xh ×Mh × Xh such that for all

(ψh, vh, gh) ∈ Yh ×Xh × Yh there hold

Step 1:

(φn+1
h − φnh
δt

, ψh
)

+
(
ũ
n+ 1

2
h · ∇φn+ 1

2
h , ψh

)
+ λM

(
∇φn+ 1

2
h ,∇ψh

)
+ λM

(
φ
n+ 1

2
h

( 1
η2φ

n+ 1
2

h (φn+1
h − φnh) + qnh

)
, ψh

)
(1.59)

= 0,

(2ũn+ 1
2

h − 2unh
δt

, vh
)

+ ν
(
∇ũn+ 1

2
h ,∇vh

)
+ b

(
u
n+ 1

2
h , ũ

n+ 1
2

h , vh
)

= −
(
∇pnh, vh

)
− 1
M

(φn+1
h − φnh
δt

+ ũ
n+ 1

2
h · ∇φn+ 1

2
h

)
∇φn+ 1

2
h , vh

. (1.60)

Step 2:

(un+1
h − ũn+1

h

δt
, vh

)
+ 1

2
(
∇(pn+1

h − pnh), vh
)

= 0, (1.61)(
∇ · un+1

h , gh
)

= 0. (1.62)
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Step 3:

η2

2

(
qn+1
h − qnh
δt

, ψh
)

=
(
φ
n+ 1

2
h

φn+1
h − φnh
δt

, ψh
)
. (1.63)

Remark 1.4.1. Note that the update of qn+1
h in (1.63) is decoupled from the rest of

equations.

Remark 1.4.2. We remark that the velocity un+1
h is sought in the space Xh ⊂ H1

0 (Ω).

It implies that un+1
h satisfies the essential boundary condition un+1

h = 0 on ∂Ωh,

whereas un+1 ∈ H satisfies un+1 · n = 0 on ∂Ωh. Here H := {v ∈ L2(Ω),∇ ·

v = 0, un+1 · n|∂Ω = 0}. As is pointed out in [29] (Remark 3.3), Xh is a discrete

approximation of H since H1
0 is dense in H. Thus (1.61) and (1.62) can be viewed as

an approximation of the Darcy problem. This formulation is shown in [29] to yield an

optimal condition number for the pressure operator associated with the finite element

spatial discretization.

In order to establish the stability of the fully discrete scheme (1.59)–(1.63), for

convenience, we introduce the discrete (negative) divergence operator Bh : Xh(⊂

H1
0 )→Mh (⊂ H1, endowed with L2 norm) such that for uh ∈ Xh and qh ∈Mh

(Bhuh, qh) := −(∇ · uh, qh) = (uh,∇qh) := (uh, BT
h qh), (1.64)

where BT
h : Mh → Xh is the transpose of Bh (the discrete gradient operator). Thus

one can write the projection step (1.61) and (1.62) in the discrete form

un+1
h − ũn+1

h + δt

2 B
T
h (pn+1

h − pnh) = 0, in Xh, (1.65)

Bhu
n+1
h = 0, in Mh. (1.66)

Now one can proceed by testing the above equation with un+1
h , BT

h p
n+1
h ∈ Xh, respec-

tively. The modified energy law is valid with the discrete gradient operator associated

with pressure terms.
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Theorem 1.4.1. Given that qnh ∈ Yh, φnh, φn−1
h ∈ Yh, unh, un−1

h ∈ Xh, and pnh ∈ Mh,

the system (1.59)-(1.63) admits a unique solution (φn+1
h , qn+1

h , ũ
n+ 1

2
h , pn+1

h , un+1
h ) ∈ Yh×

Yh ×Xh ×Mh ×Xh at the time step tn+1 for any h > 0 and δt > 0. Moreover, the

solution satisfies a discrete energy law

(
E(un+1

h , φn+1
h , qn+1

h ) + δt2

8 ‖B
T
h p

n+1
h ‖2

)
−
(
E(unh, φnh, qnh) + δt2

8 ‖B
T
h p

n
h‖2

)
≤ −δtν‖∇ũn+ 1

2
h ‖2 − δt

M

∥∥∥∥φn+1
h − φnh
δt

+ ũ
n+ 1

2
h · ∇φn+ 1

2
h

∥∥∥∥2
, (1.67)

where E(unh, φnh, qnh) = 1
2‖u

n
h‖2 + λ

(
1
2‖∇φ

n
h‖2 + η2

4 ‖q
n
h‖2

)
. Thus the scheme is uncon-

ditionally stable.

Proof. We note that the scheme (1.59)–(1.63) is a linear system. Thus the unique

solvability would follow from the energy law (1.67).

To establish the energy law, we define an intermediate variable q̃n+1
h such that

q̃n+1
h = 2

η2φ
n+ 1

2
h (φn+1

h − φnh) + qnh .

Then (1.59) and (1.63) can be written as

(φn+1
h − φnh
δt

, ψh
)

+
(
ũ
n+ 1

2
h · ∇φn+ 1

2
h , ψh

)
+λM

(
∇φn+ 1

2
h ,∇ψh

)
+ λM

(
φ
n+ 1

2
h

q̃n+1
h + qnh

2 , ψh

)
= 0, (1.68)

η2

2

(
q̃n+1
h − qnh
δt

, ψh
)

=
(
φ
n+ 1

2
h

φn+1
h − φnh
δt

, ψh
)
, (1.69)

(qn+1
h , ψh) = (q̃n+1

h , ψh). (1.70)

One can obtain the following version of energy law, by working with (1.68), (1.60),

(1.61), (1.62), (1.65), (1.66), and (1.69), and by following the same proof of Theorem

1.3.1,

(
E(un+1

h , φn+1
h , q̃n+1

h ) + δt2

8 ‖B
T
h p

n+1
h ‖2

)
−
(
E(unh, φnh, qnh) + δt2

8 ‖B
T
h p

n
h‖2

)
= −νδt‖∇ũn+ 1

2
h ‖2 − δt

M
‖φ

n+1
h − φnh
δt

+ ũ
n+ 1

2
h · ∇φn+ 1

2
h ‖2. (1.71)
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Here E(unh, φnh, qnh) = 1
2‖u

n
h‖2 + λ

(
1
2‖∇φ

n
h‖2 + η2

4 ‖q
n
h‖2

)
. The energy law (1.67) then

follows from the fact ||qn+1
h ||Ł2 ≤ ||q̃n+1

h ||Ł2 as is evident from (1.70). The proof of

the theorem is complete.

For completeness, we also gives the corresponding linear scheme for solving the

CHNS system:

Find (φn+1
h , qn+1

h , µ
n+ 1

2
h , ũ

n+ 1
2

h , pn+1
h , un+1

h ) ∈ Yh × Yh × Yh ×Xh ×Mh ×Xh such that

for all (ψh, ϕh, vh, gh) ∈ Yh × Yh ×Xh × Yh there holds

Step 1:
(φn+1

h − φnh
δt

, ψh
)

+
(
M∇µn+ 1

2
h ,∇ψh

)
−
(
φ
n+ 1

2
h ũ

n+ 1
2

h ,∇ψh
)

= 0, (1.72)(
µ
n+ 1

2
h , ϕh

)
= λ

(
∇(φn+1/2

h ,∇ϕh
)

+ λ

(
φ
n+ 1

2
h

( 1
η2φ

n+ 1
2

h (φn+1
h − φnh) + qnh

)
, ϕh

)
, (1.73)

(2ũn+ 1
2

h − 2unh
δt

, vh
)

+
(
ν∇ũn+ 1

2
h ,∇vh

)
+ b

(
u
n+ 1

2
h , ũ

n+ 1
2

h , vh
)

= −
(
∇pnh, vh

)
(1.74)

− λ
(
φ
n+ 1

2
h ∇µn+ 1

2
h , vh

)
.

