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Abstract

A celebrated theorem of Buchweitz, Greuel, Knörrer, and Schreyer is that the hyper-

surface singularities of finite representation type, i.e. the hypersurface singularities

admitting only finitely many indecomposable maximal Cohen-Macaulay modules, are

exactly the ADE singularities. The codimension 2 singularities that are the analogs

of the ADE singularities have been classified by Frühbis-Krühger and Neumer, and it

is natural to expect an analogous result holds for these singularities. In this paper, I

will present a proof that, in contrast to hypersurfaces, Frühbis-Krühger and Neumer’s

singularities include a subset of singularities of infinite representation type.
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Chapter 1

Introduction and Notation

The main theorem in this work follows in a long line of papers classifying rings based

on the Cohen-Macaulay representation type of the ring. In the first chapter, we will

go over some of these results, set up notation for the rest of the paper, and introduce

the family of singularities that this paper pertains to. First, we will review the main

definitions of the paper.

1.1 Introduction

Recall that a finitely generated module,M , over a Cohen-Macaulay local ring, (R,m),

is maximal Cohen-Macaulay if depthM = dimR. For an arbitrary Noetherian ring

we say a module is maximal Cohen-Macaulay if the localization at every maximal

ideal is a maximal Cohen-Macaulay module. This class of modules inherits many

properties of the ring it is over, making the study of this class of modules a tractable

way to study a ring. We say a local ring, (R,m), has finite Cohen-Macaulay represen-

tation type if there are only finitely many indecomposable maximal Cohen-Macaulay

R-modules, up to isomorphism. If there are infinitely many indecomposable non-

isomorphic maximal Cohen-Macaulay modules over a ring, we say the ring has infinite

Cohen-Macaulay representation type.

As mentioned above, there are many papers classifying rings based on Cohen-

Macaulay representation type, and we recall some of those results now. As with the

standard texts on this subject ([16],[17]), we will go over these theorems by increasing

order of dimension, and then go over the partial classifications in higher dimensions.
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Most of these results are true over a more general field than C. However, since the

main theorem of this paper is over C, we will state these results over C as well.

Theorem 1.1 ([16]). A complete Artinian local ring, (R,m,C) has finite Cohen-

Macaulay representation type if and only if it isomorphic to a principle ideal ring,

i.e. R ∼= CJxK/(xn).

In the dimension 0 case, maximal Cohen-Macaulay means nothing more than

finitely generated. For this case we can list the set of maximal Cohen-Macaulay

modules.

Example 1.2. For the ring R = CJxK/(xn), the set of indecomposable maximal

Cohen-Macaulay R-modules is

{
R,R/(x), . . . R/(xn−1)

}
.

The ADE singularities are significant to the main result of this work and to Cohen-

Macaulay representation theory, in general. For that reason, we recall the definition

now.

Definition 1.3. We say R is the local ring of an ADE hypersurface singularity, or

sometimes R is an ADE hypersurface singularity if R ∼= CJx, y, z1, . . . , znK/(f), where

f is one of the following equations:

Type f

Ak xk+1 + y2 + z2
1 + . . .+ z2

n, k ≥ 1

Dk xk−1 + xy2 + z2
1 + . . .+ z2

n, k ≥ 4

E6 x3 + y4 + z2
1 + . . .+ z2

n

E7 x3 + xy3 + z2
1 + . . .+ z2

n

E8 x3 + y5 + z2
1 + . . .+ z2

n

Moving to Cohen-Macaulay representation type in dimension one, things are much

more interesting.
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Recall in dimension one, a module is maximal Cohen-Macaulay if and only if it is

torsion-free, providing a well understood property to look for in modules.

Theorem 1.4 ([11]). A reduced complete dimension one local ring with residue field

C has finite Cohen-Macaulay representation type if and only if it is a finite birational

extension of an ADE hypersurface singularity.

Thus, in the reduced complete dimension one case, a ring has finite Cohen-

Macaulay representation type if and only if it is a birational extension of CJx, yK/(f),

where f is one of the following equations.

Type f

Ak xk+1 + y2, k ≥ 1

Dk xk−1 + xy2, k ≥ 4

E6 x3 + y4

E7 x3 + xy3

E8 x3 + y5

The birational extensions of the ADE curve singularities are classified in [9]. There-

fore, we have a reduced complete dimension one local ring over C is finite Cohen-

Macaulay representation type if and only if it is the local ring of a curve singularity

of type Ak, Dk, E6, E7, E8, Ak
∨
L,E6(1), E7(1), or E8(1). The complete sets of inde-

composable maximal Cohen-Macaulay modules over the ADE curve singularities are

listed in [17] and [16]. Furthermore, the rank one indecomposable maximal Cohen-

Macaulay modules over the birational extensions are documented in [14]. We look at

one such example below.

Example 1.5. Let R = CJx, y, zK/(xy, xz, yz). Then, R is the local ring of a type

A1
∨
L space curve singularity. In particular, R is a birational extension of the D4

curve singularity. Hence, R has finite Cohen-Macaulay representation type. The set
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of indecomposable non-isomorphic maximal Cohen-Macaulay R-modules is

{R, (x+ y, x+ z), R/(x), R/(y), R/(z), R/(x, y), R/(x, z), R/(y, z)} .

For dimension two rings of finite Cohen-Macaulay representation type, we have

the following result:

Theorem 1.6 ([1],[8]). If a dimension two complete Cohen-Macaulay ring, R, over

C has finite Cohen- Macaulay representation type, then R is isomorphic to the local

ring of a quotient singularity, i.e. R is isomorphic to CJu, vKG for some finite group

G ⊂ GL2(C).

Recall that in dimension two, being maximal Cohen-Macaulay is equivalent to

begin reflexive. As in the dimension one case, this provides a well studied condition

equivalent to maximal Cohen-Macaulay.

For dimension three and greater, there is no analogous classification to the results

above. However, we do have partial classifications for higher dimensional rings, two

of which we recall below.

Consider the matrix: x
(1)
0 . . . x

(1)
n1−1 . . . x

(r)
0 . . . x

(r)
nr−1

x
(1)
1 . . . x(1)

n1 . . . x
(r)
1 . . . x(r)

nr


where each x(i)

j is an indeterminant. We say R = CJx(1)
0 , . . . , x(1)

n1 , . . . , x
(r)
0 , . . . , x(r)

nr K/I,

where I is the ideal generated by the determinants of the 2 by 2 minors of the matrix

above, is the local ring of the scroll of type (n1, . . . , nr), or just R is a scroll of type

(n1, . . . , nr). For scrolls we have the following classification:

Theorem 1.7 ([2]). The local ring of a scroll has finite Cohen-Macaulay representa-

tion type if and only if it is type (m), (1, 1),or (2, 1).

The example below is of particular importance since it closely related to the family

of singularities we study in this paper, and it is one of the known dimension three

rings of finite Cohen-Macaulay representation type.
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Example 1.8 ([2]). The type (2, 1) scroll is defined as R = CJu, v, x, y, zK/I where

I is generated by the maximal minors of the matrix: z x y

x u v

 .
The complete set of indecomposable non-isomorphic maximal Cohen-Macaulay mod-

ules over R is
{
R, (u, x), (u2, ux, x2), (x, y, z), syzR1 (u2, ux, x2)

}
.

Finally, we have the most well known theorem for classification of rings based on

Cohen-Macaulay representation type:

Theorem 1.9 ([15],[4]). The local ring of a hypersurface singularity has finite Cohen-

Macaulay representation type if and only if the singularity is ADE.

Thus, for R = CJx1, . . . xnK/(f), R has finite Cohen-Macaulay representation type

if and only if R is isomorphic to the local ring of an ADE hypersurface singularity.

This provides an example in every dimension of a ring with finite Cohen-Macaulay

representation type. More impressive is the fact that in dimension four and greater

these are the only known examples. Based on this result, we would expect the codi-

mension two analogs of the ADE singularities to have finite Cohen-Macaulay type.

The remainder shows that in codimension two, the analogs of the ADE singularities

have infinite Cohen-Macaulay representation type.

In the next section, we will introduce the analog of the ADE singularities in

codimension two, setup the notation for the rest of the paper, and give an outline of

the proof that these singularities have infinite Cohen-Macaulay representation type.