Step 2:
(un+1

h − ũn+1
h

δt
, vh

)
+ δt

2
(
∇(pn+1

h − pnh), vh
)

= 0, (1.75)(
∇ · un+1

h , gh
)

= 0. (1.76)

Step 3:

η2

2

(
qn+1
h − qnh
δt

, ψh
)

=
(
φ
n+ 1

2
h

φn+1
h − φnh
δt

, ψh
)
. (1.77)

For the scheme (1.72)–(1.77), one can prove

Theorem 1.4.2. Given that qnh , φnh, φn−1
h ∈ Yh, unh, un−1

h ∈ Xh, and pnh ∈ Mh, the

system (1.72)-(1.77) is uniquely solvable, for any h > 0 and δt > 0. Moreover, the

solution satisfies a discrete energy law(
E(un+1

h , φn+1
h , qn+1

h ) + δt2

8 ‖B
T
h p

n+1‖2
)
−
(
E(unh, φnh, qnh) + δt2

8 ‖B
T
h p

n
h‖2

)
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≤ −δtM‖∇µn+ 1
2

h ‖2 − δtν‖∇ũn+ 1
2

h ‖2,

where E(unh, φnh, qnh) = 1
2‖u

n
h‖2 + λ

(
1
2‖∇φ

n
h‖2 + η2

4 ‖q
n
h‖2

)
. Thus the scheme is uncon-

ditionally stable.

Remark 1.4.3. We point out that the modified energy stability in Theorem 1.4.1

implies the (discrete) L2 stability for un+1
h , ∇φn+1

h and qn+1
h in the scheme (1.59)-

(1.63) for the ACNS model. The H1 stability for φn+1
h is not yet available, although

such an estimate is valid for the original PDE as is implied by the continuous energy

law Eq. (1.10). We note that formally qn+1
h is a second order in-time approximation

of φ2−1
η2 , as is explained in Remark 1.3.2.

This is in contrast to the case of CHNS model. We note that the scheme (1.72)–

(1.77) is mass-conservative, in the sense that
∫

Ω φ
n+1
h dx =

∫
Ω φ

n
hdx = · · · =

∫
Ω φ

0
hdx.

Hence the L2 stability of ∇φn+1
h in the scheme (1.72)–(1.77) plus Poincare inequality

implies the H1 stability of φn+1
h . These remarks are also true for the semi-discrete

linear schemes (1.16)-(1.24) (ACNS) and (1.39)-(1.45) (CHNS). Note that the H1

stability of φn+1
h are valid in the nonlinear schemes for both ACNS and CHNS models,

see Theorem 1.4.3 and Proposition 1.4.1 below.

Remark 1.4.4. The error analysis of the discrete schemes (1.59)-(1.63) and (1.72)–

(1.77) can be very difficult. For instance, the error analysis of Eq. (1.63) would require

an L2 estimate of the derivative φn+1
h
−φn

h

δt
, which in turn needs high order estimate of

φn+1
h via Eq. (1.59) among others. The case for CHNS could be even worse because

of a lack of diffusion in qn+1
h for the high order estimates of φn+1

h . We leave the error

analysis of these schemes to a future work.

1.4.2 The Fully Discrete Nonlinear Scheme.

Now we present the fully discrete version of the nonlinear scheme of (1.47)-(1.54).

The scheme reads as follows.
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Find (φn+1
h , ũ

n+ 1
2

h , pn+1
h , un+1

h ) ∈ Yh×Xh×Mh×Xh such that for all (ψh, vh, gh) ∈

Yh ×Xh × Yh, there hold,

Step 1:

(φn+1
h − φnh
δt

, ψh
)

+
(
ũ
n+ 1

2
h · ∇φn+ 1

2
h , ψh

)
+ λM

(
∇φn+1/2

h ,∇ψh
)

+ λM

4η2

((
(φn+1

h )2 + (φnh)2
)(
φn+1
h + φnh

)
, ψh

)
= λM

η2

(
φ
n+ 1

2
h , ψh

)
, (1.78)

(2ũn+ 1
2

h − 2unh
δt

, vh
)

+ ν
(
∇ũn+ 1

2
h ,∇vh

)
+ b

(
u
n+ 1

2
h , ũ

n+ 1
2

h , vh
)

= −
(
∇pnh, vh

)
− 1
M

(φn+1
h − φnh
δt

+ ũ
n+ 1

2
h · ∇φn+ 1

2
h

)
∇φn+ 1

2
h , vh

. (1.79)

Step 2:

(un+1
h − ũn+1

h

δt
, vh

)
+ 1

2
(
∇(pn+1

h − pnh), vh
)

= 0, (1.80)(
∇ · un+1

h , gh
)

= 0. (1.81)

The following theorem states that the fully discrete scheme (1.78)–(1.81) is un-

conditionally uniquely solvable and satisfies a discrete energy law.

Theorem 1.4.3. Given that φnh, φn−1
h ∈ Yh, unh, un−1

h ∈ Xh, and pnh ∈Mh, the system

(1.78)-(1.81) admits a unique solution (φn+1
h , ũ

n+ 1
2

h , pn+1
h , un+1

h ) ∈ Yh ×Xh ×Mh ×Xh

at the time step tn+1 for any parameters h > 0 and δt > 0. Moreover, the solution

satisfies a discrete energy law(
E(un+1

h , φn+1
h ) + λ

4η2 ||φ
n+1
h − φnh‖2 + δt2

8 ‖B
T
h p

n+1
h ‖2

)

−
(
E(unh, φnh) + λ

4η2‖φ
n
h − φn−1

h ‖2 + δt2

8 ‖B
T
h p

n
h‖2

)

≤ −δtν‖∇ũn+ 1
2

h ‖2 − δt

M

∥∥∥∥φn+1
h − φnh
δt

+ ũ
n+ 1

2
h · ∇φn+ 1

2
h

∥∥∥∥2
,

where E(unh, φnh) = 1
2‖u

n
h‖2 +λ

(
1
2‖∇φ

n
h‖2 + (F (φnh), 1)

)
. Thus the scheme is uncondi-

tionally stable.
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Proof. Note that (1.80) and (1.81) (or equivalent (1.65) and (1.66)) are decoupled

from the rest of the system. Given ũn+1
h (or equivalent ũn+ 1

2
h ), the unique solvability

of (1.80) and (1.81) is classical, see for instance [29]. Hence one only needs to show

that (1.78) and (1.79) are uniquely solvable. We define a finite dimensional Hilbert

space Zh := Yh × Xh endowed with the usual H1 inner product and norm. We

introduce an operator Sh : Zh → Zh such that(
Sh(φh, uh), (ψh, vh)

)
Zh

= 1
M

(
φh − φnh
δt

+ uh · ∇φ
n+ 1

2
h ,

ψh
δt

)
+ λ

2

(
∇(φh + φnh),∇ψh

δt

)

+ λ

4η2

((
(φh)2 + (φnh)2

)
(φh + φnh), ψh

δt

)
− λ

η2

(
φ
n+ 1

2
h ,

ψh
δt

)
+
(2uh − 2unh

δt
, vh

)
+ ν

(
∇uh,∇vh

)
+ b

(
u
n+ 1

2
h , uh, vh

)
+
(
∇pnh, vh

)
+ 1
M

(φh − φnh
δt

+ uh · ∇φ
n+ 1

2
h

)
∇φn+ 1

2
h , vh

,
for (φh, uh) ∈ Zh and (ψh, vh) ∈ Zh. Note that Eq. (1.78) is scaled by 1

Mδt
in the defini-

tion of Sh. It is clear from Sobolev embedding and Hölder’s inequality that the opera-

tor Sh is a continuous operator. We proceed to show that
(
Sh(φh, uh), (φh, uh)

)
Zh

> 0,

for ‖(φh, uh)‖Zh
large enough. Then Lemma 1.4 in [73] (pp. 164) implies that there

exists (φn+1
h , ũ

n+ 1
2

h ) ∈ Zh such that Sh(φn+1
h , ũ

n+ 1
2

h ) = 0.

We have

1
M

(
φh − φnh
δt

+ uh · ∇φ
n+ 1

2
h ,

φh
δt

)
+ 1
M

((φh − φnh
δt

+ uh · ∇φ
n+ 1

2
h

)
∇φn+ 1

2
h , uh

)
= 1
M

∥∥∥∥φh − φnhδt
+ uh · ∇φ

n+ 1
2

h

∥∥∥∥2
+ 1
M

(φh − φnh
δt

+ uh · ∇φ
n+ 1

2
h ,

φnh
δt

)
≥ 1
M

∥∥∥∥φh − φnhδt
+ uh · ∇φ

n+ 1
2

h

∥∥∥∥2
+ 1

2M

(∥∥∥φh
δt

∥∥∥2
−
∥∥∥φnh
δt

∥∥∥2
+
∥∥∥φh
δt
− φnh
δt

∥∥∥2
)

− 1
M
‖uh‖L4

∥∥∥∇φn+ 1
2

h

∥∥∥∥∥∥φnh
δt

∥∥∥
L4

≥ 1
M

∥∥∥∥φh − φnhδt
+ uh · ∇φ

n+ 1
2

h

∥∥∥∥2
+ 1

2M

(∥∥∥∥φhδt
∥∥∥∥2
−
∥∥∥∥φnhδt

∥∥∥∥2
+
∥∥∥∥φhδt − φnh

δt

∥∥∥∥2)
− ν

2‖∇uh‖
2 − C(ν, λ,M, δt)‖∇φn+ 1

2
h ‖2‖φnh‖2

H1 ,

where one has utilized the Sobolev embedding and the Poincaré inequality. Further-
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more, applying the Young’s inequality and Sobolev embedding, we can obtain

λ

4η2

((
(φh)2 + (φnh)2

)
(φh + φnh), φh

δt

)

= λ

4δtη2

∫
Ω
φ4
h − (φnh)4 dx+ λ

4δtη2

((
(φh)2 + (φnh)2

)
(φh + φnh), φnh

)

≥ λ

8δtη2

∫
Ω
φ4
h dx− C(η, λ, δt)‖φnh‖4

H1 .

Combing the above inequalities, and in view of the skew symmetry (1.29) of the

trilinear form b(u, v, w), we obtain(
Sh(φh, uh), (φh, uh)

)
Zh

≥ C(‖φh‖2
H1 + ‖uh‖2

H1)

− C(ν, λ,M, δt)(‖∇pnh‖2 + ‖φnh‖4
H1 + ‖unh‖+ ‖∇φn+ 1

2
h ‖).

(1.82)

Thus for ‖(φh, uh)‖Zh
large enough, one has

(
Sh(φh, uh), (φh, uh)

)
Zh

> 0. The exis-

tence of (φn+1
h , ũ

n+ 1
2

h ) ∈ Yh ×Xh to (1.78) and (1.79) are hence proved.

For uniqueness, suppose (φn+1
h,(i), ũ

n+ 1
2

h,(i) ), i = 1, 2 are two solutions of (1.78) and

(1.79). Then their differences φh = φn+1
h,(1) − φ

n+1
h,(2) and ũh = ũ

n+ 1
2

h,(1) − ũ
n+ 1

2
h,(2) satisfy

(φh
δt
, ψh

)
+
(
ũh · ∇φ

n+ 1
2

h , ψh
)

+ Mλ

2
(
∇φh,∇ψh

)
+Mλ

8η2

φh((φn+1
h,(1) + φn+1

h,(2))
2 + (φnh + φn+1

h,(1))
2 + (φn+1

h,(2) + φnh)2
)
, vh

 (1.83)

= 0, (1.84)

and

(2ũh
δt
, vh

)
+ ν

(
∇ũh,∇vh

)
+ b

(
u
n+ 1

2
h , ũh, vh

)
(1.85)

+ 1
M

(φh
δt

+ ũh · ∇φ
n+ 1

2
h

)
∇φn+ 1

2
h , vh

 (1.86)

= 0. (1.87)

The uniqueness follows simply by taking the test functions ψh = 1
M
φh and vh = ũh

in (1.84) and (1.87) respectively, and summing up the results.
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Finally, for the stability of the scheme, one works with (1.78), (1.79) and abstract

equations (1.65), (1.66). Following the same procedure as in the proof of Theorem

1.3.3, one derives the modified energy law (1.82). This concludes the proof.

We comment how to implement the nonlinear scheme (1.78)–(1.81). Note that

the only nonlinear term appears in the Allen-Cahn equation (1.78). We thus adopt a

Picard iteration procedure on velocity to decouple the computation of the nonlinear

Allen-Cahn equation (1.78) from that of the linear Navier-Stokes equation (1.79).

Denote by i the Picard iteration index. Specifically, given the velocity ũn+ 1
2 ,i, we solve

for φn+1,i+1 from the Allen-Cahn equation (1.78) by Newton’s method. As φn+1,i+1 is

available, we can then proceed to solve for ũn+ 1
2 ,i+1 from the linear equations (1.79).

We repeat this procedure until the relative difference between two iterations within

a fixed tolerance.

Numerical simulations in [46] suggest that at least 4 grid elements across the in-

terfacial region of thickness
√

2η are needed for accuracy. To improve the efficiency of

the algorithm, we explore the capability of adaptive mesh refinement of FreeFem++

(cf. [33]) in which a variable metric/Delaunay automatic meshing algorithm is im-

plemented.

Finally we state without a proof that similar result as Theorem 1.4.3 also holds

for the fully discrete scheme for solving CHNS system (see (4.43)–(4.47) in [32]).

Proposition 1.4.1. Given that φnh, φn−1
h ∈ Yh, unh, un−1

h ∈ Xh, and pnh ∈ Mh, there

exists a unique solution (φn+1
h , µ

n+ 1
2

h , ũ
n+ 1

2
h , pn+1

h , un+1
h ) ∈ Yh × Yh ×Xh ×Mh ×Xh to

the corresponding system for solving the CHNS system for any parameters h > 0 and

δt > 0. Moreover, the solution satisfies a discrete energy law(
E(un+1

h , φn+1
h ) + λ

4η2‖φ
n+1
h − φnh‖2 + δt2

8 ‖B
T
h p

n+1‖2
)

−
(
E(unh, φnh) + λ

4η2‖φ
n
h − φn−1

h ‖2 + δt2

8 ‖B
T
h p

n
h‖2

)
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≤ −δtM‖∇µn+ 1
2

h ‖2 − δtν‖∇ũn+ 1
2

h ‖2.