1.2 Definitions and Notation

In 2010 Frühbis-Krüger and Neumer published, [10], a classification of simple Cohen-

Macaulay codimension two singularities. In their paper, they showed that the family
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of singularities, over CJu, v, x, y, zK, defined by the 2 by 2 minors of the matrixx y z

u v f(x, y)

 ,
where f(x, y) is the defining equation of an ADE curve singularity, behave similarly

to the ADE hypersurface singularities. In fact, Frühbis-Krüger and Neumer were able

to show that the deformation theory for these singularities is completely determined

by the choice of f(x, y). Thus, from a singularity theory perspective, this family of

singularities is the analog of the ADE hypersurface singularities in codimension two.

To illustrate what we mean by this, we consider the example below. Going forward,

we refer to the singularity defined by the 2 by 2 minors of the matrix above as: type

A]k when f(x, y) = xk+1 + y2 (k ≥ 1); type D]
k when f(x, y) = xk−1 + xy2 (k ≥ 3);

type E]
6 when f(x, y) = x3 + y4; type E]

7 when f(x, y) = x3 + xy3; and type E]
8 when

f(x, y) = x3 + y5. Similarly, if R is the local ring of an ADE] singularity, we will

identify R by its corresponding singularity type. For example, if R is the local ring

of an E]
6 singularity, we say R has type E]

6.

Example 1.10. Consider f(x, y) = x3+y2, the equation defining the A2 hypersurface

singularity. Let F (x, y, t) = x3 + y2− tx2 = x2(x− t) + y2, where t is considered as a

parameter. Looking at local rings we have for any non-zero value of t,

CJx, yK/F (x, y, t) ∼= CJx, yK/(x2 + y2),

since (x − t) is a unit in CJx, yK. Thus, CJx, yK/F (x, y, t) is isomorphic to an A1

singularity. Hence, we say the A2 singularity deforms to the A1 singularity by the de-

formation F (x, y, t). Now, for the family of singularities above, we have the maximal

minors of the matrix, x y z

u v x3 + y2

 ,
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define the A]2 singularity. Frühbis-Krüger and Neumer showed that any deformation

of the A]2 can be presented by deforming the defining matrix. Thus, we havex y z

u v x3 + y2

+

0 0 0

0 0 −tx2

 =

x y z

u v x2(x− t) + y2

 .
Similar to the hypersurface case we have the singularity defined by the minors of the

matrix, x y z

u v x2(x− t) + y2

 ,
is isomorphic to the A]1 singularity, when t 6= 0. So, we say the A]2 singularity deforms

to the A]1 singularity, by the deformationx y z

u v x2(x− t) + y2

 .
Hence, any deformation of A]2 is determined by a deformation of the A2 hypersurface

singularity. As mentioned above, Frühbis-Krüger and Neumer showed this holds for

every singularity in the family.

Furthermore, in the hypersurface case, every ADE singularity deforms to the

smooth variety defined by the equation y2 = x. Similarly, for the ADE] singularities,

we have the analog of the smooth variety defined by y2 = x being expressed by the

type (2, 1) scroll we saw in Section 1.1, i.e. every ADE] singularity deforms to the

(2, 1) scroll.

For the remainder of this paper, S will denote the ring CJu, v, x, y, zK and F will

denote the family of local rings of the singularities over S defined by the maximal

minors of the matrix, x y z

u v f(x, y)

 ,
where f(x, y) is the defining equation of an ADE curve singularity. We refer to each

subfamily of rings by its corresponding type. Furthermore, we use R to denote an
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arbitrary local ring in F , unless we specify R to be a member of a specific subfamily.

The proof of the following property of these rings, which we use throughout the paper,

can be found in [10].

Theorem 1.11. For each R in F , R is a Cohen-Macaulay local ring of dimension

3.

Furthermore, in [10], Frühbis-Krüger and Neumer showed the singularities we are

studying are isolated. Thus, for a ring R in our family, F , we have Rp is regular,

for p 6= (u, v, x, y, z) in SpecR. Putting this together, with each R being Cohen-

Macaulay, we have Serre’s normality criteria holding for each R in F . Thus, we

have

Theorem 1.12. For each R in F , R is a domain.

As we noted in Section 1.1, there is no broad classification for rings of finite

Cohen-Macaulay representation type for dimension three and greater. In dimensions

zero, one, and two, maximal Cohen-Macaulay modules have characterizations that

make them more accessible. For dimension zero, maximal Cohen-Macaulay is just

finitely generated; dimension one, we have equivalence to torsion-free; and dimension

two maximal Cohen-Macaulay is equivalent to reflexive. These characterizations not

only make it easier to check if a module is maximal Cohen-Macaulay, but it also

makes it manageable to write down whole families of modules with these properties.

In dimension three we do not have a similar characterization. Notwithstanding that

for any ring it is relatively straightforward to write down a family of modules, it is

difficult to show that each member of this family is maximal Cohen-Macaulay, and it

is also difficult to show that each member of the family is distinct. This is the general

outline for the remainder of the paper: present a family of modules over each R in

F , show each module in the family is maximal Cohen-Macaulay, and then show each

module in the family is distinct.
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One of the common themes throughout this thesis will be presenting an ideal or

module over each R by only defining the generators of the ideal or module. These

generators will remain the same over each ring, R. However, each R in F has unique

relations, so these ideals and modules may behave very differently over each R ∈ F .

In Chapter 2, we will present three ideals over each R, and prove each is a maximal

Cohen-Macaulay module. Then, we will compute the syzygies of one of these ideals,

which will be instrumental in a later proof.

In the last chapter, we will present a family of modules over each ring, R. Then,

as noted above, we will show each of these is maximal Cohen-Macaulay, and dis-

tinct. The proof of maximal Cohen-Macaulay is relatively short. On the other hand,

showing that each of the modules in the family is distinct is difficult. The proof

of distinctness relies on computing the syzygies of the dual of each member of our

family of modules. For this part, we will rely on Singular, [6], to perform the calcula-

tions. These calculations with the proof of maximal Cohen-Macaulay will prove the

following:

Theorem 1.13. If R is the local ring of an ADE] singularity, for k ≤ 2000 in the

Ak and Dk cases, then for each α ∈ C the module generated by the column space of

the matrix, x2 xy xz 0 0 ux+ αvx

0 0 0 x2 ux u2

 ,
is a distinct maximal Cohen-Macaulay module.

As we will show in Section 3.3, this result implies the the main theorem of the

paper, found below.

Theorem 1.14. If R is the local ring of an ADE] singularity, for k ≤ 2000 in the

Ak and Dk cases, then R has infinitely many indecomposable, non-isomorphic maxi-

mal Cohen-Macaulay modules. Hence, R has infinite Cohen-Macaulay representation

type.
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Chapter 2

Three Maximal Cohen-Macaulay Ideals

In this chapter, we look at three maximal Cohen-Macaulay ideals over each R in

our family of singularities, F . We show these three ideals are, indeed, maximal

Cohen-Macaulay in the first section. The second section is devoted to computing the

syzygies of one of these ideals; these syzygies are then utilized in Section 3.1.

2.1 Three Maximal Cohen-Macaulay Ideals

Throughout this section, let ωR = (u, x), I = (x, y, z), and ω2
R = (u2, ux, x2) for each

R in F .

Lemma 2.1. The ideal ωR = (u, x) is a maximal Cohen-Macaulay ideal over each

R ∈ F .

Proof. For ωR, we have R̄ := R/ωR is isomorphic to the hypersurface defined by

yf(0, y)− vz in CJv, y, zK. Thus, we have the dimension of R̄ is 2. Furthermore, we

have R̄ is a complete intersection, and hence a Cohen-Macaulay ring. Therefore, the

depth of R̄ is 2. Now consider the short exact sequence:

0 −→ ωR −→ R −→ R̄ −→ 0.

From the long exact sequence of Ext, we have the following section of the sequence:

. . . −→ Ext1
R(C, R̄) −→ Ext2

R(C, ωR) −→ Ext2
R(C, R) −→ . . .