Thus the scheme is unconditionally stable.

1.5 Numerical Experiments

In this section, we present some numerical results using our schemes. We use

P1–P1 or P2–P2 finite element function spaces for Yh × Yh , and P1b–P1 or Taylor-

Hood (P2–P1) mixed finite element spaces for Xh × Yh . It is well-known that these

approximation spaces satisfy the inf-sup conditions for the biharmonic operator and

Stokes operator, respectively (cf. [14, 1]).

1.5.1 Convergence Tests.

In this subsection, we verify the second order convergence of the proposed schemes

via the Cauchy convergence test. The computational domain is [0, 1]× [0, 1], we take

uniformly 2k grid points in each direction for k from 4 to 8 (h =
√

2
2k ), and we take

a linear refinement path δt = 0.2√
2h. We calculate the rate at which the Cauchy

difference (e.g. φkh−φk−1
h ) converges to zero in the L2 norm at the final time T = 0.1.

Here the P1 finite element space is used for Yh, and the mini P1b–P1 mixed finite

element spaces are used for Xh × Yh. The error is expected to be at the order of

e = o(δt2) + o(h2) = o(δt2).

For all of the convergence tests, the initial conditions are taken to be

φ0 = 0.24 cos(2πx) cos(2πy) + 0.4 cos(πx) cos(3πy),

u0 = (− sin(πx)2 sin(2πy), sin(πy)2 sin(2πx)).

The parameters of the problem are η = 0.1,M = 0.01, λ = 0.001, ν = 0.1. The

errors and convergence rates are presented in Tables 1.1, 1.2, and 1.3 for the linear

scheme (1.59)-(1.63) solving ACNS, the linear scheme (1.72)-(1.77) solving CHNS

and nonlinear scheme (1.78)-(1.81) solving ACNS, respectively. The results show
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that the schemes are of second order accuracy for φ and u in L2 norm, and the rate

of convergence for pressure p appear to be only first order which is known for the

pressure projection scheme.

Table 1.1: Cauchy convergence test for the linear scheme (1.59)-(1.63) solving ACNS
system; errors are measured in L2 norm; 2k grid points in each direction for k from 4
to 8, δt = 0.2

2 h, η = 0.1, M = 0.01, λ = 0.001 , ν = 0.1.

16− 32 rate 32− 64 rate 64− 128 rate 128− 256
φ 1.50e− 3 1.86 4.21− 4 1.96 1.08e− 4 1.99 2.72e− 5
u 3.00e− 3 2.04 7.24e− 4 2.03 1.77e− 4 2.02 4.38e− 5
v 3.00e− 3 2.03 7.37e− 4 2.03 1.81e− 4 2.02 4.48e− 5
p 1.65e− 2 1.44 6.10e− 3 1.43 2.30e− 3 1.42 8.40e− 4

Table 1.2: Cauchy convergence test for the linear scheme (1.72)-(1.76) solving CHNS
system; errors are measured in L2 norm; 2k grid points in each direction for k from 4
to 8, δt = 0.2

2 h, η = 0.1, M = 0.01, λ = 0.001 , ν = 0.1.

16− 32 rate 32− 64 rate 64− 128 rate 128− 256
φ 3.31e− 2 2.02 8.10− 3 1.99 2.01e− 4 1.98 5.17e− 4
u 3.00e− 3 2.04 7.25e− 4 2.03 1.78e− 4 2.02 4.39e− 5
v 3.10e− 3 2.03 7.49e− 4 2.02 1.84e− 4 2.01 4.56e− 5
p 1.65e− 2 1.44 6.10e− 3 1.42 2.30e− 3 1.41 8.53e− 4

Table 1.3: Cauchy convergence test for the nonlinear convex-splitting scheme (1.78)-
(1.81) solving ACNS system; errors are measured in L2 norm; 2k grid points in each
direction for k from 4 to 8, δt = 0.2

2 h, η = 0.1, M = 0.01, λ = 0.001 , ν = 0.1.

16− 32 rate 32− 64 rate 64− 128 rate 128− 256
φ 1.60e− 3 1.86 4.34− 4 1.96 1.11e− 4 1.99 2.80e− 4
u 3.00e− 3 2.04 7.24e− 4 2.03 1.78e− 4 2.02 4.38e− 5
v 3.00e− 3 2.03 7.36e− 4 2.03 1.81e− 4 2.02 4.47e− 5
p 1.65e− 2 1.44 6.10e− 3 1.43 2.30e− 3 1.42 8.40e− 4

1.5.2 The Velocity of a Circular Moving Interface.

Here we perform a classical numerical experiment of a shrinking circular bubble

[13] for Allen-Cahn equation (u = 0, no flow). We show that we can accurately
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t = 1000 t = 2000 t = 3000 t = 4000 t = 5000

Figure 1.1: Temporal evolution of a circular domain driven by mean curvature without
hydrodynamic effects. The parameters are η = 1.0, M = 1.0, λ = 1.0, δt = 0.1,
Ω = [0, 256]× [0, 256].
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Figure 1.2: The areas of the circle as a function of time. η = 1.0, M = 1.0, λ = 1.0,
δt = 0.1, Ω = [0, 256]× [0, 256]. The slope of the line is −6.2842 and the theoretical
slope is −2π.

calculate the velocity of a moving interface via our second order schemes. The set-up

of the numerical experiment is the same as of that in [13] with the domain size of

Ω = [0, 256]×[0, 256]. The parameters are taken to be unity, i.e., η = 1,M = 1, λ = 1.

Initially, there is a circular interface boundary of radius 100 in the middle of Ω. Within

the circle the phase variable is +1 and outside it takes the value −1. As it is pointed

out in [13], the circular boundary will shrink and disappear eventually driven by the

mean curvature. The area of the circle can be found explicitly, A = A0 − 2πt, where

A0 is the initial area. Thus the circular boundary shrinks at a rate of V = 2π.

The temporal evolution of the circular domain is shown in Fig. 1.1. We take
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δt = 0.1 in the simulation. In space, we explore the adaptive mesh refinement of

FreeFem++ (cf. [33]) such that at least four grid cells are located across the diffuse

interface (hmin ≈ 0.2). The results shown are produced using the linear scheme

(1.16)-(1.24), and the same results are obtained via the nonlinear convex splitting

scheme.

The areas of the circle as a function of time is shown in Fig. 1.2. The slope of

the line is approximately −6.2842. The relative error of the velocity compared to the

theory is 1.61e− 04. Our scheme performs better than any of the schemes presented

in [13] in this regard.

1.5.3 Shape relaxation.

In this subsection, we perform another two standard numerical tests in the context

of phase field fluid models– shape relaxation in Fig. 1.3 and Fig. 1.4. In both tests,

the P2 finite element space is used for Yh, and the Taylor-Hood P2–P1 mixed finite

element spaces are used for Xh × Yh.

t = 4 t = 40 t = 60 t = 80

Figure 1.3: Snapshots of the relaxation of a square shape by the ACNS system.
η = 0.01, λ = M = 0.0001, δt = 0.05.

In the first numerical test, we simulate the square evolves to a circular bubble

using the linear scheme (1.59)-(1.63) for the ACNS system. The phase variable φ

takes value +1 inside the square and −1 outside of it. The initial velocity u and

pressure p are zeros. The parameters are η = 0.01, λ = M = 0.0001, ν = 0.1,

δt = 0.05. Fig. 1.3 shows some snapshots of the zero contour of the order parameter
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of the ACNS system. We observe that the isolated square shape relaxes to a circular

shape, due to the effect of surface tension. The shape also appears to shrink a bit

during the relaxation because the ACNS system is not mass-conservative.

In the second numerical test, we simulate the merging process of two circular

bubbles using the CHNS system. In Fig. 1.4, we show the merging of two circles next

to each other under the influence of surface tension in the CHNS system. The circles

quickly connect and eventually relax to a large circle at which the surface energy is

minimal. In this simulation, the parameters are η = 0.01, λ = 0.0001, M = 0.1,

ν = 0.1, δt = 0.01.

Figure 1.4: Zero contour plots of the merging and relaxation of two kissing circles by
the CHNS system. From left to right, t = 0.0, t = 0.2, t = 2, t = 4, t = 12, t = 18.
η = 0.01, λ = 0.0001, M = 0.1, ν = 0.1, δt = 0.01.

1.5.4 A Rising Bubble.

In this numerical experiment, we simulate the rising process of a lighter liquid

bubble using the CHNS system driven by the buoyancy. In particular, the density

difference of the two fluids is small so that a Boussinesq approximation is applicable

[56]. Specifically, a buoyancy term G(ρ(φ) − ρ̄)ŷ := B(φ − φ̄)ŷ is added to Navier-
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Stokes equation. Here ρ(φ) = 1+φ
2 ρ1 + 1−φ

2 ρ2, ρ̄ and φ̄ are the spatial averages of ρ

and φ, B = Gρ1−ρ2
2 , ŷ = (0, 1)T .

The filled contour plots in gray scale of the rising bubble are shown in Fig. 1.5. We

see that the bubble rises due to the buoyancy. As it rises, the bubble also elongates

horizontally, especially when it is near the upper boundary.

Figure 1.5: Filled contour plots in gray scale of the rising bubble by the CHNS
system. From left to right, t = 0.64, t = 1.2, t = 1.6, t = 2, t = 2.4, t = 2.8.
η = 0.01, λ = 0.0001, M = 0.1, ν = 0.01, δt = 0.01, B = 1.0.
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Chapter 2

Numerical approximations for smectic–A liquid

crystal flows

2.1 Introduction

Liquid crystal (LC) is often viewed as the fourth state of the matter besides the

gas, liquid and solid. It may flow like a liquid, but its molecules may be oriented

in a crystal-like way. There are many different types of liquid-crystal phases, which

can be distinguished by their different optical properties. Thermotropic LCs can

be distinguished into two main different phases: Nematic and Smectic. In Nematic

phases, the rod-shaped molecules have no positional order, but molecules self-align to

have a long-range directional order with their long axes roughly parallel. Thus, the

molecules are free to flow and their center of mass positions are randomly distributed

as in a liquid, although they still maintain their long-range directional order. In

smectic phases, which are found at lower temperatures, the well-defined layers form,

that can slide over one another in a manner similar to that of soap. The smectics

are thus positionally ordered along one direction inside the layer. There are many

different smectic phases, all characterized by different types and degrees of positional

and orientational order (cf.[11, 26]). In particular, in Smectic-A phases, molecules

are oriented along the normal vector of the layers, while in Smectic-C phases they

are tilted away from the normal vector of the layer.

The mathematical model of liquid crystals can often be derived from an energy-

based variational formalism (energetic variational approaches), leading to well-posed
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nonlinear coupled systems that satisfy thermodynamics-consistent energy dissipation

laws. This makes it possible to carry out mathematical analysis and design numerical

schemes which satisfy a corresponding discrete energy dissipation law. For smectic-

A phase liquid crystals, in de Gennes’ pioneering work [26], the phenomenonlogical

free energy of smectic–A phase is presented by coupling two order parameters which

represent the average direction of molecular alignment, as well as the layer structure,

respectively. In [12], the authors modified the de Gennes’ model by adding a second

order gradient term for the smectic order parameter to investigate the nematic to

smectic–A or smectic–C phase transition, and to predict the twist grain boundary

phase in chiral smectic liquid crystals. In [42], the authors used the de Gennes

energy to study smectic–A liquid crystals to simulate the chevron (zigzag) pattern

formed in the presence of an applied magnetic field. In [19], the authors derived the

hydrodynamics coupled model for smectic–A phase by assuming that the director

field is strictly equal to the gradient of the layer, thus the free energy is reduced to

one order parameter.

From the numerical point of view, it is specifically desired to design numeri-

cal schemes that could preserve the thermo-dynamically consistent dissipation law

(energy-stable) at the discrete level, since the preservation of such laws is critical for

numerical methods to capture the correct long time dynamics. The noncompliance of

energy dissipation laws may lead to spurious numerical solutions if the grid and time

step sizes are not carefully controlled. To the best of the author’s knowledge, although

a variety of the smectic liquid crystal models had been developed for more than half

a centry, we notice that the successful attempts in designing efficient energy stable

schemes are very scarce due to the complex nonlinearities. For instances, in [25], the

authors present a temporal second order numerical scheme to solve the model of [19].

The scheme is energy stable, however, it is nonlinear thus the implementation is com-

plicated and the computational cost might be high. In [42], the authors developed a
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temporal first order scheme. However, it does not follow the energy dissipation law

even though the schemes are linear and decoupled.

Therefore, the main purpose of this paper to construct the efficient schemes to

solve the de Gennes type smectic–A liquid crystal model (cf. [26, 42]). We first

couple the hydrodynamics to the original de Gennes free energy and derive the whole

model based on the variational approach and the Ficks’ law. To solve the model, the

main difficulties roughly include (i) the coupling between the velocity and director

field/layer function through the convection terms and nonlinear stresses; (ii) the

coupling of the velocity and pressure through the incompressibility constraint; (iii)

the nonlinear coupling between the director field and layer function. We develop a

time discretization scheme which (a) is unconditionally stable; (b) satisfies a discrete

energy law; and (c) leads to linear, decoupled equations to solve at each time step.

This is by no means an easy task due to many highly nonlinear terms and the couplings

existed in the model.

The rest of the chapter is organized as follows. In Section 2, we present the whole

model and present the PDE energy law. In Section 3, we develop the numerical

scheme and prove the unconditional stability. In Section 4, we present some numerical

experiments to validate the proposed scheme. Finally, some concluding remarks are

presented in Section 5.

2.2 The smectic-A liquid crystal fluid flow model and its energy

law

The de Gennes free energy of smectic A liquid crystal is described by a unit

vector (director field) d and a complex order parameter ψ, to represent the average

direction of molecular alignment and the layer stucture, respectively. The smectic

order parameter is written as

ψ(x) = ρ(x)eiqω(x), (2.1)
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where ω(x) is the order parameter to describe the layer structure so that ∇ω is

perpendicular to the layer. The smectic layer density ρ(x) is the mass density of the

layers. The de Gennes free energy reads as follows,

E(ψ,d) =
∫

Ω

(
C|∇ψ − iqdψ|2 +K|∇d|2 + g

2(|ψ|2 − r

g
)2 − χaΨ2(d · µ1)2

)
dx (2.2)

where the order parameters C,K, g, r are all fixed positive constants, µ1 is the unit

vector representing the direction of magnetic field and Ψ2 is the strength of the

applied field. Ω = (−L,L)2 × (−d, d).