Since the depth of R̄ is 2, we have Ext1
R(C, R̄) = 0. Similarly, we have Ext2

R(C, R) = 0.

Thus, we have Ext2
R(C, ωR) = 0, and so depthωR > 2. However, since ωR is an ideal

10



of R we have depthωR ≤ depthR = 3. Therefore, depthωR = 3. As a result, we

have ωR is a maximal Cohen-Macaulay module.

It is known that ωR is, in fact, the dualizing module for each R. However, we

disregard this for the purposes of this work. Now we consider the ideal I.

Lemma 2.2. I = (x, y, z) is a maximal Cohen-Macaulay ideal over each R ∈ F .

Proof. The quotient of R by I is isomorphic to the ring CJu, vK. This is a regular

ring, and hence a Cohen-Macaulay ring of dimension 2. Consider the short exact

sequence below:

0 −→ I −→ R −→ CJu, vK −→ 0

From this we get the following section of the long exact sequence of Ext:

. . . −→ Ext1
R(C,CJu, vK) −→ Ext2

R(C, I) −→ Ext2
R(C, R) −→ . . . .

The depth of CJu, vK is two, since it is a Cohen-Macaulay ring. Hence, we have

Ext1
R(C,CJu, vK) = 0. Furthermore, we have that the depth of R is 3, and so

Ext2
R(C, R) = 0. Thus, we have Ext2

R(C, I) = 0, and so the depth of I is at least

3. Finally, since I is an ideal of R the depth of I is at most 3, and so we have

depth I = 3. Therefore, I is a maximal Cohen-Macaulay module.

For the proof that ω2
R is maximal Cohen-Macaulay, we will be using Singular, [6],

to compute the depth of R/ω2
R; and so we will delay this until the end of the next

section after we are more familiar with computations in Singular.

2.2 The Syzygies of ω2
R

In this section, we compute the syzygies of the ideal ω2
R = (x2, ux, u2), and show this

ideal is maximal Cohen-Macaulay. These syzygies will be crucial in the proof that the

family of modules, we define in Chapter 3, is maximal Cohen-Macaulay. The form of

11



the syzygies depends on the type of R. However, each set of syzygies is very similar

from one singularity to the next. After stating the main theorem of this section, we

will prove two of the cases, and leave the other three cases to the interested reader.

Anytime we compute a standard basis we will be using the negative graded re-

verse lexicographical ordering. For those unfamiliar with standard bases, which are

the analog of Gröbner bases for local rings, the texts [12] and [5] both provide a

great introduction to the topic. An ideal in a power series ring may have terms of

unbounded degree. Hence, the usual monomial orderings we consider in polynomial

rings do not produce a well-defined definition of leading term. To fix this, we con-

sider the leading terms to be those of least degree for an ideal in a power series ring.

For example, with the negative graded reverse lexicographical ordering, we have the

following monomial orderings:

• 1 > u, v, x, y, z > u2, v2, x2, y2, z2 > . . ..

• u > v > x > y > z.

• vx > uy.

The algorithm for computing a standard basis is similar to Buchberger’s algorithm

for computing a Gröbner basis. However, in place of using polynomial division, the

algorithm for a standard basis applies Mora’s normal form algorithm to ensure that

Buchberger’s algorithm halts.

We will be using Singular to compute a standard basis and the syzygies of this

basis. In Singular, we simply declare the characteristic of the field we want to work

over. Since our singularities are defined over C we will use a characteristic 0 field.

Looking at the modified Buchberger’s algorithm for standard bases, [12] or [5], it

should be clear that for an ideal or module over a ring with coefficients in a ring or

field, K, a standard basis for that ideal or module will also have coefficients in the

same ring or field, K. Since all of the ideals and modules we look at have rational

12



coefficients, the coefficients of elements in a standard basis will remain rational. The

syzygies are a by-product of computing a standard basis by Schreyer’s Theorem,

Chapter 5, Section 4 of [5]. Thus, any syzygy modules we compute will have rational

coefficients. Therefore, any computation we do using Singular would be the same

over C. Now we state the main theorem of this section.

Theorem 2.3. The module of syzygies of the ideal ω2
R = (x2, ux, u2) is generated by

the columns of the matrix below:
u v f(x, y) 0 0 0

−x −y −z u v f(x, y)

0 0 0 −x −y −z

 ,

where

f(x, y) =



xk+1 + y2 R is type A]k

xk−1 + xy2 R is type D]
k

x3 + y4 R is type E]
6

x3 + xy3 R is type E]
7

x3 + y5 R is type E]
8.

Before proving Theorem 2.3, we prove the lemma below. To justify the need

for this lemma, let J ⊂ S = CJu, v, x, y, zK be the defining ideal for an R in our

family, F , and φ : S → S/J = R. Then, (a1, a2, a3)T ∈ syzR1 ω2
R if and only if

a1x
2 + a2ux+ a3u

2 = 0 in R. This is equivalent to a1x
2 + a2ux+ a3u

2 ∈ J in S. All

such (a1, a2, a3) must arise from a syzygy of the S-ideal (x2, ux, u2)+J . Thus, to find

all such (a1, a2, a3), we consider the inverse image ideal, φ−1(ω2
R) = (x2, ux, u2) + J ,

of ω2
R in the ring S by φ. We compute a generating set for the syzygies of φ−1(ω2

R) in

S. Then, after modding out by the ideal J , we have a generating set for syzR1 ω2
R. For

the remainder of this section, let φ be defined as above. After completing the proof

for the A]k case, we will prove a similar lemma and theorem for the D]
k case.

13



Lemma 2.4. Let R be the coordinate ring of a type A]k singularity and ω2
R = (f1 :=

x2, f2 := ux, f3 := u2, f4 := vx − uyf5 := xk+2 + xy2 − uz, f6 := xk+1y + y3 − vz) be

the inverse image of the ideal ω2
R in S by φ. Then, a standard basis for ω2

R in S is

G = {u2, ux, vx− uy, x2, uz − xy2, vz − y3}.

Proof. First, notice that ω2
R = (u2, ux, vx − uy, x2, uz − xy2, vz − y3), since k ≥ 1,

xk(x2)− (uz− xy2) = xk+2 + xy2− uz, and xk−1y(x2)− (vz− y3) = xk+1y+ y3− vz.

Now that the generators of ω2
R do not involve an arbitrary power we use Singular to

compute a standard basis of ω2
R with this set of generators. Let G = {g1 := u2, g2 :=

ux, g3 := vx− uy, g4 := x2, g5 := uz − xy2, g6 := vz − y3}.

We can run the following Singular code to compute a standard basis for G in S

with the negative graded reverse lexicographical ordering:

Figure 2.1 Standard basis for ω2
R using Singular.

This returns the same set G, and so the set G is a standard basis, which generates

ω2
R. Thus, G is a standard basis for ω2

R.

Now, using Singular, we can compute the syzygies of G, by the following code.

Figure 2.2 Syzygies of G using Singular.

Letting G = {g1 = x2, g2 = ux, g3 = u2, g4 = vx−uy, g5 = uz−xy2, g6 = vz− y3}

and reordering the columns, we have the module of syzygies of G are generated by
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the column space of the matrix below.

u v y2 0 0 0 0 0

−x −y −z u −v y2 0 0

0 0 0 −x y −z 0 0

0 −x 0 0 u 0 −y2 −z

0 0 x 0 0 u −v −y

0 0 0 0 0 0 u x


Now we can prove Theorem 2.3 for the type A]k case.

Proof. From the discussion above, we have a generating set for the syzygies of G over

the ring, S. Now we rewrite the syzygies of the gi’s in terms of the fi’s, which will

be the syzygies of ω2
R. First, note that we have the following relations between the

gi’s and fi’s:
g1 = f1 g2 = f2

g3 = f3 g4 = f4

g5 = xkf1 − f5 g6 = xk−1yf1 − f6.

Listing the syzygies of ω2
R, we have:

s1 = ug1 − xg2 −→ uf1 − xf2

s2 = vg1 − yg2 − xg4 −→ vf1 − yf2 − xf4

s3 = y2g1 − zg2 + xg5 −→ (xk+1 + y2)f1 − zf2 − xf5

s4 = ug2 − xg3 −→ uf2 − xf3

s5 = −vg2 + yg3 + xg4 −→ −vf2 + yf3 + xf4

s6 = y2g2 − zg3 + ug5 −→ uxkf1 + y2f2 − zf3 − uf5

s7 = −y2g4 − vg5 + ug6 −→ xk−1(uy − vx)f1 − y2f4 + vf5 − uf6

s8 = −zg4 − yg5 + xg6 −→ −zf4 + yf5 − xf6.

Hence, we have the syzygies of ω2
R are generated by the columns of the matrix:
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

u v xk+1 + y2 0 0 uxk xk−1(uy − vx) 0

−x −y −z u −v y2 0 0

0 0 0 −x y −z 0 0

0 −x 0 0 x 0 −y2 −z

0 0 −x 0 0 −u v y

0 0 0 0 0 0 −u −x



.

Note that any relation on the generators of ω2
R will produce a syzygy of ω2

R in R.

Furthermore, any syzygy of ω2
R in R must arise in this way. Thus, considering the

matrix above in R, by using that xv − uy = xk+2 + xy2 − uz = xk+1y + y3 − vz = 0

in R, we get the matrix:

u v xk+1 + y2 0 0 uxk 0 0

−x −y −z u −v y2 0 0

0 0 0 −x y −z 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

By moving columns around, applying negatives to certain columns, and removing

extraneous rows and columns, we get the syzygy matrix:
u v xk+1 + y2 0 0 uxk

−x −y −z u v y2

0 0 0 −x −y −z

 .

Relabeling these as s1, . . . s6 respectively, we have

s6 − xks1 = (0, xk+1 + y2,−z)T ,

and so we can replace s6 by (0, xk+1 + y2,−z)T . This gives us the claimed generating

set for syzR1 ω2
R.
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Now we turn to the D]
k case.

Lemma 2.5. Let R be the coordinate ring of a type D]
k singularity and ω2

R = (f1 :=

x2, f2 := ux, f3 := u2, f4 := vx− uy, f5 := xk + x2y2 − uz, f6 := xk−1y + xy3 − vz) be

the inverse image of the ideal ω2
R in S by φ. Then, a standard basis for ω2

R in S is

G = {u2, ux, vx− uy, x2, uz, vz − xy3}.

Proof. We start by taking a different generating set for the ideal. We have ω2
R =

(u2, ux, vx − uy, x2, uz, vz − xy3), since xk + x2y2 − uz = (xk−2 + y2)(x2) − uz and

xk−1y + xy3 − vz = xk−3y(x2) − (vz − xy3). Let G = {g1 := u2, g2 := ux, g3 :=

vx − uy, g4 := x2, g5 := uz, g6 := vz − xy3}. Since G does not involve any arbitrary

exponents, we can, again, use the following Singular code to check that G is indeed

a standard basis.

Figure 2.3 Standard basis for ω2
R using Singular.

This returns the same set G, and so G is a standard basis. Hence, G is a standard

basis which generates ω2
R, and so G is a standard basis of ω2

R.

Once more, we can use Singular to compute the syzygies of G using similar lines

of code as we did for the A]k case.

We relabel the gi’s as G = {g1 = x2, g2 = ux, g3 = u2, g4 = vx− uy, g5 = uz, g6 =

vz − xy3}. Reordering the columns, with respect to this relabeling, we have the

module of syzygies of G is generated by the column space of the matrix below. Using

this generating set for the syzygies of G, we find a generating set for the syzygies of

ω2
R in the D]

k case; proving Theorem 2.3 in the D]
k case.
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

u v 0 0 0 0 y3 0

−x −y −z u −v 0 0 y3

0 0 0 −x y −z 0 0

0 −x 0 0 u 0 z 0

0 0 x 0 0 u −y −v

0 0 0 0 0 0 x u



.

Proof. From the discussion above, the columns of the matrix above form a generating

set for syzygies of G, which is a standard basis for ω2
R over S. We use this generating

set to find a generating set for the syzygies of ω2
R over S. Note we have the following

relations for the gi’s in terms of the fi’s:

g1 = f1 g2 = f2

g3 = f3 g4 = f4

g5 = (xk−2 + y2)f1 − f5 g6 = xk−3f1 − f6

We substitute these relations into the syzygies, s1, . . . , s8, from the matrix above.

s1 = ug1 − xg2 −→ uf1 − xf2

s2 = vg1 − yg2 − xg4 −→ vf1 − yf2 − xf4

s3 = −zg2 + xg5 −→ (xk−1 + xy2)f1 − zf2 − xf5

s4 = ug2 − xg3 −→ uf2 − xf3

s5 = −vg2 + yg3 + ug4 −→ −vf2 + yf3 + uf4

s6 = −zg3 + ug5 −→ u(xk−2 + y2)f1 − zf3 − uf5

s7 = y3g1 + zg4 − yg5 + xg6 −→ zf4 + yf5 − xf6

s8 = y3g2 − vg5 + ug6 −→ (xk−3(uy − vx)− vy2)f1 + y3f2 + vf5 − uf6

In R, we have f4 = f5 = f6 = 0. Thus writing s1, . . . , s8 as a matrix in R, the syzygies

of ω2
R are generated by the column space of the matrix:
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

u v xk−1 + xy2 0 0 u(xk−2 + y2) 0 −vy2

−x −y −z u −v 0 0 y3

0 0 0 −x y −z 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

Deleting trivial rows and columns and multiplying by -1 to some columns we get the

following matrix:
u v xk−1 + xy2 0 0 u(xk−2 + y2) −vy2

−x −y −z u v 0 y3

0 0 0 −x −y −z 0

 .

Relabeling the columns above as s1, . . . , s7, respectively, we have s7 = −y2s2. So we

can delete s7 from our generating set. Furthermore, we have

s6 − (xk−2 + y2)s1 = (0, xk−1 + xy2,−z)T ,

and so we can replace s6 by (0, xk−1 +xy2,−z)T in our generating set. This gives the

claimed generating set for syzR1 ω2
R in the D]

k case.

As noted at the beginning of this section, similar methods can be used to find the

syzygy matrix for ω2
R in the E]

6, E
]
7, and E]

8 cases.

Finally, as mentioned at the end of the Section 1.2, we will use Singular to help

show the depth of ω2
R is 3, for each R ∈ F .

Lemma 2.6. ω2
R is a maximal Cohen-Macaulay ideal over each R ∈ F .

Proof. First, let R be the local ring of a type A]k singularity. Let ω2
R be the inverse

image of the ideal ω2
R in the ring S by φ. This gives us

R/ω2
R
∼= S/ω2

R = CJu, v, x, y, zK/(u2, ux, vx− uy, x2, uz − xy2, vz − y3).
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Since R/ω2
R does not involve an arbitrary power of x, we can employ Singular to

compute the depth of it. Running the following code on Singular returns the depth

of R/ω2
R as 2.

Figure 2.4 Singular code to find depthR/ω2
R in the A]k case.

Notice that in Singular the function depth returns the depth of the cokernel of

the module in the depth function. Now that the depth of R/ω2
R is 2, the proof that

ω2
R has depth 3, follows similarly to lemmas 2.1, and 2.2. Therefore, ω2

R is a maximal

Cohen-Macaulay module over R in the A]k case.

Now let R be the local ring of a D]
k singularity, and ω2

R be the inverse image of

the ideal ω2
R in S by φ. This gives us

R/ω2
R
∼= S/ω2

R = CJu, v, x, y, zK/(u2, ux, vx− uy, x2, uz, vz − xy3).

Again, having removed any arbitrary powers of x, we can run similar Singular code

to check that depthR/ω2
R = 2. Then, as in the A]k case, we have ω2

R has depth 3, and

hence is maximal Cohen-Macaulay. Finally, for the E]
6, E]

7, and E]
8 cases, we can use

Singular to show the depth of ω2
R is 3.