Now we consider the simple case by assuming the density ρ(x) = r/g [42], then

the energy becomes

E(ψ,d) =
∫

Ω

(
Cq2|∇ω − d|2 +K|∇d|2 − χaΨ2(d · µ1)2

)
dx. (2.3)

Let φ(x) = ω(x)
d

, thus the normalized energy becomes

E(φ,d) = λ
∫

Ω̃

(1
η

|∇φ− d|2

2 + η
|∇d|2

2 − τ

2(d · µ1)2
)
dx, (2.4)

where

x̃ = x

d
, Ω̃ = (0, 2`)2 × (0, 2), ` = L

d
,

η = γ

d
, γ =

√
K

Cq2 , λ = 2dK
η

, τ = χaΨ2d2η

K
.

(2.5)

The dimensionless parameter η is in fact the ratio of the layer thickness to the sample

thickness and thus η � 1.

To release the unit vector constraint of |d| = 1, a nonlinear potential G(b) =
1

4ε2 (|b|2 − 1)2 which is a Ginzburg-Landau type penalty term, is added into the free

energy to approximate the unit length constraint of b [51, 50] , where ε � 1 is a

penalization parameter. Thus the modified total free energy with the hydrodynamics

Etot(u, φ,d) =
∫

Ω̃

1
2 |u|

2dx

+ λ
∫

Ω̃

(1
η

|∇φ− d|2

2 + η( |∇d|
2

2 + G(d))− τ

2(d · µ1)2
)
dx,

(2.6)
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where u is the fluid velocity field.

Assuming a generalized Fick’s law that the mass flux be proportional to the gra-

dient of the chemical potential [7, 24, 54, 53], we can derive the following system:

φt + u · ∇φ = −M1µφ, µφ = δE

δφ
, (2.7)

dt + u · ∇d = −M2µd, µd = δE

δd
, (2.8)

ut + u · ∇u−∇ · σd +∇p− µφ∇φ− µd∇d = 0, (2.9)

∇ · u = 0, (2.10)

where p is the pressure, σd is the Caughy stress tensor, ν is the viscosity, M1,M2 are

the relaxation order parameters. The variational derivatives µφ and µd are

µφ = λ
1
η

(−∆φ+∇ · d), (2.11)

µd = λ
(
η
(
−∆d+ g(d)

)
+ 1
η

(−∇φ+ d)− τ(d · µ1)µ1

)
, (2.12)

where g(d) = 1
ε2
d(|d|2 − 1).

Following the work in [19], the Cauchy stress tensor σd reads as follows,

σd = µ1(dTD(u)d)d⊗ d+ µ4D(u) + µ5(D(u)d⊗ d+ d⊗D(u)d), (2.13)

where µi > 0 and D(u) = 1
2((∇u) + (∇u)T ) is the strain tensor. In this paper, we

assume µ1, µ5 are negligible comparing to µ4, thus the stress tensor is simplifed to

σd = µ4D(u). (2.14)

For simplicty, we assume the boundary conditions as follows.

u|∂Ω = 0, ∂nφ|∂Ω = 0, ∂nd|∂Ω = 0, (2.15)

where n is the outward normal of the boudary.

To obtain the dissipation law of the system (2.7)-(2.10), we take the L2 inner

product of (2.7) with δE
δφ
, (2.8) with δE

δd
, and (2.9) with u, perform the integration by
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parts, and add all equalities together, we obtain

d

dt
Etot(u, φ,d) = −

∫
Ω

(
µ4|D(u)|2 +M1|

δE

δφ
|2 +M2|

δE

δd
|2
)
dx. (2.16)

2.3 Numerical scheme

The emphasis of our algorithm development is placed on designing numerical

schemes that are not only easy-to-implement, but also satisfy a discrete energy dis-

sipation law. We will design schemes that in particular can overcome the following

difficulties, namely,

• the coupling of the velocity and pressure through the incompressibility condi-

tion;

• the stiffness in the director equation associated with the penalty parameter η;

• the nonlinear couplings among the fluid equation, the layer equation and the

director equation.

We construct an energy stable scheme based on a stabilization approach [64]. To

this end, we shall assume that G(b) satisfies the following conditions, i.e.,

|HG(x)| ≤ L,∀x. (2.17)

where (HG(x))i,j = ∂2G
∂xi∂xj

, i, j = 1, 2, 3 is the Hessian matrix of G(x). One imme-

diately notes that this condition is not satisfied by this usual double-well potential.

However, it is a common practice that one truncates this fourth order polynomial G

to quadratic growth outside of an interval [−M,M ] without affecting the solution if

the maximum norm of the initial condition φ0 is bounded by M . Therefore, one can

(cf. [45, 16, 64]) consider the truncated double-well potential G̃(d). We can modify
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this function outside a ball in {x : |d(x)| ≤ 1} ∈ R3 of radius 1 as follows.

G̃(d) =


1

4ε2 (|d|2 − 1)2, |d| ≤ 1,
1

4ε2 (|d| − 1)2, |d| > 1.
(2.18)

Hence, there exists a postive constant LG such that

max
x∈R3
|HG̃(x)| ≤ LG, (2.19)

When deriving the energy law (2.16), we notice that the nonlinear terms in δEtot

δφ

and δEtot

δd
involve second order derivatives, and it is not convenient to use them as

test functions in numerical approximations, making it difficult to prove the discrete

energy dissipation law. To overcome this difficulty, we first reformulate the system

(2.7)-(2.10) in an alternative form which is convenient for numerical approximations.

The system reads as follows,

φt + u · ∇φ = −M1µφ, (2.20)

dt + u · ∇d = −M2µd, (2.21)

ut + u · ∇u−∇ · σd +∇p+ φ̇

M1
∇φ+ ḋ

M2
∇d = 0, (2.22)

∇ · u = 0, (2.23)

where φ̇ = φt + u · ∇φ and ḋ = dt + u · ∇d. To obtain the dissipation law of the

system (2.20)-(2.23), we take the L2 inner product of (2.20) with φt, (2.21) with dt,

and (2.22) with u, perform the integration by parts, and add all equalities together.

We obtain

d

dt
Etot = −

∫
Ω

(
µ4|∇u|2 + 1

M1
|φ̇|2 + 1

M2
|ḋ|2

)
dx. (2.24)

We now fix some notations. For scalar function u, v and vector function u =

(u1, u2, u3) and v = (v1, v2, v3), we denote the L2 inner product as follows.

(u, v) =
∫

Ω
uvdx, ‖u‖2 = (u, u), (u,v) =

∫
Ω
uvTdx, ‖u‖2 = (u,u). (2.25)
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Now, we are ready to present our energy stable schemes.