Therefore, for any R in our family, F , we have depthω2
R = 3. So over each

R ∈ F , we have ω2
R is maximal Cohen-Macaulay.
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Chapter 3

Main Theorem

In this chapter, we will prove that the family of rings defined by the maximal minors

of the matrix: x y z

u v f(x, y)

 ,
where f(x, y) is xk+1 +y2, xk−1 +xy2, x3 +y4, x3 +xy3, or x3 +y5 has infinite Cohen-

Macaulay representation type. To accomplish this, we will construct an infinite family

of rank two maximal Cohen-Macaulay modules over each singularity. Fortunately, the

family of modules, Mt, over each ring is generated by the same generators. For each

R, let Mt be the module generated by the columns of the matrix:x2 xy xz 0 0 xu+ txv

0 0 0 x2 xu u2

 ,
where we are considering t as the parameter of the family, i.e. t ∈ C. Hence, some

of the time we will be thinking of Mt as a family of modules, where each t ∈ C,

determines a member of the family. While other times, we will be thinking of Mt

as a single module over the polynomial ring R[t] with coefficients in R and variable

t. The context should make which case we are considering clear. Throughout this

chapter, Mα will denote the module generated by columns of the matrix:x2 xy xz 0 0 xu+ αxv

0 0 0 x2 xu u2

 ,
over a ring R from our family, F .
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We will break the proof of the main theorem into two parts. First, we show the

modules defined above are maximal Cohen-Macaulay and rank two. This will be

relatively quick, since we have done most of this work in Section 2.2, and we can

do this without breaking up the proof over each ring. Section 3.2 is dedicated to

justifying the calculations in Section 3.3. The second half of the proof, showing each

module of Mt is distinct, is the content of Section 3.3.

3.1 Proof of Maximal Cohen-Macaulayness

In view of the fact that the family of modules we are discussing involves a parameter,

t, we will work in the ring S[t] = CJu, v, x, y, zK[t] and the corresponding rings, R[t],

where R is a local ring from our family, F .

Theorem 3.1. Let I = (x, y, z) and ω2
R = (x2, ux, u2) be the maximal Cohen-

Macaulay ideals over R from Chapter 2. Furthermore, let Mt be the R[t]-module

generated by the columns of the matrixx2 xy xz 0 0 xu+ txv

0 0 0 x2 xu u2

 .
Then the following sequence:

0 −→ xI[t] ψ−→Mt
ϕ−→ ω2

R[t] −→ 0,

is exact, where ψ is inclusion in the first component and ϕ is projection from the

second component.

Proof. Let u1, . . . , u6 be the generators of Mt, respectively. First, note that ϕ◦ψ = 0,

i.e. imψ ⊂ kerϕ. For the other inclusion, consider a = a4u4 + a5u5 + a6u6 ∈ kerϕ. If

a6 = 0, then ϕ(a4u4 +a5u5) = 0 implies a4x
2 +a5ux = 0, and so a = a4u4+a5u5 = 0;

hence a ∈ imψ. Next, assume a6 6= 0. Since a ∈ kerϕ, we have

a4x
2 + a5ux+ a6u

2 = 0.
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Hence, (a4, a5, a6)T ∈ syz1(ω2
R[t]). Note that ω2

R[t] is a R[t]-module by considering

elements of ω2
R[t] as polynomials in the variable t with coefficients in ω2

R. Then, we

have that ω2
R[t] ∼= R[t] ⊗R ω2

R; and since R[t] is flat over R, the set of syzygies for

ω2
R over R remain the complete set of syzygies for ω2

R as a R[t]-module. Recall from

Section 2.2, we have syzR1 ω2
R is the column space of the matrix,

u v f(x, y) 0 0 0

−x −y −z u v f(x, y)

0 0 0 −x −y −z

 ,

where f(x, y) is the corresponding defining equation for R. Thus, a6 ∈ I[t] =

(x, y, z)R[t]. Hence, we have

a6(ux+ tvx) = (u+ tv)xa6 ∈ x(x, y, z)R[t] = xI[t],

i.e. a6(ux+ tvx) ∈ xI[t]. Hence, if a ∈ kerϕ, we have a = (r, 0)T for some r ∈ xI[t].

Thus, a ∈ imψ.

Corollary 3.2. The R[t]-modules ω2
R[t], xI[t], and Mt, as defined above, are Cohen-

Macaulay. Furthermore, we have that depth(ω2
R[t])m = depth(xI[t])m = depth(Mt)m,

for any maximal ideal m ⊂ R[t].

Proof. First, notice that x is regular on I, since R is a domain. Thus, the depth

of xI is 3 in R. We then have ω2
R[t] and xI[t] are Cohen-Macaulay at any maximal

ideal of R[t], by Theorem 2.1.9 in [3]. Next, since localization is an exact functor,

the short exact sequence from Theorem 3.1 will stay exact when localized at any

maximal ideal, m ⊂ R[t]. Hence, at each maximal ideal, m, we have depth(Mt)m =

depth(xI[t])m = depth(ω2
R[t])m, by the long exact sequence of Ext. This implies both

parts of the corollary.

Corollary 3.3. For α ∈ C, Mα is maximal Cohen-Macaulay over R, for each R in

F .
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Proof. For each α ∈ C, we have t− α is regular on R[t], since R[t] is a domain. This

implies that t − α is regular on R[t]2. Since Mt is a submodule of R[t]2, we have

t− α is regular on Mt. Thus, Mα = Mt/(t− α)Mt is a Cohen-Macaulay R-module,

by Theorem 2.1.3 of [3]. To see it is maximal Cohen-Macaulay, note that t − α is

regular on xI[t] and ω2
R[t]. Let mα = (t−α) + n ⊂ R[t], where n is the maximal ideal

of R. Clearly, mα is a maximal ideal of R[t], since R[t]/mα
∼= C. For any maximal

regular sequence, l ⊂ n, of xI or ω2
R in R, we have (t − α, l) is a maximal regular

sequence for xI[t] or ω2
R[t] in mα. Therefore, depth(xI[t])mα = depth(ω2

R[t])mα = 4 in

(R[t])mα . By the previous corollary, this implies that depth(Mt)mα = 4. Thus, we

have depth Mα = 3 in R, by Theorem 1.2.10 in [3]. Hence, for each α ∈ C, Mα is

maximal Cohen-Macaulay, for each R ∈ F .

Finally, we show that each module in Mt is rank two over each R ∈ F . Similar

to the previous two corollaries, this follows from Theorem 3.1. The fact that, for each

α ∈ C, Mα is rank two will be used in Section 3.3 to prove that each R ∈ F has

infinite Cohen-Macaulay type.

Corollary 3.4. For each α ∈ C and each R ∈ F , Mα is a rank two R-module.

Proof. First, note that, by the inclusion C[t] ↪→ R[t], we have xI[t], ω2
R[t], and Mt

are C[t]-modules. Let k(α) = C[t]/(t − α). Then we have xI[t] ⊗C[t] k(α) ∼= xI,

ω2
R[t] ⊗C[t] k(α) ∼= ω2

R, and Mt ⊗C[t] k(α) ∼= Mα as R-modules. Thus, tensoring the

short exact sequence from Theorem 3.1 with k(α), we get the complex:

. . .→ TorC[t]
1 (ω2

R[t], k(α))→ xI →Mα → ω2
R → 0.

The sequence:

0 −→ xI −→Mα −→ ω2
R −→ 0

is exact if TorC[t]
1 (ω2

R[t], k(α)) = 0. To compute this Tor, let K(t − α) be the Koszul

complex over C[t] of the single element t− α. Then, K(t− α) is a resolution of k(α)
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as a C[t]-module. Tensoring K(t − α) with ω2
R[t], we have TorC[t]

1 (ω2
R[t], k(α)) is the

first homology of this tensored complex. However, t−α is regular on ω2
R[t], since R[t]

is a domain. Thus, K(t−α)⊗C[t] ω
2
R[t] is exact. Therefore, all the homology modules

of K(t−α)⊗C[t]ω
2
R[t] are zero; and so TorC[t]

1 (ω2
R[t], k(α)) = 0. Consequently, we have

for each α ∈ C and each R ∈ F , the complex

0 −→ xI −→Mα −→ ω2
R −→ 0

is a short exact sequence. Since R is a domain, we have any nonzero ideal of R has

rank one as an R-module. Furthermore, since R is a domain, we have rank is additive

on short exact sequences. This implies the rank of Mα is two.

3.2 Specialization

We now begin the process of showing each member of Mt is distinct. Recall through-

out this chapter, we let Mα denote the module generated by the column space of the

matrix:  x2 xy xz 0 0 ux+ αvx

0 0 0 x2 ux u2

 ,
where α ∈ C. In this section, we will be using the following isomorphic forms of the

module Mα at different times:

Mα
∼= Mt/(t− α)Mt

∼= Mt ⊗R R[t]/(t− α) ∼= Mt ⊗C[t] C[t]/(t− α).

The first isomorphism is obvious and the second isomorphism is well known. The

third follows from R[t] being a C[t]-algebra, and the natural inclusion C[t] ↪→ R[t].

Recall the following definition:

Definition 3.5. LetM be a finitely generated R-module, with generatorsm1, . . . ,mn

and relations

aj1m1 + . . . ajnmn = 0, for j = 1, . . .
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Then the ith Fitting ideal, Fitti(M), is the ideal generated by the n − i minors of

(ajk).

Accordingly, the ith Fitting ideal of a module M is the ideal generated by the

n − i minors of a presentation matrix for M . It is well-known that these ideals do

not depend on the choice of presentation and that isomorphic modules must have

the same Fitting ideals, see Section 20.2 in [7]. Consequently, in our case, we will

be using the fact that if two modules have different Fitting ideals, then they are

non-isomorphic.

To show that for each α ∈ C we get a distinct Mα over R, we compute a Fitting

ideal of HomR(Mα, R), for each α ∈ C. Throughout this section, for a module M

over R (respectively, R[t]), we will let M∗ denote the dual module, HomR(M,R)

(respectively, HomR[t](M,R[t])), of the module M . As we mentioned in Chapter 1,

computing the Fitting ideals will require the use of Singular. We will present the

Singular code to compute the Fitting ideal we need, and then present the code to

check this for A]k and D]
k for k ≤ 2000. However, in order to do this we have to

perform these calculations over R[t] for the module Mt, and then specialize to the

module Mα, for each α ∈ C. There are three lemmas we must address to justify this

process:

• syzR[t]
1 (Mt) /(t− α) syzR[t]

1 (Mt) ∼= syzR1 (Mα) for each α ∈ C.

• M ∗
t /(t− α)M ∗

t
∼= M ∗

α for each α ∈ C.

• The specialization of Fitti M ∗
t , by t→ α, is Fitti M ∗

α .

Lemma 3.6. Let α ∈ C. Then syzR[t]
1 (Mt) /(t− α) syzR[t]

1 (Mt) ∼= syzR1 (Mα).

Proof. In R[t] we have the following short exact sequence:

0 −→ syzR[t]
1 (Mt) −→ R[t]6 −→Mt −→ 0.
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Note that all of these are C[t]-modules, and so tensoring this sequence by C[t]/(t−α)

over C[t], we have the long exact sequence:

. . .→ TorC[t]
1

(
Mt,

C[t]
(t− α)

)
→ syzR[t]

1 (Mt)
(t− α) syzR[t]

1 (Mt)
→ R6 →Mα → 0.

Thus, syzR[t]
1 (Mt)

(t−α) syzR[t]
1 (Mt)

∼= syzR1 (Mα) if TorC[t]
1

(
Mt,

C[t]
(t−α)

)
= 0. We can compute this Tor

by finding a resolution of C[t]/(t−α) over C[t]and tensoring this resolution with Mt.

A minimal resolution for C[t]/(t−α) is given by the Koszul complex of t−α over C[t].

However, as we saw in Section 3.1, t−α is regular on Mt. Thus, the Koszul complex

will remain exact after tensoring the complex with Mt. Therefore, each homology

module of the tensored complex will be zero; and since TorC[t]
1

(
Mt,

C[t]
(t−α)

)
is equal to

the first homology module, we have TorC[t]
1

(
Mt,

C[t]
(t−α)

)
= 0.

Notice in the proof above there was nothing we used that was unique to the

module Mt, except that it was a submodule of a free module. Thus, in general, we

have for any submodule of a free module, t−α will be regular on that module; and so

the syzygies of such a module will be preserved under specialization. By this fact, we

will get the proof of the third lemma as a corollary. The proof of the second lemma

follows from Theorem 1.12 of [13], as we show below.

Lemma 3.7. For each α ∈ C, M ∗
t /(t− α)M ∗

t
∼= M ∗

α .

Proof. Let α ∈ C, ϕ : M ∗
α → M ∗

t /(t − α)M ∗
t be the natural map we get from the

specialization Mt →Mα, and m be the maximal ideal of R. For p ∈ SpecR\{m}, we

have Rp is a regular local ring of dimension two or less. Since (M ∗
t /(t− α)M ∗

t )p and

(M ∗
α)p are reflexive, both are maximal Cohen-Macaulay modules over Rp, by Theorem

1.9 in [13]. However, over a regular local ring, maximal Cohen-Macaulay is equivalent

to free, by the Auslander-Buchsbaum formula. Thus, over Rp, (M ∗
t /(t− α)M ∗

t )p
and (M ∗

α)p are free modules. It is a routine linear algebra exercise to check ϕp is an

isomorphism. Thus, ϕ is an isomorphism on SpecR\{m}. Finally, ϕ extends to an
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isomorphism over all of SpecR, by Theorem 1.12 in [13]. Therefore, M ∗
t /(t−α)M ∗

t
∼=

M ∗
α .

Now with the second lemma, the third lemma follows as a corollary.

Corollary 3.8. The specialization of Fitti(M ∗
t ), by t→ α, is the ideal Fitti(M ∗

α) in

R.

Proof. First, note that M ∗
t
∼= syzR[t]

1 imAT , where A is a presentation matrix of Mt.

Hence, M ∗
t is the submodule of a free module. Then, from the discussion above,

we have that, under the specialization t → α, a presentation matrix for M ∗
t will

specialize to a presentation matrix for M ∗
α . Furthermore, taking minors of a matrix

commutes with specialization, and so the corollary follows.

In the next section, we have to deal with the question of whether a standard basis

of an ideal will remain a standard basis after specialization. There are some results

known on this topic, see [12]. We will deal with this question on a case by case basis.

For the computation of the Fitting ideals of M ∗
t we will be using Singular. Sin-

gular has the capability to perform calculation over local orderings. This allows for

computations over the ring Q[u, v, x, y, z](u,v,x,y,z), the localization of Q[u, v, x, y, z]

at the maximal ideal. Recall in Section 2.2, we outlined why computations over

Q[u, v, x, y, z] would be the same over C[u, v, x, y, z]. This is also the case for the

localizations of Q[u, v, x, y, z] and C[u, v, x, y, z] at the maximal ideal, by the same

argument. Furthermore, since the standard basis algorithm on a set of polynomi-

als always returns a set of polynomials and we have the following inclusion of rings,

C[u, v, x, y, z](u,v,x,y,z) ⊂ CJu, v, x, y, zK, any standard basis over C[u, v, x, y, z](u,v,x,y,z)

will remain a standard basis over CJu, v, x, y, zK. Singular can keep a local ordering

on the variables u, v, x, y, z, and give monomials in t a global ordering. Thus, with

Singular we can perform computations over the rings R[t] from our family F . For

further discussion on computations in rings of mixed orderings, see [12] and [5].
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3.3 Fitting Ideals of Mα

We now turn to the computation of the needed Fitting ideals of M ∗
t using Singular.

Throughout this section, we denote the dual of Mt as M ∗
t = HomR[t](Mt, R[t]). We

will first look at the E]
6, E]

7, and E]
8 cases, because these require less computations.

For these three cases, we will be considering the third Fitting ideal of M ∗
t .

Let R be the local ring of the E]
6 singularity. In order to compute the Fitting

ideals of M ∗
t , we must first find M ∗

t . We can do this by computing the first syzygies

of the image of the transpose of a presentation matrix of Mt. Recall a presentation

matrix for Mt is equivalent to a generating set for the syzygies of Mt. Thus, to find

a standard basis for M ∗
t over R[t], we can run the following lines of code in Singular.

Figure 3.1 Singular code to produce a generating set for M ∗
t .