Our numerical scheme reads as follows. Given the initial conditions φ0, ψ0, u0 and

p0 = 0, having computed φn, ψn, un and pn for n > 0, we compute φn+1, ψn+1, ũn+1

un+1 and pn+1 by

Step 1: 
1
M1

φ̇n+1 = λ

η
(∆φn+1 −∇ · dn),

∂φn+1

∂n
|∂Ω = 0,

(2.26)

with

φ̇n+1 = φn+1 − φn

δt
+ (un? · ∇)φn, un? = un − δtφ̇

n+1

M1
∇φn. (2.27)

Step 2:

S(dn+1 − dn) + 1
M2
ḋ
n+1

= λ
(
η(∆dn+1 − g(dn)) + 1

η
(∇φn+1 − dn+1) + τ(dn · µ1) · µ1

)
,

∂dn+1

∂n
|∂Ω = 0,

(2.28)

with

ḋ
n+1 = dn+1 − dn

δt
+ (un?? · ∇)dn, un?? = un? − δt

ḋ
n+1

M2
∇dn. (2.29)

Step 3:
ũn+1 − un

δt
+ (un · ∇)ũn+1 − µ4∆ũn+1 +∇pn + φ̇n+1

M1
∇φn + ḋ

n+1

M2
∇dn = 0,

ũn+1|∂Ω = 0.
(2.30)

Step 4: 

un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

n · un+1|∂Ω = 0.

(2.31)

In the above, S is a stabilizing parameter to be determined.
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We have the following remarks in order:

• A pressure-correction scheme [27] is used to decouple the computation of the

pressure from that of the velocity.

• The nonlinear term g(d) mainly takes the form like 1
ε2
d(|d|2−1), so the explicit

treatment of this term usually leads to a severe restriction on the time step δt

when ε� 1. Thus we introduce in (2.26) a linear ‘ ‘stabilizing" term to improve

the stability while preserving the simplicity. It allows us to treat the nonlinear

term explicitly without suffering from any time step constraint [62, 64, 63]. Note

that this stabilizing term introduces an extra consistent error of order O(δt) in

a small region near the interface, but this error is of the same order as the error

introduced by treating it explicitly, so the overall truncation error is essentially

of the same order with or without the stabilizing term. It is noticable that the

truncation error of the stablizing approach is exactly the same as the convex

splitting method [23].

• Inspired by [3, 58, 62], which deal with a phase-field model of three-phase viscous

fluids or complex fluids, we introduce two new, explicit, convective velocities

un? and un?? in the phase equations. un? and un?? can be computed directly from

(2.27) and (2.29), i.e.,

un? =
(
I + δt

M1
(∇φn)T∇φn

)−1(
un − 1

M1
(φn+1 − φn)∇φn

)
, (2.32)

un?? =
(
I + δt

M2
(∇dn)T∇dn

)−1(
un? −

1
M2

(dn+1 − dn)∇dn
)
. (2.33)

It is easy to get det(I + c(∇φ)T∇φ) = 1 + c∇φ · ∇φ, thus the above matrix is

invertible.

• The scheme (2.26)-(2.31) is a totally decoupled, linear scheme. Indeed, (2.26),

(2.28) and (2.30) are respectively (decoupled) linear elliptic equations for φn+1,

dn+1 and ũn+1, and (2.31) can be restated as a Poisson equation for pn+1 − pn.
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Therefore, at each time step, one only needs to solve a sequence of decoupled

elliptic equations which can be solved very efficiently.

• As we shall show below, the above scheme is unconditionally energy stable.

Theorem 2.3.1. Under the condition (2.19), and S ≥ ληL
2 , the scheme (2.26)-(2.31)

admits a unique solution satisfying the following discrete energy dissipation law:

En+1 + δt2

2 ‖∇p
n+1‖2 +

{
νδt‖∇ũn+1‖2 + δt( |φ̇

n+1|2

M1
+ |ḋ

n+1|2

M2
)
}
≤ En + δt2

2 ‖∇p
n‖2,

where

En = 1
2‖u

n‖2 + λ
(
η
(‖∇dn‖2

2 + (G(dn), 1)
)

+ 1
η

‖dn −∇φn‖2

2 − τ

2‖d
n · µ1‖2

)
(2.34)

Proof. From the definition of un? and un?? in (2.27) and (2.29), we can rewrite the

momentum equation (2.30) as follows

ũn+1 − un??
δt

+ (un · ∇)ũn+1 − µ4∆ũn+1 +∇pn = 0. (2.35)

By taking the inner product of (2.35) with 2δtũn+1, and using the identity

(a− b, 2a) = |a|2 − |b|2 + |a− b|2, (2.36)

we obtain

‖ũn+1‖2 − ‖un??‖2 + ‖ũn+1 − un??‖2 + 2µ4δt‖∇ũn+1‖2 + 2δt(∇pn, ũn+1) = 0. (2.37)

To deal with the pressure term, we take the inner product of (2.31) with 2δt2∇pn to

derive

δt2(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2) = 2δt(ũn+1,∇pn). (2.38)

By taking the inner product of (2.31) with un+1, we obtain

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2. (2.39)
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We also derive from (2.31) directly that

δt2‖∇pn+1 −∇pn‖2 = ‖ũn+1 − un+1‖2. (2.40)

Combining all identities above, we obtain

‖un+1‖2 − ‖un??‖2 + ‖ũn+1 − un??‖2

+ δt2(‖∇pn+1‖2 − ‖∇pn‖2) + 2νδt‖∇ũn+1‖2 = 0.
(2.41)

Next, we derive from (2.27) and (2.29) that

un? − un

δt
= − φ̇

n+1

M1
∇φn, (2.42)

un?? − un?
δt

= − ḋ
n+1

M2
∇dn. (2.43)

By taking the inner product of (2.42) with 2δtun? , of (2.43) with 2δtun??, we obtain

‖un?‖2 − ‖un‖2 + ‖un? − un‖2 = −2δt( φ̇
n+1

M1
∇φn, un? ), (2.44)

‖un??‖2 − ‖un?‖2 + ‖un?? − un?‖2 = −2δt( ḋ
n+1

M2
∇dn, un??). (2.45)

Then, by taking the inner product of (2.26) with 2(φn+1 − φn), we obtain

2δt‖φ̇
n+1‖2

M1
− 2δt( φ̇

n+1

M1
, (un? · ∇)φn) + 2λ

η

(
∇ · dn, φn+1 − φn

)
+ λ

η

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2

)
= 0.

(2.46)

By taking the inner product of (2.28) with 2(dn+1 − dn), we arrive at

2S‖dn+1 − dn‖2 + 2δt‖ḋ
n+1‖2

M2
− 2δt( ḋ

n+1

M2
, (un?? · ∇)dn)

+ 2λη
(‖∇dn+1‖2

2 − ‖∇d
n‖2

2 + ‖∇d
n+1 −∇dn‖2

2

)
+ λ

η

(
‖dn+1‖2 − ‖dn‖2 + ‖dn+1 − dn‖2

)
+ 2λη(g(dn),dn+1 − dn)− 2λ

η

(
∇φn+1,dn+1 − dn

)
− 2λτ

(
(dn · µ1)µ1,d

n+1 − dn
)

= 0.

(2.47)
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Combining (2.41), (2.44), (2.45), (2.46), and (2.47), we arrive at

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un??‖2 + ‖un?? − un?‖2 + ‖un? − un‖2

+ δt2(‖∇pn+1‖2 − ‖∇pn‖2)

+ 2νδt‖∇ũn+1‖2 + 2δt‖φ̇
n+1‖2

M1
+ 2δt‖ḋ

n+1‖2

M2

+ 2λη
(‖∇dn+1‖2

2 − ‖∇d
n‖2

2 + ‖∇d
n+1 −∇dn‖2

2

)
+ λ

η
(‖dn+1‖2 − ‖dn‖2 + ‖dn+1 − dn‖2)

+ λ

η
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)

+ 2S‖dn+1 − dn‖2

+ 2λη(g(dn),dn+1 − dn) (:Term A)

+ 2λ
η

(∇ · dn, φn+1 − φn)− 2λ
η

(∇φn+1,dn+1 − dn) (:Term B)

− 2λτ
(

(dn · µ1)µ1,d
n+1 − dn

)
(:Term C)

= 0.