This code produces the following matrix:

x −u 0 0 xz

y −v 0 0 yz

z −x3 − y4 0 0 z2

0 x+ yt z y2 0

0 u+ vt x3 + y4 vy 0

u+ vt 0 ux2 + vy3 v2 x4 + x3yt+ xy4 + y5t



.
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Thus, M ∗
t is generated by the column space of this matrix. Now to compute the

Fitting ideals for this module, we need the presentation matrix of M ∗
t . Using the

Singular code below we can produce the presentation matrix for M ∗
t .

Figure 3.2 Singular code to produce a presentation matrix for M ∗
t .

Thus, the presentation matrix for M ∗
t is

−z −v2 −ux2 − uy2 −uxy − vxyt+ uy2t− vy2 −vy −x3 − xy2 0

0 −vy −x3 − xy2 −x2y − y3 −y2 −z 0

0 0 u+ tv v 0 x+ yt −y2

0 u+ vt 0 x2t+ y2t x+ yt 0 z

1 0 0 0 0 0 0


By definition the third Fitting ideal is given by the (n− 3) by (n− 3) minors of

a presentation matrix for M ∗
t , where n is the number of generators of M ∗

t . Recall

the number of rows of a presentation matrix is always the number of generators for

the module. We can produce a standard basis for the third Fitting ideal of M ∗
t , by

running the following Singular code.

Figure 3.3 Singular code to produce a standard basis for Fitt3 M ∗
t .

This will produce the standard basis G = {u + tv, v, x + yt, z, y2} for the third

Fitting ideal of M ∗
t . Next, we turn to the question of how the third Fitting ideal

and this standard basis will specialize under the map t→ α. For α ∈ C we have the

specialization of Fitt3 M ∗
t is the ideal (u+ αv, v, x+ αy, z, y2). From Section 3.2, we
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know this is equal to Fitt3 M ∗
α . Thus, we have

Fitt3 M ∗
α = (u+ αv, v, x+ αy, z, y2) = (u, v, x+ αy, z, y2).

We claim the set of generators for Fitt3 M ∗
α above form a standard basis. Let G =

{u, v, x + αy, z, y2}. To show G is a standard basis recall in the computation of a

standard basis we find all s-series (polynomials in our case) and find any remainders

after expressing these in Mora’s normal form with respect to our set G. However, the

s-series between two monomials is always 0, since the leading term of a monomial

is itself. Therefore, we can only get non-trivial remainders from our set G from an

s-series involving x+ αy. Suppose w ∈ G\{x+ αy}. Then, we have

s(w, x+ αy) = wx

w
w − wx

x
(x+ αy) = wx− wx− αwy = αy(w).

Since w is in G, we have that the remainder of αy(w) in Mora’s normal form is 0.

Therefore, the set G is closed under s-series, and so G is a standard basis.

Now suppose α, β ∈ C, such that α 6= β. Then, we have x + αy ∈ Fitt3 M ∗
α ;

and claim x + αy /∈ Fitt3 M ∗
β . We reduce x + αy with respect to the standard basis

Gβ = {u, v, x+ βy, z, y2}:

x+ αy = x+ βy + (α− β)y.

Thus, the remainder, when expressing the normal form of x + αy with respect to

the standard basis of Fitt3 Mβ, is (α − β)y 6= 0, and so x + αy /∈ Fitt3 M ∗
β . Hence,

Fitt3 Mα 6= Fitt3 Mβ. Therefore, M ∗
α is not isomorphic to M ∗

β . This in turn implies

that Mα is not isomorphic to Mβ. Thus, for each α ∈ C, we get a distinct module

Mα. Joining this result with the work from earlier in this chapter, we have proven

the following:

Theorem 3.9. Let R be the type E]
6 local ring from our family, F . Then, for each
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α ∈ C, the R-module, Mα, generated by the column space of the matrix,x2 xy xz 0 0 xu+ αxv

0 0 0 x2 xu u2

 ,
is a rank two maximal Cohen-Macaulay module. Moreover, if α 6= β ∈ C, then

Mα 6∼= Mβ.

We claim that this implies that R has an infinite set of indecomposable maximal

Cohen-Macaulay modules. If Mα is indecomposable for any α ∈ C, say Mα
∼= Iα⊕Jα,

then Iα and Jα are rank one maximal Cohen-Macaulay modules. Suppose α, β are

such that α 6= β and Mα
∼= Iα ⊕ Jα and Mβ

∼= Iβ ⊕ Jβ. Then Mα 6∼= Mβ, implies

that Iα 6∼= Iβ, Iα 6∼= Jβ, Jα 6∼= Iβ, or Jα 6∼= Jβ. Thus, if Mα is decomposable, at least

one of the summands, Iα or Jα, must be distinct. Therefore, R has an infinite set of

rank one maximal Cohen-Macaulay modules or an infinite set of rank two maximal

Cohen-Macaulay modules. Consequently, we have proven the main theorem for the

type E]
6 case.

Theorem 3.10. The local ring of a type E]
6 singularity has infinite Cohen-Macaulay

representation type.

Using similar Singular code, we can compute a standard basis for the third Fitting

ideal of M ∗
t over the rings R[t], where R is the local ring of type E]

7 or E]
8. In fact,

for these two cases we get that the standard basis for Fitt3 M ∗
t is the same as the

E]
6 case. Thus, as in the E]

6 case, we will have the following theorems, since the

discussion above will hold over these two rings as well.

Theorem 3.11. Let R be the type E]
7 or E]

8 local ring from our family, F . Then,

for each α ∈ C, the R-module, Mα, generated by the column space of the matrix,x2 xy xz 0 0 xu+ αxv

0 0 0 x2 xu u2

 ,
is a maximal Cohen-Macaulay module. Moreover, if α 6= β ∈ C, then Mα 6∼= Mβ.
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Theorem 3.12. The local ring of a type E]
7 or type E]

8 singularity has infinite Cohen-

Macaulay representation type.

Now we consider theD]
k case. In principle, we are doing the same thing as in the E]

6

case, except for varying values of k. First, the procedure below can be implemented

in Singular to quickly get the standard basis of the third Fitting ideal of M ∗
t for

varying k.

This procedure takes in an integer, k, for k ≥ 4, and prints a standard basis for

the third Fitting ideal of Mt over R[t], where R is the local ring of the D]
k singularity.

Figure 3.4 Singular code to produce Fitt3 M ∗
t .

Running this for varying values of k the procedure returns the standard basis

G = {u + vt, v, x + yt, z, y2} for each k. To check its validity, for 4 ≤ k ≤ 2000, we

use the Singular code below.

This procedure takes in a range of values for k starting at s and stopping at f ,

computes a standard basis for Fitt3 M ∗
t over the ring R[t], compares this standard

basis to the claimed basis G = {u + vt, v, x + yt, z, y2}, and then stores either 1 for

true or 0 for false for each value of k in a list. The procedure then returns this list of

0’s and 1’s.
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Figure 3.5 Singular code to check standard basis over a range.

Finally, we can make a simple procedure to check if every value in a list is equal

1:

Figure 3.6 Singular code to check if a list has 1 as every entry.

The input of this procedure is the starting index, s, of a list and the last index, f ,

of the list and returns 1 for true if every entry in the list is 1 or 0 if any entry in the

list is not equal to 1. Using the checkFitt and checkTrue procedures for the range of

k from 4 to 2000, we have the following theorem:
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Theorem 3.13. For 4 ≤ k ≤ 2000, G = {u + vt, v, x + yt, z, y2} is a standard basis

for Fitt3 M ∗
t over the local ring of the D]

k singularity.

Now, just as in the E]
k cases, specializing G by t→ α will give us that Fitt3 M ∗

α =

(u, v, x + αy, z, y2). Furthermore, just as in the E]
k cases, we have this is, in fact, a

standard basis for Fitt3 M ∗
α , by the same argument. Therefore, we see that each Mα

is distinct, since Fitt3 M ∗
α 6= Fitt3 M ∗

β . Thus, we have the following theorem:

Theorem 3.14. Let R be the type D]
k local ring from our family, F for 4 ≤ k ≤ 2000.