(2.48)

We deal with the terms A,B,C as follows.

For Term A, we apply the Taylor expansions to obtain

A = 2λη(G(dn+1)−G(dn), 1)− 2λη
(
g′1(ξ)

2 , |dn+1 − dn|2
)
. (2.49)

For Term B, we have

B = −2λ
η

(
(dn,∇φn+1 −∇φn) + (dn+1 − dn,∇φn+1)

)
= −2λ

η

(
(dn+1,∇φn+1)− (dn,∇φn)

)
.

(2.50)

For Term C, we have

C = −2λτ
(

(dn · µ1), (dn+1 · µ1)− (dn · µ1)
)

= −λτ
(
‖dn+1 · µ1‖2 − ‖dn · µ1‖2 − ‖(dn+1 − dn) · µ1‖2

)
.

(2.51)
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By combining (2.48), (2.49), (2.50) and (2.51), we have

‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un??‖2 + ‖un?? − un?‖2 + ‖un? − un‖2

+ δt2(‖∇pn+1‖2 − ‖∇pn‖2)

+ 2νδt‖∇ũn+1‖2 + 2δt‖φ̇
n+1‖2

M1
+ 2δt‖ḋ

n+1‖2

M2

+ 2λη
(‖∇dn+1‖2

2 − ‖∇d
n‖2

2 + ‖∇d
n+1 −∇dn‖2

2

)
+ 2λη(G(dn+1)−G(dn), 1)

+ λ

η
(‖dn+1‖2 − ‖dn‖2 + ‖dn+1 − dn‖2)

+ λ

η
(‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)

− 2λ
η

(
(dn+1,∇φn+1)− (dn,∇φn)

)
− λτ

(
‖dn+1 · µ1‖2 − ‖dn · µ1‖2

)
+ (2S − ληL)‖dn+1 − dn‖2

+ λτ‖(dn+1 − dn) · µ1‖2

= 0.

(2.52)

Finally, we obtain the desired result after dropping some positive terms.

2.4 Numerical Simulations

We now present some 2D numerical experiments to demonstrate the efficiency,

stability and accuracy of the propose numerical scheme (2.26)-(2.31). The compu-

tatational domain is (x, y) ∈ [0, 2`]× [0, 2]. For x-axis, we set the periodic boundary

condition, and for y− axis, we set Neumann or Dirichelet boundary conditions. We

adopt the second order central finite difference method to discretize the space. The

magnectic field is always set as µ1 = (0, 1). If not explicitly specified, the default

values of order parameters are given as follows,

` = 2, ε = 0.02, η = 0.02, M1 = 0.08, M2 = 2, λ = 2.5, τ = 16. (2.53)
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Figure 2.1: The L2 errors of the layer funciton φ, the director field d = (d1, d2), the
velocity u = (u, v) and pressure p. The slopes show that the scheme is asymptotically
first-order accurate in time.

2.4.1 Accuracy test

We first test the convergence rate of scheme (2.26)-(2.31). We set the following

initial conditions as

d(t = 0) = (sin(πx)cos(πy), cos(πx)cos(πy)),

φ(t = 0) = cos(πy),

(u(t = 0), p(t = 0)) = (0, 0).

(2.54)

The boundary conditions are Neumann type along y-axis (cf. (2.15)). We use 128×

128 grid points to discretize the space, and perform the mesh refinement test for

time. We choose the numerical solution with the time step size δt = 1 × 10−4 as

the benchmark solution (approximate exact solution) for computing errors. Figure

2.1 plots the L2 errors for various time step sizes. We observe that the scheme is

asymptotically first-order accurate in time for all variables as expected.
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2.4.2 Chevron pattern induced by the magnetic force

We now consider the effects from the magnetic force for the no flow case (u = 0).

Initially, a smectic A liquid crystal is confined between two flat parallel plates and

uniformly aligned in a way that the smectic layers are parallel to the bounding plates

and the directors are aligned homeotropically, that is, perpendicular to the smectic

layers. A magnetic field is applied in the direction parallel to the smectic layers, which

induce the layer undulation (chevron pattern) phenomena. The initial conditions read

as follows.

d(t = 0) = (0, 1) + 0.001(rand(x, y), rand(x, y)),

φ(t = 0) = y,

(2.55)

where the rand(x, y) is the small perturbation that is the random number in [−1, 1]

and has zero mean. We set the Dirichlet type boundary condition for φ and d as

follows,

d|y=±1 = (0, 1), φ|y=1 = 1, φ|y=−1 = −1. (2.56)

We take δt = 0.001 to obtain better accuracy. Fig. 2.2 shows the snapshots of the

layer function φ at t = 0, 0.2, 0.4 and 0.8. Initially at t = 0, the layer function take

the linear profile along the y− axis. When time evolves, we observe some undulations

appear at t = 0.2. The layer function quickly reaches the steady solution at t = 0.8

with the saw tooth shape. This undulation phenomenon is called the Helfrich-Hurault

effect (cf. [34, 38]). Fig. 2.3 shows the snapshots of the directior field d. The

numerical solution presents similar features to those obtained in [42]. We also plot

the energy dissipative curve in Fig. 2.4, which confirms that our algorithm is energy

stable.
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Figure 2.2: Snapshots of the layer function φ are taken at t = 0, 0.2, 0.4 and 0.8 for
Example 2.4.2.

2.4.3 Chevron pattern induced by magnetic force and shear flow

We now impose the shear flow on the top and bottom plates to see how the flow

affects the undulation. The initial and boundary conditions of φ and d are same as

the example 2.4.2. For velocity and pressure, the initial and boundary conditions are:

u(t = 0) = (10(y − 1), 0), p(t = 0) = 0

u|y=1 = (10, 0), u|y=−1 = (−10, 0).
(2.57)

Fig. 2.5 show the snapshots of the layer function φ at t = 0, 0.3, 0.4, 0.5, 0.6 and 0.8.

When time evolves, the layer undulations still appear but the symmetry is largely

disturbed by the shear flow. Fig. 2.6 shows the snapshots of the directior field d. We

also plot the first component of the velocity field u = (u, v) in Fig. 2.7, where the

linear profile is deformed to show nonlinearility.
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Figure 2.3: Snapshots of the director field d are taken at t = 0, 0.2, 0.4 and 0.8 for
Example 2.4.2.

Figure 2.4: Time evolution of the free energy functional of Example 2.4.2.
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Figure 2.5: Snapshots of the layer function φ are taken at t = 0, 0.3, 0.4 , 0.5, 0.6
and 0.8 for Example 2.4.3.
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Figure 2.6: Snapshots of the director field d are taken at t = 0, 0.3, 0.4 , 0.5, 0.6 and
0.8 for Example 2.4.3.
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Figure 2.7: Snapshots of the profile for the first component u(y) of the velocity field
u = (u, v) at the center (x = 2) and t = 0, 0.45 and 0.8.
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