Then, for each α ∈ C, the R-module, Mα, generated by the column space of the

matrix, x2 xy xz 0 0 xu+ αxv

0 0 0 x2 xu u2

 ,
is a rank two maximal Cohen-Macaulay module. Moreover, if α 6= β ∈ C, then

Mα 6∼= Mβ.

As in the E]
k cases, this implies, for each R of type D]

k, with 4 ≤ k ≤ 2000,

that R has an infinite family of indecomposable maximal Cohen-Macaulay modules.

Therefore, we have proven the main theorem in the D]
k case, for 4 ≤ k ≤ 2000.

Theorem 3.15. The local ring of a type D]
k singularity has infinite Cohen-Macaulay

representation type for 4 ≤ k ≤ 2000.

Lastly, we need to consider the local rings of the type A]k singularities. We can

use similar Singular code to find the third Fitting ideal of M ∗
t . For the ring R[t],

where R is the local ring of the A]1 singularity, Singular returns the standard basis,

G = {u + vt, v, x + yt, yt2 + y, z, y2}. Specializing this by t → α, we have the third

Fitting ideal for M ∗
α over the A]1 singularity is (u + αv, v, x + αy, α2y + y, z, y2) =

(u, v, x, y, z). Thus, this will not be helpful in showing M ∗
α 6∼= M ∗

β . Checking for

other values of k yields similar results. Consequently, we will instead compute the

second Fitting ideal of M ∗
t .

35



We consider the second Fitting ideal for M ∗
t over the A]1 separately, since the

standard basis in this case is slightly different. Thus, suppose R is the local ring of

the A]k singularity, for 2 ≤ k ≤ 2000, then a standard basis for Fitt2 M ∗
t over R[t] is

G = {u2 + uvt, uv + v2t, ux+ vxt+ uyt+ vyt2, x2 + 2txy + y2t2, uy + vyt, xy + y2t,

xz, yz, z2, v3, v2y, vy2, y3}.

The following Singular procedure can be used to show this.

Figure 3.7 Singular code to check G is a standard basis.

The procedure takes in an integer k ≥ 2 and computes a standard basis, G′,

for Fitt2 M ∗
t over R[t]. Then the procedure reduces G′ with respect to the claimed

standard basis, G, storing the result of this reduction in a vector. Next, the procedure

reduces G with respect to G′, storing the result of this reduction in a vector as well. If

all entries in these vectors are zero, then we have G and G′ generate each other. The

procedure then compares both vectors to the 0 vector and returns 1 if all entries in
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both are zero, or 0 if any entry in either vector is non-zero. Looping this procedure,

over the range k = 2 to k = 2000, proves the claimed G is a standard basis for

Fitt2 M ∗
t over R[t].

Hence, specializing by t→ α we have

Fitt2 M ∗
α = (u2 + αuv, uv + αv2, ux+ αvx+ αuy + α2vy,

x2 + 2αxy + α2y2, uy + αvy, xy + αy2, xz, yz, z2, v3, v2y, vy2, y3)

over the A]k singularity for 2 ≤ k ≤ 2000. Finally, we claim that the set of generators

for Fitt2 M ∗
α above form a standard basis. By the modified Buchberger criteria for a

standard basis, this is a standard basis if it is closed under taking s-series (again in

our case polynomials). Recall from the E]
6 case, a non-zero remainder from an s-series

can only arise from the s-series of two non-monomials. Hence, labeling the first six

generators of Fitt2 Mα, g1, . . . , g6, respectively, we only need to check the remainders

of s(gi, gj) for 1 ≤ j < i ≤ 6. Keeping in mind over each R we have the relation

vx = uy, this is an easy calculation, which we leave to the reader. Now we show for

α, β ∈ C, such that α 6= β, Fitt2 M ∗
α 6= Fitt2 M ∗

β . We claim u2 + βuv 6∈ Fitt2 M ∗
α .

Reducing u2 + βuv, with respect to the standard basis for M ∗
α , we have

u2 + βuv = u2 + αuv − (α− β)(uv + αv2) + (β − α)v2.

Due to the fact that in negative graded reverse lexicographical order v2 is less than

u2, and no leading term in the standard basis for Fitt2 M ∗
α divides v2, we have a

non-zero remainder from reducing u2 +βuv. Hence, u2 +βuv 6∈ Fitt2 M ∗
α . Therefore,

the two Fitting ideals are not equal. As before, this implies Mα 6∼= Mβ.

Now let R be the local ring of the A]1 singularity. With the help of Singular, we

have that a standard basis for Fitt2 M ∗
t over R[t] is G = {u2 + 2uvt + v2t2, uv +

v2t, ux + vxt + uyt + vyt2, x2 + 2xyt + y2t2, uy + vyt, xyt2 + xy + y2t3 + y2t, xz +

yzt, yzt2 + yz, z2, v3, v2y, vy2, xy2 + y3t, y3t2 + y3, y2z, y4}.
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Thus specializing, by t→ α we have

Fitt2 Mα = (u2 + 2αuv + α2v2, uv + αv2, ux+ αvx+ αuy + α2vy, x2 + 2αxy + α2y2,

uy + αvy, (1 + α2)xy + α(1 + α2)y2, xz + αyz, (1 + α2)yz,

z2, v3, v2y, vy2, xy2 + αy3, (1 + α2)y3, y2z, y4)

over the local ring of the A]1 singularity. The factors of 1 + α2 appearing in the ideal

will yield a different standard basis when α = i, and so we will deal with this case

first. For α = i =
√
−1, a standard basis for Fitt2 M ∗

i is

Gi = {u2 + 2iuv − v2, uv − v2, ux+ ivx+ iuy − vy, x2 + 2ixy − y2

uy + ivy, xz + iyz, z2, v3, v2y, yv2, xy2 + iy3, y2z, y4}.

Now assume α 6= i. First, we remove some of the redundant generators, and then

show the resulting generating set is a standard basis. Denote the current generators

of Fitt2 M ∗
α , by g1, . . . , g16, respectively. We claim that for all other α a standard

basis for Fitt2 Mα is

{u2 + αuv, uv + αv2, ux+ αvx+ αuy + α2vy, x2 + 2αxy + α2y2,

uy + αvy, xy + αy2, xz + αyz, yz, z2, v3, v2y, vy2, y3}.

Denote these generators by f1, . . . , f13. Clearly, we have Fitt2 M ∗
α = (f1, . . . , f13),

since α2 + 1 is a unit. To show this is a standard basis, notice the fi’s are the same

generators of the standard basis for Fitt2 M ∗
α in the A]k case for 2 ≤ k ≤ 2000.

Hence, the computation of the s-series will be the same for this case. Therefore,

G = {f1, . . . , f13} is a standard basis for Fitt2 M ∗
α , for α 6= i.

Now let α, β ∈ C such that α 6= β. We claim Fitt2 M ∗
α 6= Fitt2 M ∗

β . To see this,

we have uy+αvy is in a standard basis for Fitt2 M ∗
α . Reducing this, with respect to

the standard basis we found for Fitt2 M ∗
β , we have

uy + αvy = uy + βvy + (α− β)vy.
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In our monomial ordering we have vy < uy and no other leading terms in our standard

basis for Fitt2 Mβ divide vy. Thus, the remainder of reducing uy+αvy is (α−β)vy 6=

0. Therefore, uy + αvy 6∈ Fitt2 M ∗
β , and so Fitt2 M ∗

α 6= Fitt2 M ∗
β . Hence, as in the

previous cases, for each α ∈ C, Mα is distinct. The discussion on indecomposability,

from the E]
k and D]

k cases, holds for this case as well. Consequently, we get the two

theorems below in the A]k case.

Theorem 3.16. Let R be the type A]k local ring from our family, F for 1 ≤ k ≤ 2000.

Then, for each α ∈ C, the R-module, Mα, generated by the column space of the

matrix, x2 xy xz 0 0 xu+ αxv

0 0 0 x2 xu u2

 ,
is a rank two maximal Cohen-Macaulay module. Moreover, if α 6= β ∈ C, then

Mα 6∼= Mβ.

Theorem 3.17. The local ring of a type A]k singularity has infinite Cohen-Macaulay

representation type for 1 ≤ k ≤ 2000.
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